饮用水处理工艺中微囊藻毒素污染调控技术的优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝藻水华引发的微囊藻毒素(Microcystins, MCs)次生污染已成为全球关注的热点环境问题。MCs是水华藻类的次生代谢产物,属于环状多肽,细胞死亡或解体后大量释放到水体中,危害水质安全。MCs具有极高的细胞选择性和专一生物毒性,机体摄入后可经多种途径转移到肝脏等靶器官。毒素暴露后,肝细胞的氧化应激水平显著提高,同时伴生有DNA损伤、细胞骨架破坏、细胞凋亡现象。鉴于MCs对水环境安全及人类健康的危害,控制水体蓝藻水华和MCs浓度水平,确保饮用水安全供给已经成为科学工作者重点关注的环境问题。原水除藻(物理、化学、生物方式)、化学混凝、沉淀、过滤、消毒、活性炭吸附、生物降解等工艺陆续应用于MCs的调控并且获得了明显的成效。但是由于技术限制和认识不足,上述各类工艺尚难以从根本上调控MCs的产生、释放和毒性风险问题,仍然需要对受MCs污染的原水层层设防,逐级调控。本论文从蓝藻细胞低破损去除、含藻给水污泥减量化处理、MCs消毒副产物鉴定与毒性评价方面,优化了受蓝藻水华污染饮用水的处理工艺,为MCs的有效调控提供新的技术支持。论文主要包括以下五部分:
     论文第一章阐述了微囊藻毒素的理化特性、生成机制与污染现状;归纳了微囊藻毒素典型的生物毒性、作用机制、水质标准与检测方法;详细介绍了针对营养物质、针对水源地藻细胞/MCs和针对给水常规/深度处理中MCs调控策略与工艺进展。在文献综述的基础上分析了目前相关研究存在的问题,提出了基于蓝藻细胞低破损去除、含藻给水污泥减量化处理、MCs消毒副产物鉴定与毒性评价研究的饮用水微囊藻毒素污染调控技术。
     论文第二章针对混凝沉淀工艺过程中蓝藻细胞的破损与胞内毒素释放问题,通过模拟混凝沉淀工艺,评价了混凝药剂和工艺运行条件(搅拌速度、时间、静沉时间等)对蓝藻细胞及其代谢产物的去除效果,在此基础上考察蓝藻细胞代谢产物的释放规律,阐明蓝藻细胞的破损机理;并对混凝剂剂量、搅拌操作及絮体堆积时间等条件进行了优化。在优化后的混凝条件下(对AlCl3而言最优条件为15mg/L,快搅250r/min、1min,慢搅20r/min、20min;对PACl而言最优条件为4mg/L,快搅150r/min、2min,慢搅40r/min、30min),几乎所有铜绿微囊藻细胞都可通过表面电中和被完整去除,混凝剂的投加和搅拌条件并没有导致MCs的额外释放。AlCl3混凝絮体中,藻细胞表面能够形成一种有效保护层,一定程度上减弱了藻细胞的溶解。与AlCl3不同,PACl能够打破藻细胞外的保护层,显著加剧藻细胞的破损,使其在絮体堆置2天后即发生溶解。本研究不仅对传统饮用水混凝沉淀处理工艺中有效去除藻细胞具有重要意义,对于沉淀污泥处理过程中水资源的循环利用和二次污染防治同样具有重要的指导意义。
     论文第三章在混凝沉淀净化处理含藻原水工艺优化的基础上,进一步考察了含藻给水污泥真空过滤脱水过程中机械作用和理化作用对蓝藻细胞稳定性与MCs释放特性的影响。基于不同操作条件下过滤效率(过滤时间、平均滤速)、滤液浊度、MCs浓度的变化,明确了机械作用和理化作用对藻细胞完整性的具体影响,并据此对过滤操作条件进行优化。研究发现载样量对污泥脱水特性影响显著,污泥在过滤介质表面逐渐堆积,不仅降低滤速且对藻细胞具有明显的挤压破坏,实际操作中应避免污泥层的形成,以提高滤速同时减少MCs释放。含藻给水污泥过滤脱水时应选择亲水性过滤介质,在保证较高过滤效率的条件下尽可能降低介质孔度。尽管正压过滤效率略有提高,却会造成絮体和藻细胞破损,从减少MCs释放的角度来讲,应选择低破坏性的真空过滤技术。在合适的推动力作用下(高真空度),含藻给水污泥过滤效率较高且未增加滤液MCs浓度和浊度,应优先选择。污泥堆存时间的延长虽有利于提高污泥脱水效率,却显著提高了滤液MCs浓度和浊度。在实际给水厂含藻给水污泥减量化处理时,应控制严苛的堆存时间(AlCl3给水污泥要求堆存时间不超过4d, PACl给水污泥要求堆存时间不超过2d)。本研究完善了对蓝藻细胞胞内MCs的归趋方式的认识,同时具体研究结果能够为实际给水厂含藻给水污泥的减量化处理和含泥水资源化利用提供借鉴和参考。
     论文第四章以典型毒素MCLR和MCRR作为饮用水中微囊藻毒素调控研究的契入点,通过模拟常规氯消毒工艺条件,在实现MCs氧化去除的同时借鉴微囊藻毒素的传统制备工艺,实现MCs消毒副产物(MC-DBPs)的分离纯化,并利用液相色谱-质谱(LC/MS)、质谱-质谱联用(MS/MS)等技术对MCs及MC-DBPs进行结构对比解析,进而确定主要MC-DBPs的结构特性与生成机制;同时在色谱制备的基础上利用蛋白磷酸酶抑制毒性实验建立和完善MC-DBPs环境风险的评价方法。研究表明在不同消毒模式下,MCs能够稳定消减至WHO规定的限值(1.0μg/L)以下,但同时氧化生成多种MC-DBPs。典型DBPs产物类型与分布受MCs类型和消毒剂量的影响与制约。综合分析MC-DBPs的生成机制,不难发现MC主要经历Adda共轭二烯双键加成反应和部分初级产物的脱水反应。蛋白磷酸酶PP1的毒性抑制实验均证实多数MC-DBPs的生物毒性较原毒素有明显下降,但残余的生物毒性依然不能忽视。尽管消毒处理可有效调控MCs的浓度水平,但综合考虑MC-DBPs的含量变化和潜在生物毒性,MC-DBPs对饮用水的二次污染同样值得关注。本研究建立的针对MC-DBPs毒性分析评价技术并不局限于MCLR和MCRR,依据原水中MCs的分布特征,同样适用于其它类型毒素消毒副产物毒性的评价与调控。本研究有助于综合认识MCs的危害及其调控策略和提高饮用水质量,因而具有重要实际意义和应用价值。
     论文第五章对各研究部分进行了总结,并分析了“饮用水处理工艺中微囊藻毒素污染调控技术的优化研究”的优势与不足之处,展望了该领域的发展方向。本论文优化和改进了微囊藻毒素污染原水的常规处理工艺,为MCs的有效调控提供新的技术支持与参考。
The increasing frequency and intensity of cyanobacterial blooms is a growing environmental and human health concern. The most common toxins produced by cyanobacteria are microcystins (MCs), a class of hepatotoxic monocyclic heptapeptides. MCs have been the cause of several poisonings of livestock and wildlife around the world, and they also posed a health hazard for humans through the use of drinking water. When orally ingested MCs, they are actively absorbed to hepatic cells, irreversibly inhibit protein phosphatase1, subsequently leading to disruption of cell structures, intrahepatic hemorrhage and death. Since MCs are potent hepatotoxins, controlling of their levels in drinking water became a great important issue. Previous studies have suggested various techniques for the control of MCs in drinking water, such as coagulation, flocculation, filtration, activated carbon adsorption and disinfection. These treatment processes were efficient in removing cyanobacteria cells and internal MCs, but were unreliable for dissolved MCs due to the fragility of cyanobacteria cells (inappropriate operations probabily lead to secondary pollution). Consequently, it is still necessary for new or modified water treatment methods to eliminate these toxins. In this research, we focused on the "the optimization of the removal technology for MCs pollution in drinking water treatment processes", including the lysis of Microcystis aeruginosa in coagulation and sedimentation, the dewatering of algae containing sludge and MC-DBPs formation and toxicity in disinfection.
