表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,内分泌干扰物污染问题已引起人们的广泛关注,特别是在饮用水中也检测到了内分泌干扰物质的存在,采用活性炭吸附技术去除水中有机污染物已被认为是一种最为有效和广泛的处理方法,因此,建立活性炭表面物化性质与其对特定污染物吸附能力之间的关系,为实际应用提供理论依据势在必行。
     本文选择两种活性炭W20(木质炭)和F20(煤质炭),通过改性处理获得具有不同表面物化性质的活性炭,选用双酚A(BPA)为内分泌干扰物的代表污染物,围绕目标物吸附能力与活性炭表面性质关系这一关键问题,详细地研究了BPA在活性炭表面的吸附行为和机理,同时选出两种活性炭探讨了影响BPA吸附的环境因素,最终考察了被选择活性炭对松花江原水和砂滤水中酚类内分泌干扰物的吸附情况。
     改性处理改变了活性炭的物理结构和表面化学性质,其中HNO3氧化降低了活性炭的比表面积,增加了羧基与酚羟基官能团含量,降低了等电点值;高温H2与N2还原处理对活性炭结构的改变很大程度上受炭材质与改性温度影响,并且改性处理后降低了表面酸性含氧官能团含量,增加了活性炭的等电点值;HCl和NaOH改性处理对活性炭的比表面积改变很小,但前者降低了活性炭的等电点值,而后者恰恰相反。此外,各种改性过程对活性炭上的灰份含量改变趋势各不相同。
     BPA在吸附过程中主要由液膜传质和孔内扩散两个过程控制,吸附行为假二级动力学吸附。进一步研究结果表明,BPA在活性炭上的吸附(HNO3氧化改性为Freundlich吸附)为Langmuir吸附,但吸附质分子并未将整个活性炭表面完全覆盖。其中高温N2处理活性炭W20N具有最高的BPA饱和吸附能力,qm达到了526.32mg/g,而HNO3氧化活性炭W20A表现出了最差的吸附能力,最大吸附量仅为175.44mg/g。
     BPA在活性炭上的吸附是自发和放热的物理吸附过程,并且以平伏形式吸附于炭表面;溶液pH值通过控制吸附质与吸附剂表面所带的电荷明显地影响活性炭对BPA的吸附能力,在pH=11时,强化的静电斥力导致W20与W20N表现出了最差的BPA吸附能力;溶液的离子强度也通过占据活性位、产生电荷屏蔽和盐析效应影响着目标物在活性炭上的吸附;此外,单宁酸的存在能够通过直接竞争吸附位、改变活性炭表面化学性质(如:等电点)和降低活性炭可利用的孔体积,而减少活性炭对BPA的吸附能力。
     机理分析结果表明,BPA在活性炭表面的吸附主要遵循π-π色散作用理论。在炭表面由于氢键作用形成的水分子簇会明显抑制活性炭的吸附能力,因此,降低活性炭表面酸性含氧官能团的含量(特别是羧酸基团),能够提高活性炭吸附BPA的能力。另外,使活性炭在吸附体系中处于自身静电荷密度为零状态,将会对BPA表现出最好的吸附能力。
     最后,在实际水体中酚类内分泌干扰物在活性炭上的吸附能力随着logKow的增大而增大(雌激素酮除外),其中改性炭表现出了更好的处理效果,而水中存在的天然有机物和其它有机物由于竞争吸附和孔阻塞降低了活性炭的吸附能力。因此,在实际水处理过程中,选用具有较多中孔结构的活性炭,能够提高处理过程效率,特别是通过一定的改性处理方法获得孔结构与表面化学性质有利于去除水中有机污染物的活性炭十分重要。
The problem of water environment of endocrine disrupting chemicals has attractted people's attention in recent years. Especially, some endocrine disrupting chemicals have been detected in drinking water. The adsorption of organic contaminants by activated carbons is the most effective and widely used methods to purify water. Therefore, it is imperative to establish the correlation between the surface physical and chemical properties of activated carbons and the adsorption capacity for the given contaminants, which may provide the scientific basis for the application of activated carbon.
     Two activated carbons, W20 (wood-based) and F20 (coal-based), were selected in this study. The activated carbons with different surface physical and chemical properties were obtained by modification. Bisphenol A was selected as the representative of endocrine disrupting chemicals in this study. A key objective was to study the relationship between the adsorption capacities of target pollutants and surface chemical characteristics of activated carbons. Therefore, the behaviors and mechanism of bisphenol A on various activated carbons were studied in detail and the factors affecting the adsorption of bisphenol A were simutaniously discussed. At last, two types of activated carbons with higher adsorption capacity were used to adsorbe phenolic endocrine disrupting chemicals spiked in Songhua River water and sand filtered water.
     The textural and chemical characteristics of the activated carbons were changed by modification. Nitric acid oxidation decreased the specific surface areas of the original activated carbons. But it increased the content of carboxyl and hydroxy functional groups. As a result, the zero point charges of adsorbents were decreased. In addition, the transformation of the structure of activated carbons, treated by thermic reduction under an atmosphere of H2 or N2, was influenced by the materials of carbon and the temperature of modification to a large extent. This process decreased the contents of surface acid oxygen-containing groups, which increased the zero point charge of adsorbents. However, the change of specific surface areas was small when activated carbons were modified by hydrochloric acid and sodium hydroxide. Where the former reduced the zero point charge of carbons and the latter was contrary to it. It is worth nothing that the changes of ash content were different for specific modification.
     The uptake of bisphenol A was mainly controlled by external mass transfer through the boundary film of liquid and intra-particular mass transfer. The behavior of adsorption was found to obey a pseudo-second order kinetic model. Further results indicated that the adsorption of bisphenol A on activated carbons was well described by the monolayer Langmiur model (except for carbon samples of nitric acid oxidation). However, the coverage of adsorbates on the surface of activated carbon was incomplete. In addition, the adsorption capacity of W20N, a thermal treatment sample under an atmosphere of N2, was the highest and its saturated adsorption capacity (qm) reached 526.32mg/g, while the nitric acid oxidation sample W20A represented the worst adsorption capacity and corresponding qm was only 175.44mg/g.
     The adsorption of bisphenol A on activated carbons was spontaneous and exothermic process which is due to physisorption reaction. The molecules of adsorbed bisphenol A were parallel to the surface of activated carbon. The adsorption capacities of bisphenol A on activated carbons were affected by the solution pH which determines the charge of both the carbon and the adsorbate. The initial sample W20 and its modified sample W20N indicated the worst capacities at pH =11, which attributed to the enhanced electrostatic repulsion. In addition, the ionic strength of solution can occupy the surface active sites, produce the screening effect and cause the salting-out effect, which influnced the adsorption of target pollutants on activated carbons.
