臭氧—活性炭深度处理东江水的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国大多数城市的水源水水质污染有逐步加剧和恶化的趋势,而使用常规的处理工艺往往达不到理想的处理效果。因此,对水源水进行深度处理以满足当今及日后的需求势在必行。
     近年来,东莞市的综合实力迅速提高。同时,东莞市供水行业也得到了快速发展,其中既有提高也存在着不足。作为一个经济高速发展的城市,面对如此高速的经济发展速度,东莞市供水行业应与时俱进,把握机遇,努力实现城市供水水平的全面提高。因此,研究供水技术集成系统,建立完善的供水安全保障体系是东莞市供水发展的必然趋势,也是提高居民生活质量的客观要求和实现城市建设远景规划的迫切任务。
     本课题得到建设部2006年科学技术项目计划(06-K4-18)的项目支持,同时得到清华大学和东莞市东江水务有限公司的技术和资金支持。本文运用臭氧-活性炭工艺对东江水(东莞市水源水)进行深度处理,较系统的研究了臭氧-活性炭工艺处理微污染水源水及处理效果。试验结果包括以下内容:
     1.最佳臭氧投加量的确定。针对东江水水质的臭氧投加量确定为1.5 mg/L。在此条件下,相应水质指标能有效去除,对COD_(Mn)的去除率为52%~69%;氨氮的去除率为55%~77%;TOC的去除率为48%~68%;UV_(254)的去除率为70%~95%,且出水水质优于《城市供水水质标准》(CJ/T 206—2005);
     2.臭氧-活性炭工艺能有效保障出水的安全性。能有效去除消毒副产物的前体物,从而降低了后续工艺消毒副产物的生成量,进一步提高了饮用水的安全性。该工艺对进水中三卤甲烷生成潜能(THMFP)的去除率平均为42%;同时能有效的控制臭氧化副产物甲醛和溴酸盐,完全达到并优于相关国家标准标准,能充分保证饮用水的安全;其次,该工艺能有效控制生物可同化有机碳(AOC),对AOC的平均去除率为25.2%。从而保持管网生物稳定性,进一步保障用户用水的水质;通过对相应水样的致突变性进行Ames试验。结果为阴性,表明经臭氧-活性炭处理后,不会增加其致突变性的风险。出水完全达标。
     3.通过GC/MS分析、确定东江水中的致嗅物质,并以乙硫醇为代表研究工艺对其的去除效果。臭氧-活性炭工艺对乙硫醇的去除率平均为74.8%,结果表明:臭氧-活性炭能有效去除东江水中的致嗅物质,保证出水感官指标达标。
     试验结果表明,采用臭氧-活性炭工艺对东江水进行深度处理,能进一步提高水质,确保饮用水安全。所以对东江水采用臭氧-活性炭深度处理工艺是可行的。并可以将本工艺应用推广到类似的南方水体。
Currently, the majority of city's water source pollution in China has exacerbates trend,and the use of conventional treatment process is often not satisfied the effect. Therefore,advanced treatment to meet the current and future requirements is imperative.
     In recent years, Dongguan City's comprehensive strength grows rapidly. Meanwhile,Dongguan City water supply industry has been developing rapidly, but both shortcomingsexist. Dongguan, as a rapid economic developed city, in the face of such rapid pace ofeconomic development, its water industry should advance with the times, and grasp theopportunity to make the urban water level increased. Therefore, to study the water technologyintegration system, establish and perfect the system of water supply security of DongguanCity water is a natural trend, also is a urgent task to improve the quality of residents' life andto achieve long-term urban development planning.
     The subject is the project of Ministry of Construction in 2006 (06-K4-18). Andmeanwhile gets the technology and money support of Tsinghua university and DongjiangWater affairs Co.Ltd..This project treats the water of Dongjiang River(Dongguan city watersource) through O_3-GAC technology for advanced treatment. Through the equipment, itstudies the treatment technology of O_3-GAC to contaminated water and its effect. The resultsinclude the following aspects:
     First, the best ozone dosage determination, the ozone dosage is 1.5 mg/L for Dongjiangwater. And it has the effective removal to the corresponding water quality indicators. Theremoval rate of COD_(Mn) is 52%~69%; The removal rate of TOC is 48%~68%; Theremoval rate of UV_(254) is 70%~95%; The removal rate of ammonia is 55%~77%.
     Second, the O_3-GAC process could asure the safty of the water, and effectively removedisinfection by-product precursors, thereby, reduces the disinfection by-product's amount ofthe follow-up process, and further improves the safety of drinking water. The averageremoval rate is 42% to the THMFP of the influent in this process. The O_3-GAC technologycan effectively control ozone by-product (Formaldehyde and Bromate). and achieve bettereffect than relevant national standards, fully guarantee the safety of drinking water. The processcan significantly reduce the AOC. The average removal rate of AOC is 25.2%. Thereby, itmaintains network biological stability, and guarantees furtherly the water quality. The result ofthe test of Ames is negative. This indicates that the water treated by the O_3-GAC, will notincrease its risk of mutagenicity. The quality of effluent completely fulfills the standers.