     This study has five chapters, just as follows:
     In chapter one, we described the physical and chemical characteristics, the generation mechanisms and the current pollution status of MCs; summarized the typical biotoxicities and mechanisms, the related water quality standards and detection methods of MCs; we also introduced the control strategies and technologies directed against nutrients, algae cells/microcystins in raw water, in conventional/deep treatments of drinking water. Based on literature review, we proposed the researching aims, meanings, methods and contents of our work.
     In chapter two, we simulated the coagulation-sedimentation process and assessed the effects of coagulant dose, shear, and floc storage time on the integrity of Microcystis aeruginosa FACHB-905, to effective control cyanobacteria lysis both in coagulation and floc storage processes. On this basis, we investigated the release of intracellular MCs, clarified the breakage mechanism of cyanobacteria cells, and optimized coagulant dosage, stirring parameters and floc deposition time. Under the optimum coagulation conditions for cyanobacterial cells removal (for AICl3, coagulant dose15mg/L, rapid mix250r/min for1min, slow mix20r/min for20min; for PACl, coagulant dose4mg/L, rapid mix150r/min for2min, slow mix40r/min for30min), all cells were removed intactly by the surface charge neutralization with AlCl3/PACl and there was no additional release of MCs into the treated water. The formation of AICl3flocs brought a protection for cyanobacterial cells and reduced their breakage in a certain degree, however, they should also be treated or disposed within6days to avoid the lysis of cells and additional release of MCs. While in the PACl coagulation-sedimentation process, PACl could destroy the protective effects of EPSs produced by M. aeruginosa cells, inducing obvious damage to the cells and leading to a large amount of MCs release above background concentration. This study is not only significant for the effective removal of cyanobacterial cells in natural blooms, but also instructive for the safe treatment of coagulation flocs (secondary pollution) in drinking water treatment plants.
     In chapter three, we further investigated the characteristics of algae lysis and microcystin release in the filtration of algae containing sludge formed in coagulation treatment. By evaluating filtration efficiency (time and average rate), turbidity and MCs concentration in different operating conditions, the influences of mechanical action and physical/chemical effects on algal cell integrity were explicated, and the operation conditions were also optimized for vacuum filtration. Experiments showed that sample loading volume had significant influence on sludge dewatering characteristics, sludge would gradually accumulated on the surface of filtration media, resulting in reduced filtration rate and algae lysis. In actual operation, the formation of sludge layer should be avoided. Hydrophilic filtration media with lower porosity should be choosen to enhance filtration efficiency and remove solid insoluble matter. Despite positive pressure filtration had a higher efficiency, it could induce the damage of the flocs and algae cells. In consideration of MCs release, vacuum filtration with low-destructibility should be choosen. With appropriate driving force (higher vacuum), algae containing sludge had higher filtration efficiency and stable MCs concentration and turbidity levels. Prolonging the storage time of sludge was conducive to improving the efficiency of sludge dewatering, but also enhanced MCs concentration and turbidity. For this reason, the storage time of algae containing sludge should be severely restricted in actual water supply factories (the storage times for PACl and AlCl3should not be more than2d and4d, respectively). This work gave deeper knowledge on the fate of intracellular MCs in the process of sludge dewatering, while concrete experimental results provided valuable references for algae containing sludge treatment and the re-utilization of sludge resource.