     The analyzing results of mechanism indicated that the adsorption of bisphenol A on carbons mainly followedπ-πdispersion interaction. The water clusters, formed by the hydrogen bond between the carbon surface and water molecules, markedly restrained the adsorption capacity of activated carbons. It was favorable to improve the adsorption of bisphenol A by decreasing the content of surface acid oxygen-containing groups (especially for carboxylic groups). Moreover, the surface with zero charge density was the most favorable for the adsorption of bisphenol A in adsorptive system.
     At last, the adsorption capacities of selected phenolic endocrine disrupting chemicals on activated carbons increased with the increase logKow from the actual water (except for estrone). And the modified carbon represented a better efficiency for all tested water quality parameters. While the adsorption capacities of activated carbons were decreased by the natural organic matters and other organics. Therefore, the activated carbon with more mesopores could increase the purification efficiency. Especially, the activated carbon obtained by a certain modification, with the pore structure and surface chemistry favored the adsorption of organic compounds, were indispensable.
引文
1 R. Carson. Silent Spring. Boston: Houghton Mifflin Publish, 1962.
    2 T. Colborn, D. Dumanoski, J. P. Myers. Our Stolen Future: Are We Threatening Our Fertility, Intelligence and Survival? A Scientific Detective Story. New York: Dutton Books, 1996.
    3 U.S. Environmental Protection Agency (EPA). Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) Final Report. Washington, DC: U.S. EPA, 1998.
    4 R. Rudel. Predicting Health Effects of Exposure to Compounds With Estrogenic Activity: Methodological Issues. Environmental Health Perspectives. 1997, 105(3): 655~663.
    5 R. J. Golden, K. L. Noller, L. Titus-Ernstoff. Environmental Endocrine Modulators and Human Health: An Assessment of the Biological Evidence. Critical Reviews in Toxicology. 1998, 28(2): 109~227.
    6 J. W. Cook, E. C. Dodds, C. L. Hewtt. A Synthetic Oestrus-Exciting Compound. Nature, 1933, 131(3298): 56-57.
    7 E. C. Dodds, W. Lawson. Synthetic Oestrogenic Agents without the Phenanthrene Nucleus. Nature, 1936, 137(3476): 996.
    8 K. N. M. MacLellan, D. M. Bird, D. M. Fry, et al. Reproductive and Morphological Effects of o,p-Dicofol on Two Generations of Captive American Kestrels. Archives Environmental Contamination and Toxicology. 1996, 30(3): 364~372.
    9 L. J. Guillette, T. S. Gross, G. R. Marsson, et al. Developmental Abnormalities of the Gonad and Abnormal Sex-Hormal Concentration in Juvenile Alligators from Contaminated and Control Lakes in Florida. Environmental Health Perspectives.1994, 102(8): 680~688.
    10 C. E. Purdom, P. A. Hardiman, V. J. Bye, et al. Estrogenic Effects of Effluents from Sewage Treatment Works. Chemical Ecology. 1994, 8(4): 275~285.
    11 J. E. Harries, D. A. Sheahan, S. Jobling, et al. A Survey of Estrogenic Activity in United Kingdom Inland Waters. Environmental Toxicology and Chemistry. 1996, 15(11): 1993~2002.
    12 S. Jobling, D. Sheahan, J. A. Osborne, et al. Inhibition of Testicular Growth in Rainbow Trout (Oncorhynchus Mykiss) Exposed to Estrogenic Alkylphenolic Chemicals. Environmental Toxicology and Chemistry. 1996, 15(2): 194~202.
    13 T. M. Crisp, E. D. Clegg, R. L. Cooper. Environmental Endocrine Disruption: An Effects Assessment and Analysis. Environmental Health Perspectives. 1998, 106(1): 11~56.
    14 R. J. Kavelock. Research Needs for Risk Assessment of Health and Environmental Effects of Endocrine Disrupters: A Report of the U.S. EPA-Sponsored Workshop. Environmental Health Perspectives. 1996, 104: 715~740.
    15 J Heinze. Regional Differences Invalidate U.S. Sperm Trend Conclusions. Environmental Health Perspectives. 1999, 107(3): A132.
    16 S. H. Swan, E. Elkin, L. Fenster. Response: A Reanalysis of Sperm Density Date. Environmental Health Perspectives. 1998, 106(8): A370~371.
    17 F. Oerjuela, L. I. Lipshultz, D.J. Lamb. Debate about Sperm Count Decline. Environmental Health Perspectives. 1998, 106(8): A370.
    18 D. L. Davis, M. B. Gottlieb, J. R. Stampnitzky. Reduced Ratio of Male to Female Births in Several Industrial Countries. The Journal of American Medical Association.1998, 279(13):1018~1023.
    19国家环境保护总局政策法规司.中国缔结和签署的国际环境条约集.北京:学苑出版社, 1999, 5-26.
    20国家环境保护总局国际合作司译.绿色全球年鉴(1999-2000).北京:中国环境科学出版社, 2001, 102-117.
    21 Report on Carcinogens, Tenth Edition, U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program.
    22 D. G. J. Larsson, M. Adolfsson-Erici, J. Parkkonen, et al. Ethinyloestradiol-An Undesired Fish Contraceptive?Aquatic Toxicology, 1999, 45(2-3): 91~97.
    23 L. Tremblay, G. Van Der Kraak. Use of a Series of Homologous in Vitroand In Vivo Assays to Evaluate the Endocrine Modulating Actions ofβ-sitosterol in Rainbow Trout. Aquatic Toxicology, 1998, 43(2-3): 149~162.
    24 G. J. Van Der Kraak, K. R. Munkittrick, M. E. McMaster, et al. Exposure to Bleached Kraft Pulp Mill Effluent Disrupts the Pituitary-Gonadal Axis of White Sucker at Multiple Sites. Toxicology and Applied Pharmacology, 1992, 115(2): 224~233.
    25 C. Desbrow, G. C. Routledge, G. C. Brighty, et al. Identification of Estrogenic Chemicals in STW Effluent. 1. Chemichal Fractionation and In Vitro Biological Screening. Environmental Science and Technology, 1998, 32(11):1549~1558.
    26 M. Nasu, M. Goto, H. Kato, et al. Study on Endocrine Disrupting Chemicals in Wastewater Treatment Plant. Water Science and Technology, 2001, 42(2): 101~108.