     Third, through GC/MS analysis, it determines the olfactory substances in Dongjiangwater, and studis their removal rate of the process in the representatives of Ethanethiol. Theresults shows: O_3-GAC process could effectively remove olfactory substances in Dongjiangwater to ensure the sensory indicators standard of the effluent.
     The results show that the O_3-GAC process for the advance treatment can improve the water quality and ensure the safety of drinking water. Therefore, the use of this technology foradvanced treatment to the Dongjiang water is feasible and neCessary. And the process can beextended to a similar application for the southern waters.
引文
[1] 崔玉川,傅涛。我国水污染及饮用水源中有机物污染物的危害,城市环境与城市生态,1998,11(3):23~25
    [2] Auslander M, Smakp S O. Preprojective Modules Over Artin Algebras.J.Algebra,1980,66:61~122
    [3] 张长,曾光明,余健,等.微污染饮用水生物处理中痕量有机物生物降解研究述评.环境污染与防治,2003,25(6):356~358
    [4] 桂祖晟.我国部分城市饮用水有机微污染状况及深度处理.天津城市建设学院报,2000,6(1):70~74
    [5] 卢春钱.臭氧-活性炭在饮用水深度处理中的应用.西南给排水,2002,24(6):12~15
    [6] 陈向明,王虹.优质饮用水深度处理技术探讨.给水排水,2001,27(8):1~5
    [7] 宋文涛.用水深度处理试验研究.华北电力大学。学位论文.2004
    [8] 徐新华,赵伟荣.水与废水的臭氧处理.北京:化学工业出版社,2003,15~25
    [9] 周云.新臭氧技术及其应用.净水技术,2001,20(3):26~28
    [10] 吴红伟,刘文君,王占生.臭氧组合工艺玄除饮用水源水中有机物的效果.环境学,2000,21(4):29~33
    [11] Philip C Singer. Assessing Ozonation Reasearch Needs in Water Treatment. Journal of American Water Workers Associations, 1990,82 (10):78~88
    [12] 张金松,董文艺等.臭氧化-生物活性炭深度处理工艺安全性研究,给水排水,2003,29(9):1~4
    [13] 洪觉民.欧洲水厂观感.给水排水,1998,24(3):10~13
    [14] 申石泉,叶恒朋,陆少鸣.给水深度处理中臭氧副产物的产生及控制.城市环境与城市生态,2003,16:187~189
    [15] 费征云.考察美国自来水厂随感.中国给水排水,2001,17(4):64~66
    [16] 陈向明,王虹.优质饮用水深度处理技术探讨.给水排水,2001,27(8):1~5
    [17] 董晴宇,胡海修.饮用水深度处理技术探讨.西南给排水,2001,23(5):1~5
    [18] 周娟娟,胡中华.生物活性炭技术(BAC)进展与应用.西南给排水,2003,25(2):13~17
    [19] 王华成,吕锡武.微污染水源水饮用水处理研究进展.净水技术.2005,24(1):31~32
    [20] 侯立安,左莉,郭珍珍.纳滤膜分离技术处理饮用水的应用研究.给水排水,2000,26(2):21~23
    [21] 刘忠洲,续曙光,李锁定.微滤和超滤过程中的膜污染与清洗水处理技术,1997,23(4):187~193
    [22] 罗敏,王占生,侯立安.纳滤膜污染的分析与机理研究.水处理技术,1998,24(6):318~322
    [23] 王琳,王宝贞.城市饮用水膜处理技术.膜科学与技术,2001,21(3):53~55
    [24] 陈超,胡文容,张群.O_3预氧化-生物活性炭滤池直接过滤工艺处理黄河微污染原水.净水技术,2004,23(1):10~12
    [25] 张金松,赫俊国.臭氧化-生物活性炭技术试验研究.给水排水,2002,28(3):29~31
    [26] 王占生,刘文君编著.微污染水源饮用水处理.中国建筑工业出版社.1999
    [27] 谢曙光,张湛军,刘好笑等。臭氧生物活性炭深度处理低温黄河水研究[J]。中国给水排水,2004.2(7):21~24
    [28] 李绍峰,黄君礼等。臭氧—生物活性炭—膜法处理自来水[J]。中国给水排水,2002,第3期.
    [29] 王琳,王宝贞。饮用水深度处理技术。北京:化学工业出版社。2002
    [30] David A Reckhow, Philip C Singer, Ronald L Malcolm. Chlorination of Humic Materials: Byproducts Formation and Chemical Interpretations[J]. Envir Sci&Technol, 1990, 24(11): 1655~1665.