     The principal objective of chapter four was to provide an evaluation of the generative mechanism and biological toxicity of MC-DBPs involved in disinfection. The widespread and dangerous MCs, MCLR and MCRR, were selected as the target of disinfection treatment and its primary DBPs were identified by mass spectrometry, liquid chromatography/mass spectrometry and tandem mass spectrometry. In addition to the generative mechanism studies, the biological toxicity of MC-DBPs on protein phosphatasel (PP1) was evaluated by molecular toxicity experiments. Subject to disinfection, MCs could be reduced to the limit value (1.0μg/L) of WHO, but could also be oxidized to a variety of MC-DBPs. The types and distributions of DBPs were under the influence and restriction of MCs type, disinfectant dose and reaction time. With a comprehensive analysis of MC-DBP formation mechanism, it was not difficult to find MCs mainly subjected to the the addition reaction of Adda conjugated diene and dehydration reaction of some secondary products. Though most MC-DBPs had lower toxicity on protein phosphatase1than MCs, they still possessed certain biological toxicity. From the perspective of the drinking water safety, disinfection was valid regulate method for MCs, but the secondary pollution of MC-DBPs also deserved further attention. The evaluation technology on MC-DBPs established in this work was not limit to MCLR and MCRR, it also could be applied to other toxin types according to their distribution characteristics in raw water. This study offers valid technique support for MC-DBPs identifiation, contributes to a comprehensive cognition on their hazard, and thus has great significance to prevent and control the environmental risk induced by MCs.
     Finally, we summarized the research findings of above parts and discussed the future developments of the removal technologies on microcystin pollution in drinking water treatment processes. This study has enriched the research on the optimization for removal technology on MCs pollution in drinking water treatment processes, and provided some reference gists for the control of MCs and their potential biotoxicity.
引文
Adam B., Tadeusz S. Harmful cyanotoxins:hepatotoxic effects of microcystin in mammalian animals. Medycyna Wet.,2007,635:522-524.
    Aguilar M.I., Saez J., Llorens M., Soler A., Ortuno J.F., Meseguer V., Fuentes A. Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere, 2005,58:47-56.
    Almeida V.P.S., Cogo K., Tsai S.M., Moon D.H. Colorimetric test for the monitoring of microcystins in cyanobacterial culture and environmental samples from southeast-Brazil. Braz. J. Microbiol.,2006,37 (2):192-198.
    Andreozzi R., Caprio V., Insola A. Advanced oxidation processes (APO) for water purification and recovery. Catal. Today,1999,531:51-59.
    Anthony R.A., Wayne W.C. Evidence that microcystin is a thio-template product. J. Phycol., 1996,32:591-597.
    Antoniou M.G., Cruz A.A., Dionysiou D.D. Cyanotoxins:New Generation of Water Contaminants. J. Environ. Eng. ASCE,2005,131:1239-1243.
    Antoniou M.G., Shoemaker J.A., Delacruz A.A., Dionysiou D.D. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR. Environ. Sci. Technol.,2008,42(23):8877-8883.
    Antoniou M.G., de la Cruz A.A., Dionysiou D.D. Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals. Environ. Sci. Technol.,2010,44: 7238-7244.
    Blom J.F., Robinson J.A., Juttner F. High grazer toxicity of [D-Asp(3),(E)-Dhb(7)]microcystin-RR of planktothrix rubescens as compared to different microcystins. Toxicon,2001,39:1923-1932.
    Bourne D.G, Jones G.J., Blakeley R.L., Jones A., Negri A.P., Riddles P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl. Environ. Microbiol.,1996,62:4086-4094.
    Brookes J.D., Carey C.C. Resilience to blooms. Science,2011,334:46-47.
    Burch M., Chow C., Hobson P. Algicides for control of toxic cyanobacteria. Blue-green algae: their significance and management within water supplies (ISBN 187661613X),2002,4:23-32.
    蔡金傍.水库微囊藻毒素变化规律及数值模拟研究.河海大学博士学位论文,2008.
    陈登霞.异相Fenton光催化降解微囊藻毒素研究.三峡大学硕士学位论文,2010.
    陈刚,俞顺章.微囊藻毒素LR和黄曲霉毒索B1对肝脏促癌作用的实验研究.癌变畸变突变,1996,8(3):129-132.
    陈国永,杨振波,马昱,丁昌明,林少彬,陶茂萱.实验条件下氮、磷对微囊藻毒素产生的影响.卫生研究,2008,37(2):147-151.
    崔力拓,李志伟.氮、磷营养盐组成对铜绿微囊藻生长的影响.河北渔业,2006,(5):12-14.
    Campos A., Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells, Int. J. Mol. Sci.,2010,11:268-287.
    Chen G.W., Yu H.Q., Xi P.G. Influence of 2,4-dinitrophenol on the characteristics of activated sludge in batch reactors. Bioresource Technol.,2006,98:729-733.
    Chen J.J., Yeh H.H., Tseng I.C. Effect of ozone and permanganate on algae coagulation removal-Pilot and bench scale tests. Chemosphere,2009,74:840-846.
    Chen L.B., Liang W.Y., Qu J.H., Xie M.S., Lei P.J., Liu H.J. The viability determination of cyanobacteria by double staining with fluorescein diacetate and propidium iodide. Environ. Chem.,2005a,24:554-557.
    Chen X.L., Chen S.N., Zhu Z.M., Peng J., Xia X.H. Effects of UV-B radiation on three strains of Microcystjs Aeruginosa. J. Yunnan University,2005b,27:252-255.