    27 A. Laganà, A. Bacaloni, I. De Leva, et al. Analytical Methodologies for Determining the Occurrence of Endocrine Disrupting Chemicals in Sewage Treatment Plants and Natural Waters. Analytica Chimica Acta, 2004, 501(1): 79~88.
    28邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查.环境科学学报, 2002, 22(1): 12~16.
    29邵兵,胡建英.高效液相色谱法测定水环境中壬基酚聚氧乙烯醚及其生物降解产物.环境化学, 2001, 20(6): 600~605.
    30 S. Pawlowskia, T. A. Ternesb, M. Bonerzb, et al. Estrogenicity of Solid Phase- Extracted Water Samples from Two Municipal Sewage Treatment Plant Effluents and River Rhine Water Using the Yeast Estrogen Screen. Toxicology In Vitro, 2004, 18(1): 129~138.
    31 H. E. Witters, C. Vangenechten, P. Berckmans. Detection of Estrogenic Activity in Flemish Surface Waters Using an In Vitro Recombinant Assay with Yeast Cells. Water Science and Technology, 2001, 43(2):117~123.
    32日本厚生省.自来水中内分泌干扰物质的暴露及其行为研究报告书, 1998- 2000年.
    33 M. Petrovic,A. Diaz,F. Ventura, et al. Occurrence and Removal of Estrogenic Short-Chain Ethoxy Nonylphenolic Compounds and TheirHalogenated Derivatives during Drinking Water Production. Environmental Science and Technology, 2003, 37(19): 4442-4448.
    34金芬,胡建英,邵兵,等.天津野生鲫鱼体内壬基酚聚氧乙烯醚和壬基酚监测.环境科学学报, 2004, 24(1): 150~153.
    35 E. J. Routledge, J. P. Sumpter. Estrogenic Activity of Surfactants and Some of Their Degradation Products Assessed Using a Recombinant Yeast Screen. Environmental Toxicology and Chemistry, 1996, 15(3): 241~248.
    36 W. V. Welshons, S. C. Nagel, F. S. vom Saal. Large Effects from Small Exposures: III. Endocrine Mechanisms Mediating Effects of Bisphenol A at Levels of Human Exposure. Endocrinology, 2006, 147(6): S56~69.
    37 Y. B. Wetherill, B. T. Akingbemi, J. Kanno, et al. In vitro Molecular Mechanisms of Bisphenol A Action. Reproductive Toxicology, 2007, 24(2): 178~198.
    38 R. Steinmetz, N. A. Mitchner, A. Grant, et al. The Xenoestrogen Bisphenol A Induces Growth, Differentiation, and C-fos Gene Expression in the Female Reproductive Tract. Endocrinology, 1998, 139(6): 2741~2747.
    39 K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, et al. Exposure to Bisphenol A Advances Puberty. Nature, 1999, 401(6755): 763~764.
    40 S. C. Nagel, F. S. Vom Saal, K. A. Thayer, et al. Relative Binding Affinity Serum Modified Access (RBA-SMA) Assay Predicts the Relative in vivo Bioactivity of the Xenoestrogens Bisphenol A and Octylphenol. Environmental Health Perspectives, 1997, 105(1): 70~76.
    41 J. S. Fisher, K. J. Turner, D. Brown, et al. Effect of Neonatal Exposure to Estrogenic Compounds on Development of the Excurrent Ducts of the Rat Testis through Puberty to Adulthood. Environmental Health Perspectives, 1999, 107(5): 397~405.
    42 J. Ashby, H. Tinwell. Uterotrophic Activity of Bisphenol A in the Immature Rat. Environmental Health Perspectives, 1998, 106(11): 719~720.
    43 T. Takao, W. Nanamiya, I. Nagano, et al. Exposure with the Environmental Estrogen Bisphenol A Disrupts the Male Reproductive Tract in Young Mice. Life Science, 1999, 65(22): 2351~2357.
    44 P. Soloni, J. P. Sumpter. Several Environmental Oestrogens Are also Anti-androgens. Journal of Endocrinology, 1998, 158(3): 327~339.
    45 P. Sohoni, C. R. Tyler, K. Hurd, et al. Reproductive Effects of Long-Term Exposure to Bisphenol A in the Fathead Minnow (Pimephales promelas). Environmental Science and Technology, 2001, 35(14): 2917~2925.
    46 M. Chikae, R. Ikeda, Q. Hasan, et al. Effect of Alkylphenols on Adult Male Medaka: Plasma Vitellogenin Goes up to the Level of Estrous Female. Environmental Toxicology and Pharmacology, 2003, 15(1): 33~36.
    47 C. Lindholst, S. N. Pedersen, P. Bjerregaard. Uptake, Metabolism and Excretion of Bisphenol A in the Rainbow Trout(Oncorhynchus mykiss). Aquatic Toxicology, 2001, 55(1-2):75~84.
    48 C. Lindholst, K. L. Pedersen, S. N. Pedersen. Estrogenic Response of Bisphenol A in Rainbow Trout(Oncorhynchus mykiss). Aquatic Toxicology, 2000, 48(2-3): 87~94.
    49 G. Levy, I. Lutz, A. Kruger, et al. Bisphenol A Induces Feminization in Xenopus Laevis Tadpoles. Environmental Reasearch, 2004, 94(1): 102~111.
    50 M. Duft. Stimulated Embryo Production as a Parameter of Estrogenic Exposure via Sediments in the Freshwater Mudsnail Potamopyrgus Antipodarum. Aquatic Toxicology, 2003, 64(4): 437~449.
    51 A. Zafra, M. Del Olmo. Gas Chromatographic-Mass Spectrometric Method for the Determination of Bisphenol A and Its Chlorinated Derivatives in Urban Wastewater. Water Research, 2003, 37(4): 735~742.
    52 A. Latorre, S. Lacorle, D. Barcelo. Presence of Nonylphenol, Octylphenol and Bisphenol A in Two Aquifers Close to Agricultural, Industrial and Urban Areas. Chromatographia, 2003, 57(1-2): 111~116.
    53 M. Fürhacker, S. Scharf, H. Weber. Bisphenol A: Emissions from Point Sources. Chemosphere, 2000, 41(5): 751~756.
    54 H. M. Kuch, K. Ballschmiter. Determination of Endocrine Disrupting Phenolic Compounds and Estrogens in Surface and Drinking Water by HRGC-(NCI)-MS in the Pictogram Per Liter Range. Environmental Science and Technology, 2001, 35(15): 3201~3206.
    55 C. A. Staples, P. B. Dorn, G. M. Klecka, et al. Bisphenol A Concentrations in Receiving Waters near US Manufacturing and Processing Facilities. Chemosphere, 2000, 40(5): 521~525.