    [31] 蒋绍阶,刘宗源。UV_(254)作为水处理中的有机物控制指标的意义。成都:中国土木工程学会水工业分会给水委员会第八次年会论文集,2001
    [32] 吴红伟,刘文君,王占生。臭氧组合工艺去除饮用水源水中有机物的效果。环境科学,2000,21(4):29~33
    [33] 程学营,安毅,王启山等。深度处理工艺对微污染水中天然有机物(NOM)的去除机理及协同作用。
    [34] P.C. Chiang et al. NOM characteristics and tr-eatabilities of ozonation processes[J]. Chemosph-ere, 2002,46:929~936
    [35] 罗晓鸿,曹莉莉,王占生.不同分子量的有机物在净水工艺中的去除研究[J].中国环境科学,1998,18(4):341-344.
    [36] Maria Tomaszewska et al. Removal of organic matter by coagulation enhanced with adsorption on PAC[J]. Desalination, 2004, 161:79-87.
    [37] 李伟光,谭立国,臭氧—活性炭深度处理滦河水的试验研究.给水排水 2005 31(1):47-50
    [38] 单连斌。用臭氧—生物活性炭从污染水源去除微量有机污染物的研究:[学位论文]。哈尔滨。哈尔滨建筑大学,1989
    [39] John-Mark Davies, Asit Mazumder. Health and environmental policy issues in Canada-the role of watershed management in sustaining clean drinking water quality at surface sources. Journal of Environmental Management, 2003, 68:273~286
    [40] 陈超,张晓健,朱玲侠等。控制消毒副产物及前体物的优化工艺组合,环境科学,2005.7
    [41] 金鹏康,王晓吕.水中天然有机物的臭氧氧化处理特性[J].环境化学,2002,21(3),259—263.
    [42] 秦钰慧,凌波,张晓健副.饮用水卫生与处理技术[M].北京:化学工业出版社环境科学与工程出版中心,2002.343—345
    [43] 乔铁军。臭氧生物活性炭技术的工艺设计与运行管理。给水排水 2007.03
    [44] 张淑琪,刘彦竹,占月江泳,张锡辉,王占生.臭氧氧化自来水生物稳定性研究[J].ENVIRONMENTAL SCIENCE 1998(5)34~36
    [45] 刘文君等.生物预处理去除微污染技术.国家“八五”攻关专题研究报告.1995
    [46] 王宝贞主编。水污染控制工程[M].北京:高等教育出版社,1990.
    [47] ZhangXiaojian, WangZhansheng, GuXiasheng. Simple combination ofbiodegradation and carbon adsorption—themechanism of the biological activated carbon process[J].Water Research, 1991, 25 (2): 165-172.
    [48] 侯方东.低浓度臭氧生物活性炭对污水深度处理试验研究.西安建筑科技大学学位论文.
    [49] Jeong J., Sekiguchi K., Lee W., et al. Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169:279~287
    [50] 施东文。常规/臭氧生物活性炭组合工艺处理受污染黄河水研究。北京大学学报 2006.03
    [51] Villanueva C.M., Kogevinas M, Grimalt J.O. Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources [J]. Wat. Res., 2003, 37(4): 953~958
    [52] 谢晖。自来水厂氨氮的活性炭深度处理。水处理技术 2007.02
    [53] 浣晓丹,罗岳平译.自来水中臭氧副产物的生成及其控制[J].净水技术,2000,18(3):41~44.
    [54] 王晓吕.臭氧处理的副产物[J].给水排水,1998,24(12):75~77.
    [55] 王祖琴,李田.含溴水氧化过程中溴酸盐的形成与控制[J].净水技术,2001,20(2).7~11.
    [56] W. Krasner. Formation and Control of Bromate During Ozona.tionofWaters Containing Bromide[J]. JAWWA, 1993, 85(1): 75
    [57] Thomas Grosvenor.自来水中臭氧副产物的生成及其控制.净水技术.vol18.NO.3,2000
    [58] 王代平。预O_3-BAC饮用水处理工艺中活性炭的筛选。西南给排水 2007.01
    [59] 孙青萍.常规饮用水处理工艺对有机污染物的影响。西南给排水 2006.01
    [60] 孙德智.环境工程中的高级氧化技术.北京:化学工业出版社,2002
    [61] Nishijima, W. Fahmi, Mukaidani T., et al. DOC removal by multi-stage ozonation-biological treatment [J]. Wat. Res., 2003,37:150~54
    [62] 袁志彬,王占生.臭氧—活性炭工艺在给水处理中的作用研究.工业用水与废水.2005,02,1~3
    [63] 段蕾。臭氧在生物活性炭工艺中作用的中试研究。给水排水 2007.02

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700