    Chorus I., Bartram J. Toxic cyanobacteria in water:a guide to their public health consequences, monitoring and management, First ed. E & FN Spon, London,1999.
    Chow C.W.K., Drikas M., House J., Burch M.D., Velzeboer R.M.A. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res., 1999,33:3253-3262.
    Christottersen K., Lyck S., Winding A. Microbial activity and bacterial community structure during degradation of microcystins. Aquatic Microbial Ecology,2002,27(2):125-136.
    Chu F.S., Huang X., Wei R.O. Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J. Assoc. Off. Analyt Chem.,1990,73:451-456.
    Chu Z.S., Yang B., Jin X.C., Yan F., Zheng S.F., Pang Y., Zeng Q.R. Critical collapse pressure of gas vesicles in six strains of cyanobacteria. Environ. Sci.,2007,28:2695-2699.
    Codd G.A., Pooh G.K. Cyanobacterial toxins. Biochemistry phytochemistry society of Europe. Oxford,1998,283-296.
    董敏殷.化学预氧化对于藻类藻毒素释放和降解的特性研究.同济大学硕士学位论文,2009.
    Daly R.I., Ho L., Brookes J.D. Effect of Chlorination on Microeysis aeruginosa cell integrity and subsequent Microcystin release and degradation. Environ. Sci. Technol.,2007,41:4447-4453.
    Dawson R.M. The toxicology of microcystins. Toxicon,1998,36 (7):953-963.
    de Figueiredo D.R., Azeiteiro U.M., Esteves S.M., Goncalves F.J.M., Pereira M.J. Microcystin-producing blooms-a serious global public health issue. Ecotoxicol. Environ. Saf., 2004,59:151-163.
    de Maagd P.G.J., Hendriks A.J., Seinen W., Sijm D.T.H.M. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR. Water Res.,1999,33 (33):677-680.
    Ding W.X., Shen H.M., Ong C.N. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes. J. Toxicol. Environ. Health,2001,64 (6):507-519.
    Ding W.X., Shen H.M., Zhu H.G., Lee B.L., Ong C.N. Genotoxicity of microcystic cyanobacteria extract of a water source in china. Mutation Research,1999,442 (2):69-77.
    Dittmann E., Neilan B.A., Erhard M., von Dohren H., Borner T. Insertional mutagenesis of a peptide synthetase gene that at responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol. Microbiol,1997,11:779-787.
    Donati C., Drikas M., Hayes R., Newcombe G. Microcystin-LR adsorption by powdered activated carbon. Water Research,1994,28 (8):1735-1742.
    Drikas M., Newcombe G., Nicholson B. Water treatment options for cyanobacteria and their toxins. Blue-green algae:their significance and management within water supplies (ISBN 187661613X),2002,4:75-92.
    范成新,张路,王建军.湖泊底泥疏浚对内源释放影响的过程与机理.科学通报,2004,49(15):1523-1528.
    Fawen J. The toxicity of cyanobacterial toxins in the mouse:Microcystin-LR. Hum. Exp. Toxicol.,1999,37(8):1041-1052.
    Francis G Poisonous Australian Lake. Nature,1878,18:11-12.
    甘立友,周利,刘灵菊,陈晓莉,张光宇.聚丙烯酰胺在给水厂排泥水处理中的应用研究.苏州科技学院学报(工程技术版),2008,21(4):29-34.
    高月华,张晋夫.给水厂排泥水处理脱水方式探讨.科技传播,2011,5:91.
    Gaudin J., Huet S., Jarry G., Fessard V. In vivo DNA damage induced by the cyanotoxin microcystin-LR:Comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutat. Res.,2008,652:65-71.
    Guigui C., Rouch J.C., Durand-Bourlier L., Bonnelye V., Aptel P. Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production. Desalination, 2002,147:95-100
    Gulledge B.M., Aggen J.B., Huang H.B., Nairn A.C., Chamberlin A.R. The microcystins and nodularins:cyclic polypeptide inhibitors of PP1 and PP2A. Curr. Med. Chem.,2002,9 (22): 1991-2003.
    Gunten U.V., Drinedger A., Oallard H. By-products formation during water disinfection:a tool to assess disinfection efficiency. Water Res.,2001,358:2095-2099.
    何宏胜,闰海,周洁.筛选菌种酶催化降解微囊藻毒素的特点.环境科学,2006(6):1171-1174.
    侯翠荣,贾瑞宝.化学氧化破坏藻体及胞内藻毒素释放特性研究.中国给水排水,2006,22(13):98-101.
    胡志坚.微囊藻毒素毒性及其致癌机制.福建农林大学博士学位论文,2009.
    黄钰玲,惠二青,刘德富.河道型水库库湾水体富营养化评价及防治初探.人民长江,2006,37(4):16-17.
    Haider S., Naithani V., Viswenathan P. N., et al. Cyanobaeterial toxins:a growing environmental concern. Chemosphere,2003,52 (1):1-2.
    Harada K. Recent advances of toxic cyanobacteria researches. Journal of Health Science,1999, 453:150-165.
    Hashimoto E.H., Kato H., Kawasaki Y., Nozawa Y., Tsuji K., Hirooka E.Y., Harada K. Further investigation of microbial degradation of microcystin using the advanced marfey method. Chem. Res. Toxicol.,2009,22:391-398.
    Hastie C.J., Borthwick E.B., Morrison L.F., Codd G.A., Cohen P.T.W. Inhibition of several protein phosphatases by a non-covalently interacting microcystin and a novel cyanobacterial peptide, nostocyclin. Biochim. Biophys. Acta,2005,1726:187-193.