    56 H. B. Lee, T. E. Peart. Bisphenol A Contamination in Canadian Municipal and Industrial Wastewater and Sludge Sample. Water Quality Research Journal of Canada, 2000, 35(2): 283~298.
    57 R. A. Rudel, D. E. Camann, J. D. Spengler, et al. Phthalates, Alkylphenols, Pesticides, Polybrominated Diphenyl Ethers, and Other Endocrine-Disrupting Compounds in Indoor Air and Dust. Environ Sci Technol, 2003, 37(20): 4543~55.
    58 H. Matsumoto, S. Adachi, Y. Suzuki. Bisphenol A in Ambient Air Particulates Responsible for the Proliferation of MCF-7 Human Breast Cancer Cells and Its Concentration Changes over 6 Months. Arch Environ Contam Toxicol, 2005, 48(4): 459~466.
    59 R. A. Rudel, J. G. Brody, J. D. Spengler, et al. Identification of selected hormonally active agents and animal mammary carcinogenesis in commercial and residential air and dust samples. J Air Waste Manage Assoc, 2001, 51(4): 499~513.
    60 C. Nerín, C. Fernandez, C. Domeno, et al. Determination of Potential Migrants in Polycarbonate Containers Used for Microwave Ovens by High-performance Liquid Chromatography with Ultraviolet and Fluorescence Detection. Journal of Agricultural and Food Chemistry, 2003, 51(19): 5647~5653.
    61 A. Ozaki, A. Yamaguchi, T. Fujita, et al. Chemical Analysis and Genotoxicological Safety Assessment of Paper and Paperboard Used for Food Packaging. Food and Chemical Toxicology, 2004, 42(8): 1323~1337.
    62 M. J. Lopez-Espinosa, A. Granada, P. Araque, et al. Oestrogenicity of Paper and Cardboard Extracts Used as Food Containers. Food Additives and Contaminants, 2007, 24(1): 95~102.
    63 E.M. Munguía-López, S. Gerardo-Lugo, E. Peralta, et al. Migration of Bisphenol A (BPA) from Can Coatings into Fatty-food Simulant and Tuna Fish. Food Additives and Contaminants, 2005, 22(9): 892~898.
    64 N. C. Maragou, E. N. Lampi, N. S. Thomaidis, et al. Determination of Bisphenol A in Milk by Solid Phase Extraction and Liquid Chromatography–Mass Spectrometry. Journal of Chromatography A, 2006, 1129(2): 165~173.
    65 K. O. Wong, L. W. Leo, H. L. Seah. Dietary Exposure Assessment of Infants to Bisphenol A from the Use of Polycarbonate Baby Milk Bottles. Food Additives and Contaminants, 2005, 22(3): 280~288.
    66 R. Joskow, D. B. Barr, J. R. Barr, et al. Exposure to Bisphenol A from Bis-Glycidyl Dimethacrylate-Based Dental Sealants. Journal of American Dental Association, 2006, 137(3): 353~362.
    67 D. Mackay, S. Paterson. Calculating Fugacity. Environmental Science and Technology, 1981, 15(9): 1006~1014.
    68 A. Laganà, A. Bacaloni, I. D. Leva, et al. Analytical Methodologies for Determining the Occurrence of Endocrine Disrupting Chemicals in Sewage Treatment Plants and Natural Waters. Analytic Chimica Acta, 2004, 501(1): 79~88.
    69 S. T. Glassmeyer, E. T. Furlong, D. W. Kolpin, et al. Transport of Chemical and Microbial Compounds from Known Wastewater Discharges: Potential for Use as Indicators of Human Fecal Contamination. Environmental Science and Technology, 2005, 39(14): 5157~5169.
    70 M. J. G?mez, M. J. Martínez Bueno, S. Lacorte, et al. Pilot Survey Monitoring Pharmaceuticals and Related Compounds in a Sewage Treatment Plant Located on the Mediterranean Coast. Chemosphere, 2007, 66(6): 993~1002.
    71 M. D. Hernando, M. Mezcua, M. J. G?mez, et al. Comparative Study of Analytical Methods Involving Gas Chromatography–Mass Spectrometry after Derivatization and Gas Chromatography–Tandem Mass Spectrometry for the Determination of Selected Endocrine Disrupting Compounds in Wastewaters. Journal of Chromatography A, 2004, 1047(1): 129~135.
    72 T. Suzuki, Y. Nakagawa, I. Takano, et al. Environmental Fate of Bisphenol A and Its Biological Metabolites in River Water and Their Xeno-estrogenic Activity. Environmental Science and Technology, 2004, 38(8): 2389~2396.
    73 G. Gatidou, N. S. Thomaidis, A. S. Stasinakis, et al. Simultaneous Determination of the Endocrine Disrupting Compounds Nonylphenol, Nonylphenol Ethoxylates, Triclosan and Bisphenol A in Wastewater and Sewage Sludge by Gas Chromatography-Mass Spectrometry. Journal of Chromatography A, 2007, 1138 (1-2): 32~41.
    74 H. Fromme, T. Kuchler, T. Otto, et al. Occurrence of Phthalates and Bisphenol A and F in the Environment. Water Research, 2002, 36(6): 1429~1438.
    75 U. Bolz, H. Hagenmaier. Phenolic Xenoestrogens in Surface Water, Sediments and Sewage Sludge from Baden-Wurttemberg, South-west Germany. Environmental Pollution, 2001, 115(2): 291~301.
    76 T. Yamamoto, A. Yasuhara, H. Shiraishi, et al. Bisphenol A in Hazardous Waste Landfill Leachates. Chemosphere, 2001, 42(4): 415~418.
    77 A. Belfroid, M. V. Velzen, B. V. D. Horst, et al. Occurrence of Bisphenol A in Surface Water and Uptake in Fish: Evaluation of Field Measurements. Chemosphere, 2002, 49(1): 97~103.
    78 D. W. Kolpin, E. T. Furlong, M. T. Meyer, et al. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance. Environmental Science and Technology, 2002, 36(6): 1202~1211.
    79 R. Liu, A. Wilding, A. Hibberd, et al. Partition of Endocrine-Disrupting Chemicals between Colloids and Dissolved Phase As Determined by Cross-Flow Ultrafiltration. Environmental Science and Technology, 2005, 39(8): 753~2761.
    80 R. Urbatzka, A. V. Cauwenberge, S. Maggioni, et al. Androgenic and Antiandrogenic Activities in Water and Sediment Samples from the River Lambro, Italy, Detected by Yeast Androgen Screen and Chemical Analyses. Chemosphere, 2007, 67(6): 1080~1087.