    He W., Zhu Y, Xiao Q.H., Yang J., Lei L.M., Han B.P., Zhang Y.M. Study of removal of water bloom cells by red earth modified with polyaluminium chloride and ferric chloride. Ecology Environ. Sci.,2010,19:550-555.
    Heresztyn T., Nicholson B.C. Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay. Water Res.,2001,35 (13):3049-3056.
    Ho L., Onstad G., von Gunten U., Rinck-Pfeiffer S., Craig K., Newcombe. G., Differences in the chlorine reactivity of four microcystin Analogues. Water Res.,2006,40 (6):1200-1209.
    Hoger S.L., Dietrich D.R., Hitzfeld B.C. Effect of ozonation on the removal of cyanobacterial toxins during water treatment. Environ. Health Perspect,2002,1100:1127-1131.
    Hudder A., Song W.H., O'Shea K.E., Walsh P.J. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. Toxicol. Appl. Pharm.,2007,220:357-364.
    Ito E., Kondo F., Terao K., Harada K. Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon,1997,35 (9):1453-1457.
    Lankoff A., Bialezyk J., Dziga D., Carmiehael W.W., Gradzka l., Lisowska H. The repair of gamrna-radiation induced DNA damage is inhibited by microcystin-L R, the PP1 and PP2A Phosphatase inhibitor. Muta genesis,2006:21 (1):83-90.
    贾瑞宝,李冬.水库水中微囊藻毒素的预氧化处理.中国给水排水,2003,19(3):56-57.
    金相灿,李兆春,郑朔方等.铜绿微囊藻生长特性研究.环境科学研究,2004,17:52-61.
    Jiekells T. External inputs as a contributor to eutrophication problems. J. Sea Res.,2005,54 (1): 58-62.
    Jochimsen E.M., Carmichael W.W., An J.S., et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med.,1998,338:873-878.
    Jones G.J., Bourne D.G., Blakeley R.L., Doelle H. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat. Toxins,1994,2:228-235.
    Jones K.H., Senft J.A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem.,1985,33:77-79.
    Jungblut A.D., Hoeger S.J., Mountfort D., Hitzfeld B.C., Dietrich D.R., Neilan B.A. Characterization of microcystin production in an Antarctic cyanobacterial mat community. Toxicon,2006,47:271-278.
    孔凡玲,赵增科,李莉,江嫒媛.水处理工艺去除饮用水中藻毒素的功效.环境与健康杂志,2005,22(3):237-240.
    Kenneth L.R., et al. Structure and biosynthesis of toxins from blue-green algae. J. Appl. Phycol., 1994,6:159-176.
    李怀正,洪祖喜,邢绍文,喻文熙,郑鸿.对上海给水厂污泥处理的规划设想.给水排水,200531(12):18-20.
    黎雷,高乃云,殷娣娣,张可佳,控制饮用水原水中藻类、藻毒素的水厂处理工艺.中国给水排水,2008,246:20-24.
    连民,刘颖,俞顺章.氮、磷、铁、锌对铜绿微囊藻生长及产毒的影响.上海环境化学,2001,20(4):166-170.
    刘成.微囊藻毒素在上海市水源地的分布状况及去除研究.同济大学博士学位论文,2007.
    刘霞,杜桂森.藻类植物与水体富营养化控制.首都师范大学学报(自然科学版),2002,23(4):56-59.
    柳丽丽.微囊藻毒素的促癌性研究.北京工业大学博士学位论文,2006.
    罗固源,韦玮,许晓毅,谭倩.小城镇水厂污泥处置及资源化方向分析.重庆大学学报(自然科学版),2005,28(9):79-82.
    Lam A.K.Y, Prepas E.E., Spink D., Hredey S.E. Chemical control of hepato-toxic phytoplankton blooms:implications for human health. Water Res.,1995,29 (8):1845-1854.
    Lankoff A., Bialczyk J., Dziga D., Carmichael W.W., Lisowsk H., Wojcik A. Inhibition of nucleotide excision repair (NER) by microcystin-LR in CHO-K1 cells. Toxicon,2006,48: 957-965.
    Lee T.J., Nakano K., Matsumaba M. Ultrasonic irradiation for blue-green algae bloom control. Environ. Technol.,2001,22:383-390.
    Lei G.Y. Zhang X.Q., Wang D.S. The algae removal mechanism by polymerized aluminium salt coagulants and methods to improve algae removal. Water Resour. Protection,2007,23:50-54.
    Li Z.G., Lu J., Wang G.X., Ge X.G. Comparison of measurement of phytoplankton chlorophyll-a concentration by spectrophotometry. Environ. Monit. China,2006,22:21-23.
    Liu C, Gao N.Y., Chen W. Study oil removal effect and mechanism of microcystins by coagulation. China Water & Wastewater,2007,23:51-55.
    Liu I., Lawton L.A., Robertson P.K. Mechanistic studies of the photocatalytic oxidation of microcystin-LR:an investigation of byproducts of the decomposition process. Environ. Sci. Technol.,2003,37:3214-3219.
    Liu I., Lawton L.A., Bahnemann D.W., Liu L., Proft B., Robertson P.K. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials. Chemosphere,2009, 76:549-553.
    Liu S.Y., Wu M.H., Gu X.J. Influence of electron beam irradiation on the physiological activity of Microcystis aeruginosa. J. Chem. Eng. Chinese Universities,2011,25:695-698.
    马经安.浅谈国内外江河湖库水体富营养化状况.长江流域资源与环境,2002,11(7):575-578.
    马军,石颖.高锰酸盐复合药剂预氧化与预氯化除藻效能对比研究.给水排水,2000,126(19):25-29.
    马小妮.微囊藻生长、产毒及其毒素分离提取的研究.中国农业大学硕十学位论文,2007.
    门玉洁,胡洪营.芦苇化感物质对铜绿微囊藻生长及藻毒素产生和释放的影响.环境科学,2007,28(9):2058-2062.
    穆丽娜,陈传炜,俞顺章,刘建玲,吴亚英,朱文吕,太湖水体微囊藻毒素含量调查及其处理方法研究.中国公共卫生,2000,169:803-806.
    MacKintosh C., Beattie K.A., Klumpp S., Cohen P., Codd G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett,1990,264:187-192.
    Maynes J.T., Bateman K.S., Cherney M.M., Das A.K., Luu H.A., Holmes C.F.B., James M.N.G Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. The Journal of Biological Chemistry,2001,276 (47):44078-44882.
    McElhiney J., Lawton L.A. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol. Appl. Pharmacol.,2005,203 (3):219-230.
    Merel S., LeBot B., Clement M., Seux R., Thomas O. MS identification of microcystin-LR chlorination by-products. Chemosphere,2009,74 (6):832-839.
    Miao H.F., Qin F., Tao G.J., Tao W.Y., Ruan W.Q. Detoxification and degradation of microcystin-LR and -RR by ozonation. Chemosphere,2010,79 (4):355-361.
    Milutinovic A., Zivin M., Zorc-Pleskovic R., Sedmak B., Suput D. Nephrotoxic effects of chronic administration of microcystins-LR and YR. Toxicon,2003,42 (3):281-288.
    Mohamed Z. A., Carmichael W. W. An J., et al. Activated carbon removal efficiencv of microcystins in an aqueous cell extract of Microcystis aeruginosa and Oscillatovia tenuis strains isolated from Egyptian freshwaters. Environ. Toxicol.,1999.14(1):197-201.
    Morris R.J., Williams D.E., Luu H. A., et al. The adsorption of microcystin-LR by natural day particles. Toxicon,2000,38 (2):303-308.
    Msagati T.A.M., Siame B.A., Shushu D.D., Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquat. Toxicol.,2006,78 (4):382-397.
    Nagata S., Soutome H., Tsutsumi T., Hasegawa A., Sekijima M., Sugamata M., Harada K.I., Suganuma M., Ueno Y. Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. Nat. Toxin,1995,3:78-86.
    Nakano Y., Shirai M., Moil N., Nakano M. Neutralization of microcystin shock in mice by necrosis factor alpha antiserum. Appl. Environ. Microb.,1991,57 (1):327-330.
    Nishizawa T., Asayama M., Fujii K., Harada K.I., Shirali M. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in microcystis spp. Biochem.,1999,12 (6): 520-529.
    Nishizawa T., Ueda A., Asayasma M., Fujii K., Harada K.I., Ochi K., Shirali M. Polyketide synthase gene coup led to the peptide synthetetasemodule involved in the biosynthesis of the cyclic heptapeptide microcystin. Biochem.,2000,127:779-789.
    Nobre A.C., Martins A.M., Havt A., et al. Renal effects of supematant from rat peritoneal macrophages activated by microcystin-LR:role protein mediators. Toxicon,2003,41 (3): 377-381.
    Orr P.T., Jones G.J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr.,1998,43:1604-1614.
    Ostensvik O., Skulberg O.M., Underdal B., Hormazabal V. Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria-a comparative study of bacterial bioassays. J. Appl. Microbiol.,1998.84 (6):1117-1124.
    Ozturk, S., Aslim, B., Suludere, Z. Cadmium(Ⅱ) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technol.,2010,101:9742-9748.
    Paerl H.W., Huisman J. Blooms like it hot. Science,2008,320:57-58.
    Pearson L., Mihali T., Moffitt M., Kellmann R., Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar. Drugs,2010,8:1650-1680.
    Peterson, H.G., Hrudey, S.E., Cantin, LA., Perley, T.R., Kenefick, S.L. Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Res.,1995,29: 1515-1523.
    《全国主要湖泊、水库富营养化调查研究》课题组.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,1990.
    Qiao R.P., Li N., Qi X.H., Wang Q.S., Zhuang Y.Y. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon,2005,45 (6):745-752.
    Rantala A., Fewer D.P., Hisbergues M., Rouhiainen L., Vaitomaa J., Borner T., Sivonen K. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA,2004,101:568-573.
    Rapala J., Sivonan K., Lyra C., et al. Variation of microcystins, cyanobactefial hepatotoxim, in Anabaella spp.:As a function of growth stimulitation. Appl. and Environ. Microbiol,1997,63 (7): 2206-2212.
    Rivasseau C., Racaud P.,Deguin A., et al. Evalution of an ELISA kit for the monitoring of microcystins (cyanobacterial toxins) in water and algae environmental samples. Environ. Sci. Tecimol.,1999,33 (12):1520-1527.
    Robert H.P. Phosphorus availability in lake Memphremagog and its tributaries. Limnol Oceanogr, 1987,32(5):1124-1137.
    Rodriguez E., Onstad G.D., Kull T.P.J., Metcalf J.S., Acero J.L., Von Gunten U. Oxidative elimination of cyanotoxins:comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res.,2007,41:3381-3393.
    Rositano J., Newcombe G., Nicholson B., Sztajnbok P. Ozonation of NOM and algal toxins in four treated waters. Water Res.,2001,35:23-32.
    Rotman B., Papermaster B.W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluoregenic esters. Proc. Natl. Acad. Sci. U.S.A.1966,55:134-141.
    Runnegar M., Bemdt N., Kaplowitz N. Microcystin uptake and inhibition of protein phosphatases:effects of chemoprotectants and self-inhibition in relation to known hepatic transporters. Toxicology and applied Pharmacology,1995,134 (2):264-272.