    81 D. A. Azevedo, S. Lacorte, P. Viana, et al. Occurrence of nonylphenol and bisphenol A in surface water from Portugal. Journal of the Brazilian Chemical Society, 2001, 12(4): 532~537.
    82 X. L. Jin, G. B. Jiang, G. L. Huang, et al. Determination of 4-tert-Octylphenol, 4-Nonylphenol and Bisphenol A in Surface Waters from the Haihe River in Tianjin by Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring. Chemosphere, 2004, 56(11): 1113~1119.
    83 N. C. Maragou, E. N. Lampi, N. S. Thomaidis, et al. Determination of Bisphenol A in Milk by Solid Phase Extraction and Liquid Chromatography-Mass Spectrometry. Journal of Chromatography A, 2006, 1129(2): 165~173.
    84 J. Sajiki, J. Yonekubo. Leaching of Bisphenol A (BPA) from Polycarbonate Plastic to Water Containing Amino Acids and Its Degradation by Radical Oxygen Species. Chemosphere, 2004, 55(6): 861~867.
    85 J. Y. Hu, T. Aizawa, S. Ookubo. Products of Aqueous Chlorination of BPA and Their Estrogenic Activity. Environmental Science and Technology, 2002, 36(9): 1980~1987.
    86 T. Yamamoto, A. Yasuhara. Chlorination of BPA in Aqueous Aedia: Formation of Chlorinated BPA Congeners and Degradation to Chlorinated Phenolic Compounds. Chemosphere, 2002, 46(8): 1215~1223.
    87 H. Takemura, J. Ma, K. Sayama, et al. In Vitro and In Vivo Estrogenic Activity of Chlorinated Derivatives of Bisphenol A. Toxicology, 2005, 207(2): 215~221.
    88 T. Toyo’oka, Y. Oshige. Determination of Alkylphenols in Mineral Water Contained in PET Bottles by Liquid Chromatography with Coulometric Detection. Analytical Sciences, 2000, 16(10): 1071~1076.
    89 S. Rodriguez-Mozaz, M. J. López de Alda, D. Barceló. Monitoring of Estrogens, Pesticides and Bisphenol A in Natural Waters and Drinking Water Treatment Plants by Solid-Phase Extraction–Liquid Chromatography-Mass Spectrometry. Journal of Chromatography A, 2004, 1045(1-2): 85~92.
    90张海峰,胡建英,常红,等. SPE-LC-MS法检测杭州地区饮用水水源及自来水中的双酚A.环境化学, 2004, 23(5): 584~586.
    91汪雪姣,高乃云,徐斌,等.饮用水消毒过程中典型内分泌干扰物的迁移转化.中国给水排水, 2007, 23(14): 12~17.
    92 G. R. Boyd, H. Reemtsma, D. A. Grimm, et al. Pharmaceuticals and Personal Care Products (PPCPs) in Surface and Treated Waters of Louisiana, USA and Ontario, Canada. The Science of the Total Environment, 2003, 311(1-3): 135~149.
    93 Y. Ohko, I. Ando, C. Niwa, et al. Degradation of Bisphenol A in Water by TiO2 Photocatalyst. Environmental Science and Technology, 2001, 35(11): 2365~2368.
    94 E. J. Rosenfeld, K. G. Linden. Degradation of Endocrine Disrupting Chemicals Bisphenol A, Ethinyl Estradiol, and Estradiol during UVPhotolysis and Advanced Oxidation Processes. Environmental Science and Technology, 2004, 38(20): 5476~5483.
    95 Y. P. Chin, P. L. Miller, L. Zeng, et al. Photosensitized Degradation of Bisphenol A by Dissolved Organic Matter. Environmental Science and Technology, 2004, 38(20): 5888~5894.
    96 Y. B. Xie, X. Z. Li. Degradation of Bisphenol A in Aqueous Solution by H2O2-Assisted Photoelectrocatalytic Oxidation. Journal of Hazardous Materials B, 2006, 138(3): 526~533.
    97 S. Horikoshi, M. Kajitani, N. Serpone. The Microwave-Photo-Assisted Degradation of Bisphenol-A in Aqueous TiO2 Dispersions Revisited Re-assessment of the Microwave Non-thermal Effect. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188(1): 1~4.
    98 K. Chiang, T. M. Lim, L. Tsen, et al. Photocatalytic Degradation and Mineralization of Bisphenol A by TiO2 and Platinized TiO2. Applied Catalysis A, 2004, 261(2): 225~237.
    99 H. Katsumata, S. Kawabe, S. Kaneco, et al. Degradation of Bisphenol A in Water by the Photo-Fenton Reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2-3): 297~305.
    100 F. B. Li, X. Z. Li, X. M. Li, et al. Heterogeneous Photodegradation of Bisphenol A with Iron Oxides and Oxalate in Aqueous Solution. Journal of Colloid and Interface Science, 2007, 311(2): 481~490.
    101 S. Kaneco, M. A. Rahman, T. Suzuki, et al. Optimization of Solar Photocatalytic Degradation Conditions of Bisphenol A in Water Using Titanium Dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 419~424.
    102 I. Ioan, S. Wilson, E. Lundanes, et al. Comparison of Fenton and Sono-Fenton Bisphenol A Degradation. Journal of Hazardous Materials, 2007, 142(1-2): 559~563.
    103 H. Katsumata, S. Kawabe, S. Kaneco, et al. Degradation of Bisphenol A in Water by the Photo-Fenton Reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2-3): 297~305.
    104 B. G?zmen, M. A. Oturan, N. Oturan, et al. Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically GeneratedFenton’s Reagent. Environmental Science and Technology, 2003, 37(16): 3716~3723.
    105 Y. Lee, J. Yoon, U. Von Gunten. Kinetics of the Oxidation of Phenols and Phenolic Endocrine Disruptors during Water Treatment with Ferrate (Fe(VI)). Environmental Science and Technology, 2005, 39(22): 8978~8984.
    106 B. G?zmen, M. A. Oturan, Nìhal Oturan, et al. Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton’s Reagent. Environmental Science and Technology, 2003, 37(16): 3716~3723.
    107 M. Deborde, S. Rabouan, J. P. Duguet, et al. Kinetics of Aqueous Ozone-Induced Oxidation of Some Endocrine Disruptors. Environmental Science and Technology, 2005, 39(16): 6086~6092.
    108 H. Gallard, A. Leclercq, J. P. Croué. Chlorination of Bisphenol A: Kinetics and By-products Formation. Chemosphere, 2004, 56(5): 465~473.