    山东省城市供水藻类污染控制课题组.山东省城市供水藻类污染特征及水厂除藻工艺的现场试验研究.中国土木工程学会水工业分会给水深度处理研究会,2004,P58-66.
    沈英嘉,陈德辉.不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响.湖泊科学,2004,16(3):285-288.
    施玮,朱惠刚,晏晓蓉,周志俊.微囊藻提取物对大鼠原代培养的肝细胞形态学影响研究.环境与健康杂志,2001,18(5):259-261.
    孙丽华,李星,陈杰,林建禄,李圭白.超滤膜组合工艺处理高藻水库水试验研究.工业水处理,2010,30(2):24-27.
    Sangolkar L.N., Maske S.S., Chakrabarti T. Methods for determining microcystins (peptide hepatotoxins) and microcystin producing cyanobacteria. Water Res.,2006,40:3485-3496.
    Saqrane S., Ghazali I. E., Ouahid Y. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba:microcystin accumulation, detoxication and oxidative stress induction, Aquat. Toxicol.,2007,83:284-294.
    Schmidt W., Willmitzer H., Bornmann K., Pietsch J. Production of drinking water from raw water containing cyanobacteria pilot plant studies for assessing the risk of microcystin breakthrough, Environ. Toxicol.,2002,17:375-385.
    Serres M.H., Fladmark K.E., Dskeland S.O. An ultrasensitive competitive binding assay for the detection of toxins affecting protein phosphatases. Toxicon,2000,38:347-360.
    Sedlak D.L., von Gunten U. The chlorine dilemma. Science,2011,331:42-43.
    Shen P.P., Zhao S.W., Zheng W.J., Hua Z.C., Shi Q., Liu Z.T. Effects of cyanobacteria bloom extract on some parameters of immune function in mice. Toxicology Letters,2003,143 (1): 27-36.
    Strickland, J.D.H., Parsons, T.R. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Canada,1968,167:71-75.
    Sun F., Pei H.Y., Hu W.R., Song M.M. A multi-technique approach for the quantification of Microcystis aeruginosa FACHB-905 biomass during high algae-laden periods. Environ. Technol., 2011,33:1773-1779.
    Sun F., Pei H.Y., Hu W.R., Ma C.X. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes. Chemical Engineering Journal,2012,193-194:196-202.
    Sun F., Pei H.Y., Hu W.R., Li X.Q., Ma C.X., Pei R.T. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Sep. Purif. Technol.,2013,115:123-128.
    Sohn J., Amy G., Cho J., Lee Y., Yoon Y. Disinfectant decay and disinfection by-products formation model development:chlorination and ozonation by-products. Water Res.,2004,38: 2461-2478.
    Song L.R., Sano T., Ii R., et al. Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycological Res.,1998,46:19-23.
    Song W., Xu T., Cooper W.J., Dionysiou D.D., De la Cruz A.A., O'Shea K.E. Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. Environ. Sci. Technol.,2009,43 (5):1487-1492.
    Tao Y, Zhang X.H., Au D.W.T., Mao X.Z., Yuan K. The effects of sub-lethal UV-C irradiation on growth and cell integrity of cyanobacteria and green algae. Chemosphere,2010,78:541-547.
    Tillett D., Dittrnann E., Erhard M., Von Dohren H., Bomer T., Neilan B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806:an integrated peptide-polyketide synthetase system. Biochem,2000,7:753-764.
    Tsuji K., Watanuki T., Kokdo F., et al. Stability of microcystin from cyanobaeteria II:effect of UV light on decomposition and isomerization. Toxicon,1995,33 (12):1619-1631.
    Ueno Y., Nagata S., Tsutsumi T., et al. Detection of microcystins, a blue green algal hepatotoxin, in drinking water sampled in Haimen and Fusui. Carcinogenesis,1996,176:1317-1321.
    Utkilen H., Gjolme N. Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl. Environ. Microbiol.,1992,58: 1321-1325.
    王国详,濮培民,张圣照.人工复合生态系统对太湖局部水域水质的净化作用.中国环境科学,1998,18(5):410-414.
    王红兵,朱惠刚.淡水浮游藻类污染及其毒性.上海环境科学,1995,14(8):38-41.
    王金丽,梁文艳,马炎炎,王珂Ti/RuO2电氧化法降解藻毒素MCLR影响因素的研究.中国环境科学,2008,28(8):709-713.
    王圃,龙腾锐,李江涛,陆柯,雷刚.城市给水厂污泥处理与能耗.重庆建筑大学学报,2005,27(4):77-80.
    王伟琴.饮用水源水中微囊藻毒素的遗传毒性与健康风险评价.浙江大学硕士学位论文,2010.
    吴和岩,郑力行,苏瑾,施玮.上海市供水系统微囊藻毒素LR含量调查.卫生研究,2005,34(2):152-154.
    吴振斌,陈辉蓉,雷腊梅.人工湿地系统去除藻毒素研究.长江流域资源与环境,2000,9(2):242-247.
    Wang J.F., Qian Y.J., Wu P.F. Research progress on removal of microeystins (MCs) in Eutrophic water body. Environ. Sci. Technol.,2009,22:57-62.
    Watanabe M.M., Kaya K., Takamura N. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of microcystin (cyaoobactoria) in a hypertrophic lake. J. Phycol.,1992,28 (66): 761-767.
    Welker M., Steinberg C.H. Indirect photolysis of cyanotoxins:one possible mechanism for their low persistence. Water Res.,1999,33 (5):1159-1164.
    Weng D., Lu Y., Wei Y.N., Liu Y., Shen P.P. The role of ROS in microcystin-LR induced hepatocyte apoptosis and liver injury in mice. Toxicology,2007,232:15-23.
    WHO. Toxic cyanobacteria in water:a guide to their public health consequences monitoring and management. World Health Organization, London,1999.
    WHO. Guidelines for drinking-water quality:incorporating 1st and 2nd addenda. World Health Organization, Switzerland,2008.
    Wu C.D., Xu X.J., Liang J.L., Wang Q., Dong Q., Liang W.L. Enhanced coagulation for treating slightly polluted algae-containing surface water combining polyaluminum chloride (PAC) with diatomite. Desalination,2011,279:140-145.
    肖羽堂,许建华.生物接触氧化法净化微污染原水的机理研究.环境科学,1999,20(3):85-88.
    谢平.微囊藻毒素对人类健康影响相关研究的回顾Journal of Lake Sciences,2009,215: 603-613.
    许川,舒为群.水环境富营养化与微囊藻毒素污染.科学,2007,59(2):50-52.
    杨帆.结合态微囊藻毒素的毒理学研究.武汉理工大学硕士学位论文,2007.
    易文利,王国栋,刘选卫等.氮磷比例对铜绿微囊藻生长及部分生化组成的影响.西北农林科技大学学报(自然科学版),2005,33(6):151-154.
    俞顺章,赵宁,资晓林,陈刚,董传辉,连民,刘颖,穆丽娜.饮水中微囊藻毒素与我国原发性肝癌关系的研究.中华肿瘤杂志,1995,23:96-99.
    于燕,梁旭方,廖婉琴,韩博平.水生生物对微囊藻毒素去毒分子机理及调控因子研究.水生生物学报,2007,31(5):738-743.
    Yokoyama A., Park H.D. Mechanism and prediction for contamination of freshwater bivalve with the cyanobacterial toxin microcystin in the hypereutrophic lake Suwa. Japan Environmental toxicol,2002,20 (3):293-300.
    詹立,张立实,王莉,张浩,铃木孝昌,本间正充,吴德生.微囊藻毒素MCLR导致TK6细胞tk位点杂合性丢失的分析.现代预防医学,2005,32(6):584-586.
    章伟成.微囊藻毒素及其生物降解产物的生态毒性研究.武汉理工大学硕士学位论文,2010.
    张琳,饮用水源地微囊藻毒素及其高级氧化技术去除研究.贵州师范大学硕士学位论文,2009.
    张民,史小丽,蒋丽娟等.两种外源性磷及振荡对铜绿微囊藻(microcystis aeruginosa)生长的影响.应用与环境生物学报,2002,8(5):507-510.
    张维昊,徐小清,丘昌强.水环境中微囊藻毒素研究进展.环境科学研究,2001,14(2):57-61.
    张占英,康苏娅,陈传伟,卫国荣,俞顺章.微囊藻毒素LR对SD大鼠的短期毒效应研究.中华预防医学杂志,2002,36(3):295-297.
    赵玉丽,李杏放.饮用水消毒副产物:化学特征与毒性.环境化学,2011,301:20-33.
    赵吉娜,杨国兴,邴淑秋,殷北冰.水中微囊藻毒素去除方法的研究.化学工程师,2010,7:50-53.
    郑彦华,王增长.给水厂污泥脱水与处置.科技情报开发与经济,2007,17(7):177-180.
    周红艺,王雪荣.蓝藻毒素的环境行为及其处理方法研究进展.浙江工业大学学报,2008,36(5):552-557.
    周群英.微电解杀藻研究.上海环境科学,1998,17(1):28-29.
    周珏平,沈建国,童建.微囊藻毒素LR对小鼠肝脏和淋巴细胞的损伤效应.环境与职业医学,2003,20(1):41-42.
    朱光灿,吕锡武,王超.微囊藻毒素的产生及其影响因子.污染防治技术,2003,第16(4):132-137.
    朱光灿.饮用水中微囊藻毒素降解机理与去除技术研究.河海大学博士学位论文,2004.
    Zamyadi A., MacLeod S.L., Fan Y., McQuaid N., Dorner S., Sauve S., Prevost M. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant:a monitoring and treatment challenge. Water Res.,2012,46 (5):1511-1523.
    Zhao L.F. Lu L., Li M., Xu Z.R., Zhu W. Effects of Ca and Mg levels on colony formation and EPS content of cultured M. aeruginosa. Procedia Environ. Sci.,2011,10:1452-1458.
    Zong W.S., Liu R.T., Wang M.J., Zhang P.J., Sun F., Tian Y.M. The oxidative products of methionine as site and content biomarkers for peptide oxidation. J. Pept. Sci.,2010a,16: 148-152.
    Zong W.S., Liu R.T., Sun F., Zhang P.J., Xu Q.F. Influence of charge distribution on the discrepant MS/MS fragmentation of the native and oxidized FMRF:evidence for the mobile proton model. J. Pept. Sci.,2010b,16:687-692.
    Zong W.S., Liu R.T., Sun F., Wang M.J., Zhang P.J., Liu Y.H., Tian Y.M. Cyclic voltammetry:a new strategy for the evaluation of oxidative damage to bovine insulin. Protein Sci.,2010c,19 (2): 263-268.
    Zong W.S., Sun F., Sun X.J. Evaluation on the generative mechanism and biological toxicity of microcystin-LR disinfection by-products formed in chlorination. J. Hazard. Mater.,2013a, 252-253:293-299.
    Zong W.S., Sun F., Sun X.J. Oxidation by-products formation of microcystin-LR exposed to UV/H2O2:Toward the generative mechanism and biological toxicity. Water Res.,2013b,47 (9): 3211-3219.
    Zwiener C., Richardson S.D. Analysis of disinfection by-products in drinking water by LC-MS and related MS techniques. Trends Anal. Chem.,2005,24:613-621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700