    109 Y. J. Xuan, Y. Endo, K. Fujimoto. Oxidative Degradation of Bisphenol A by Crude Enzyme Prepared from Potato. Journal of Agricultural and Food Chemistry, 2002, 50(22): 6575~6578.
    110 J. H. Kang, N. Ri, F. Kondo. Streptomyces Sp. Strain Isolated from River Water has High Bisphenol A Degradability. Letters in Applied Microbiology, 2004, 39(2): 178~180.
    111 J. H. Kang, F. Kondo. Bisphenol A Degradation in Seawater is Different from that in River Water. Chemosphere, 2005, 60(9): 1288~1292.
    112 J. H. Kang, F. Kondo. Effects of Bacterial Counts and Temperature on the Biodegradation of Bisphenol A in River Water. Chemosphere, 2002, 49(5): 493~498.
    113 G. G. Ying, R. S. Kookana. Degradation of Five Selected Endocrine-Disrupting Chemicals in Seawater and Marine Sediment. Environmental Science and Technology, 2003, 37(7): 1256~1260.
    114 G. G. Ying, R. S. Kookana, P. Dillon. Sorption and Degradation of Selectedive Endocrine Disrupting Chemicals in Aquifer Material. Water Research, 2003, 37(16): 3785~3791.
    115 J. H. Kang, F. Kondo. Bisphenol A Degradation by Bacteria Isolated from River Water. Archives of Environment Contamination and Toxicology, 2002a, 43(3): 265~269.
    116 C. Zhang, G. M. Zeng, L. Yuan, et al. Aerobic Degradation of Bisphenol A by Achromobacter Xylosoxidans Strain B-16 Isolated from Compost Leachate of Municipal Solid Waste. Chemosphere, 2007, 68(1): 181~190.
    117 K. Kimura, G. Amy, J. Drewes, et al. Adsorption of Hydrophobic Compounds onto NF/RO Membranes: An Artifact Leading to Overestimation of Rejection. Journal of Membrane Science, 2003, 221(1-2): 89~101.
    118 Y. Zhang, C. Causserand, P. Aimar, et al. Removal of Bisphenol A by a Nanofiltration Membrane in View of Drinking Water Production. Water Research, 2006, 40(20): 3793~3799.
    119 K. O. Agenson, J. I. Oh, T. Urase. Retention of A Wide Variety of Organic Pollutants by Different Nanofiltration/Reverse Osmosis Membranes: Controlling Parameters of Process. Journal of Membrane Science, 2003, 225(1-2): 91~103.
    120 T. Asada, K. Oikawa, K. Kawata, et al. Study of Removal Effect of Bisphenol-A andβ-Estradiol by Porous Carbon. Journal of Health Science, 2004, 50(6): 588~593.
    121 A. Nakanishi, M. Tamai, N. Kawasaki, et al. Adsorption Characteristics of Bisphenol A onto Carbonaceous Materials Produced from Wood Chips as Organic Waste. Journal of Colloid and Interface Science, 2002, 252(2): 393~396.
    122 W. T. Tsai, C. W. Lai, T. Y. Su. Adsorption of Bisphenol-A from Aqueous Solution onto Minerals and Carbon Adsorbents. Journal of Hazardous Materials B, 2006, 134(1-3): 169~175.
    123 K. J. Choi, S. G. Kim, C. W. Kim, et al. Effects of Activated Carbon Types and Service Life on Removal of Endocrine Disrupting Chemicals: Amitrol, Nonylphenol, and Bisphenol-A. Chemosphere, 2005, 58(11): 1535~1545.
    124 I. Bautista-Toledo, M. A. Ferro-García, J. Rivera-Utrilla, et al. Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristicsand Solution Chemistry. Environmental Science and Technology, 2005, 39(16): 6246~6250.
    125李若愚,高乃云,徐斌,等. GAC对水中内分泌干扰物双酚A的吸附特性及动力学研究.给水排水, 2007, 33(2): 13~19.
    126 V. L. Snoeyink, W. J. Jr. Weber. Surface Functional Groups on Carbon and Silica. In: J. F. Danelli, M. D. Rosenberg, D. A. Cadenhead, editors. Progress in surface and membrane science, NewYork: Academic Press, 1972, 5: 63~119.
    127 C. A. Leon y Leon, L. R. Radovic. Interfacial Chemistry and Electrochemistry of Carbon Surfaces. In: P. A. Thrower, editor. Chemistry and physics of carbon, New York: Marcel Dekker, 1992, 24(4): 213~310.
    128 H. P. Boehm. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon, 1994, 32(5): 759~769.
    129 V.A. Garten, D. E. Weiss. A New Interpretation of the Acidic and Basic Structures in Carbons: II. The Chromene-carbonium Couple in Carbon. Australian Journal of Chemistry, 1957, 10(3): 309~328.
    130 Y. Kaneko, M. Abe, K. Ogino. Adsorption Characteristics of Organic Compounds Dissolved in Water on Surface-improved Activated Carbon Fibers. Colloids and Surfaces, 1989, 37: 211~222.
    131 P. Pendleton, S. H. Wong, R. Schumann, et al. Properties of Activated Carbon Controlling 2-Methylisoborneol Adsorption. Carbon, 1997, 35(8): 1141~1149.
    132 M. Franz, H. A. Arafat, N. G. Pinto. Effect of Chemical Surface Heterogeneity on the Adsorption Mechanism of Dissolved Aromatics on Activated Carbon. Carbon, 2000, 38(13): 1807~1819.
    133 R. Considine, R. Denoyel, P. Pendleton, et al. The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution. Colloids and Surfaces A, 2001, 179(2): 271~280.
    134 T. Karanfil, J. E. Kilduff. Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants. Environmental Science and Technology, 1999, 33(18): 3217~3224.
    135 E. A. Müller, K. E.Gubbins. Molecular Simulation Study of Hydrophilic and Hydrophobic Behavior of Activated Carbon Surfaces. Carbon, 1998, 36(10): 1433~1438.
    136 C. L. McCallum, T. J. Bandosz, S. C. McGrother, et al. A Molecular Model for Adsorption of Water on Activated Carbon: Comparison of Simulation and Experiment. Langmuir, 1999, 15(2): 533~544.
    137 E. A. Müller, F. R. Hung, K. E. Gubbins. Adsorption of Water Vapor-methane Mixtures on Activated Carbons. Langmuir, 2000, 16(12): 5418~5424.
    138 C. A. Leon y Leon, J. M. Solar, V. Calemma, et al. Evidence for the Protonation of Basal Plane Sites on Carbon. Carbon, 1992, 30(5): 797~811.
    139 S. S. Barton, M. J. B. Evans, E. Halliop, et al. Acidic and basic sites on the surface of porous carbon. Carbon, 1997, 35(9): 1361~1366.
    140 R. W. Coughlin, F. S. Ezra. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon. Environmental Science and Technology, 1968, 2(4): 291~297.
    141 J. S. Noh, J. A. Schwarz. Estimation of the Point Zero Charge of Simple Oxides by Mass Titration. Journal of Colloid and Interface Science, 1989, 130(1): 157~164.
    142 C. Y. Yin, M. K. Aroua, W. M. A. W. Daud. Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions. Separation and Purification Technology, 2007, 52(3): 403~415.
    143 D. Aggarwal, M. Goyal, R.C. Bansal. Adsorption of Chromium by Activated Carbon from Aqueous Solution. Carbon, 1999, 37(12): 1989~1997.
    144 Y. F. Jia, K. M. Thomas. Adsorption of Cadmium Ions on Oxygen Surface Sites in Activated Carbon. Langmuir, 2000, 16(3): 1114~1122.
    145 S. Biniak, G. Szymanski, J. Siedlewski, et al. The Characterization of Activated Carbons with Oxygen and Nitrogen Surface Groups. Carbon, 1997, 35(12): 1799~1810.
    146 N. Zhao, W. Na, J. Li, et al. Surface Properties of Chemically Modified Activated Carbons for Adsorption Rate of Cr(VI). Chemical Engineering Journal, 2005, 115(1-2): 133~138.
    147 C. Moreno-Castilla, M. A. Ferro-García, J. P. Joly, et al. Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 1996, 11(11): 4386~4392.
    148 A. A. M. Daifullah, S. M. Yakout, S. A. Elreefy. Adsorption of Fluoride in Aqueous Solutions Using KMnO4-Modified Activated Carbon Derived from Steam Pyrolysis of Rice Straw. Journal of Hazardous Materials, 2007, 147(1-2): 633~643.
    149 M. F. R. Perteira, S. F. Soares, J. J. M.órf?o, et al. Adsorption of Dyes on Activated Carbons: Influence of Surface Chemical Groups. Carbon, 2003, 41(4): 811~821.
    150 S. Haydar, M. A. Ferro-García, J. Rivera-Utrilla, et al. Adsorption of p-Nitrophenol on an Activated Carbon with Different Oxidations. Carbon, 2003, 41(3): 387~395.
    151 D. M. Nevskaia, A. Santianes, V. Mu?oz, et al. Interaction of Aqueous Solution of Phenol with Commercial Activated Carbons: An Adsorption and Kinetic Study. Carbon, 1999, 37(8): 1065~1074.
    152 J. W. Shim, S. J. Parkb, S. K. Ryua. Effect of Modification with HNO3 and NaOH on Metal Adsorption by Pitch-based Activated Carbon Fibers. Carbon, 2001, 39(11): 1635~1642.
    153 S. J. Park, Y. S. Jang. Pore Structure and Surface Properties of Chemically Modified Activated Carbons for Adsorption Mechanism and Rate of Cr(IV). Journal of Colloid and Interface Science, 2002, 249(2): 458~463.
    154 S. J. Vladimir, D. Malik. Characterization and Metal Sorptive Properties of Oxidized Active Carbon, Journal of Colloid and Interface Science, 2002, 250(1): 213~220.
    155 A. B. Garcia, A. Martinez-Alonso, C. A. L. Y. Leon, et al. Modification of the Surface Properties of an Activated Carbon by Oxygen Plasma Treatment. Fuel, 1998, 77(6): 613~624.
    156 S. Tang, N. Lu, J. K. Wang, et al. Novel Effects of Surface Modification on Activated Carbon Fibers Using a Low Pressure Plasma Treatment. The Journal of Physical Chemistry C, 2007, 111(4): 1820~1829.
    157 M. Domingo-Garcia, F. J. Lopez-Garzon, M. Perez-Mendoza. Effect of some Oxidation Treatment on the Textural Characteristics and SurfaceChemical Nature of an Activated Carbon. Journal of Colloid and Interface Science, 2000, 222(2): 233~240.
    158 D. S. Lee, S. H. Hong, K. H. Paek, W. T. Ju. Adsorbability Enhancement of Activated Carbon by Dielectric Barrier Discharge Plasma Treatment. Surface and Coatings Technology, 2005, 200(7): 2277~2282.
    159 C. A. Leon, J. M. Solar, V. Calemma, et al. Evidence for the Protonation of Basic Plane Sites on Carbon. Carbon, 1992, 30(5): 797~811.
    160 J. A. Menendez, J. Phillips, B. Xia, et al. On the Modification of Chemical Surface Properties of Activated Carbon: In the Search of Carbon with Stable Basic Properties. Langmuir, 1996, 12(12): 4404~4410.
    161 P. Chingombe, B. Saha , R. J. Wakeman. Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water. Journal of Colloid and Interface Science, 2006, 297(2): 434~442.
    162 W. Cheng, S. A. Dastgheib, T. Karanfil. Adsorption of Dissolved Natural Organic Matter by Modified Activated Carbons. Water Research, 2005, 39(11): 2281~2290.
    163 J. Przepiorski. Enhanced Adsorption of Phenol from Water by Ammonia-treated Activated Carbon. Journal of Hazardous Materials, 2006, 135(1-3): 453~456.
    164 W. Chen, F.S. Cannon, J. R. Rangel-Mendez, Ammonia-tailoring of GAC to Enhance Perchlorate Removal. I: Characterization of NH3 Thermally Tailored GACs. Carbon, 2005, 43(3): 573~580.
    165 W. Chen, F. S. Cannon, J. R. Rangel-Mendez. Ammonia-tailoring of GAC to Enhance Perchlorate Removal. II: Perchlorate Adsorption. Carbon, 2005, 43(3): 581~590.
    166 S. A. Dastgheib, T. Karanfil, C. Wei. Tailoring Activated Carbons for Enhanced Removal of Natural Organic Matter from Natural Waters. Carbon, 2004, 42(3): 547~557.
    167 C. P. Huang, L. M. Vane. Enhancing As5+ Removal by a Fe2+-treated Activated Carbon. J.Water Pollut. Contam. Fed, 1989, 61(9): 1596~1603.
    168 R. Leyva Ramos, J. Ovalle-Turrubiartes, M. A. Sanchez-Castillo. Adsorption of Fluoride from Aqueous Solution on Aluminium-Impregnated Carbon. Carbon, 1999, 37(4): 609~617.
    169 D. J. Kim, J. E. Yie. Role of Copper Chloride on the Surface of Activated Carbon in Adsorption of Methyl Mercaptan. Journal of Colloid and Interface Science, 2005, 283(2): 311~315.
    170 N. Adhoum, L. Monser. Removal of Phthalate on Modified Activated Carbon: Application to the Treatment of Industrial Wastewater. Separation and Purification Technology, 2004, 38(3): 233~239.
    171 N. Adhoum, L. Monser. Removal of Cyanide from Aqueous Solution Using Impregnated Activated Carbon. Chemical Engineering and Processing. 2002, 41(1): 17~21.
    172 M. X. Yu, Z. Li, Q. B. Xia, et al. Desorption Activation Energy of Dibenzothiophene on the Activated Carbons Modified by Different Metal Salt Solutions. Chemical Engineering Journal, 2007, 132(1-3): 233~239.
    173 L. Monser, N. Adhoum. Modified Activated Carbon for the Removal of Copper, Zinc, Chromium and Cyanide Fromwastewater. Separation and Purification Technology. 2002, 26(2-3): 137~146.
    174 J. P. Chen, S. N. Wu. Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties. Langmuir, 2004, 20(6): 2033~2242.
    175 J. W. Shim, S. J. Park, S. K. Ryu. Effect of Modification with HNO3 and NaOH on Metal Adsorption by Pitch-based Activated Carbon Fibers. Carbon, 2001, 39(11): 1635~1642.
    176 J. P. Chen, S. N. Wu, K. H. Chong. Surface Modification of A Granular Activated Carbon by Citric Acid for Enhancement of Copper Adsorption. Carbon, 2003, 41(10): 1979~1986.
    177 M. Santiago, F. Stüber, A. Fortuny, et al. Modified Activated Carbons for Catalytic Wet Air Oxidation of Phenol. Carbon, 2005, 43(10): 2134~2145.
    178 H. P. Boehm. Chemical Identification of Surface Groups. Advances in Catalysis, 1966, 16: 179~274.
    179 D. M. Giusti, R. A. Conway, C. T. Lawson. Activated carbon adsorption of petrochemicals. Journal Water Pollution Control Federation, 1974, 46(5):947~965.
    180 M. Acedo-Ramos, V. Gomez-Serrano, C. Valenzuela-Calahorro, et al. Oxidation of Activated Carbon in Liquid Phase. Study by FT-IR. Spectroscopy letters, 1993, 26(6):1117~1137.
    181 S. S. Barton, M. J. B. Evans, J. Holland, et al. Water and Cyclohexane Vapour Adsorption on Oxidized Porous Carbon. Carbon, 1984, 22(3): 265~272.
    182 P. Pendleton, S. H. Wu, A. Badalyan. Activated Carbon Oxygen Content Influence on Water and Surfactant Adsorption. Journal of Colloid and Interface Science, 2002, 246(2): 235~240.
    183 J. Zawadzki. In Chemistry and Physics of Carbon. P. A.Thrower, Ed. Dekker: New York, 1989(20): 147~380.
    184 A. M. Puziy, O. I. Poddubnaya, A. Martínez-Alonso, et al. Synthetic Carbons Activated with Phosphoric Acid: I. Surface Chemistry and Ion Binding Properties. Carbon, 2002, 40(9): 1493-1505.
    185 L. N. Vandenberg, R. Hauser, M. Marcus, et al. Human Exposure to Bisphenol A (BPA), Reproductive Toxicology, 2007, 24(2): 139~177.
    186 N. Olea. Comments on“Estrogenicity of Resin-based Composites and Sealants Used in Dentisitry”: Response. Environmental Health Perspectives. 1999, 107(A): 290~292.
    187 Y. Hayashi, R. Matsuda, Y. Haishima, et al. Validation of HPLC and GC-MS Systems for Bisphenol-A Leaches from Hemodialyzers on the Basis of FUMI Theory. Journal Of Pharmaceutical And Biomedical Analysis, 2002, 28(3-4): 421~429.
    188 A. Goodson, H. Robin, W. Summerfield, et al. Migration of Bisphenol A from Can Coatings-effects of Damage, Storage Conditions and Heating. Food Additives and Contaminants, 2004, 21(10): 1015~1026.
    189 J. S. Mattson, H. B. Mark Jr. Activated Carbon: Surface Chemistry and Adsorption from Solution. Marcel Dekker, New York, 1971.
    190 M. V. López-Garzón, M. Domingo-García, M. Pérez-Mendoza, et al. Textural and Chemical Surface Modifications Produced by Some Oxidation Treatments of a Glassy Carbon. Langmuir, 2003, 19(7): 2838~2844.
    191 R. D. Vidic, M. T. Suldan, R. C. Brenner. Oxidative Coupling of Phenols on Activated Carbon: Impact on Adsorption Equilibrium. Environmental Science and Technology, 1993, 27(10): 2079~2085.
    192 A. Karimi-Jashni, R. M. Narbaitz. Impact of pH on the Adsorption and Desorption Kinetics of 2-Nitrophenol on Activated Carbons. Water Research, 1997, 31(12): 3039~3044.
    193 S. Lagergren. Zur Theorie Der Sogenannten Adsorption Gel?ster Stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1~39.
    194 Y. S. Ho, J. C.Y. Ng, G. McKay. Kinetics of Pollutant Sorption by Biosorbents: Review. Separation and Purification Methods. 2000, 29(2): 189~232.
    195 Y. S. Ho. Adsorption of Heavy Metals from Waste Streams by Peat. Ph.D. Thesis, University of Birmingham, Birmingham, U.K. 1995.
    196 S. K. Bhatia, F. Liu, G. Arvind. Effect of Pore Blockage on Adsorption Isotherms and Dynamics: Anomalous Adsorption of Iodine on Activated Carbon. Langmuir, 2000, 16(8): 4001~4008.
    197 R. M. Barrer. Flow into and through Zeolite Beds and Compacts. Langmuir, 1987, 3(3): 309~315.
    198 H. P. Boehm, B. Treczki, K. Schanz. In Adsorption at the Gas-Solid and Liquid-Solid Interface. J. Roquerol, K. S. W. Sing, Eds. Elsevier Scientific: Amsterdam, 1982, p 395.
    199 A. D?browski, P. Podko?cielny, Z. Hubicki, et al. Adsorption of Phenolic Compounds by Activated Carbon-A Critical Review. Chemosphere, 2005, 58(8): 1049~1070.
    200 C. H. Giles, A. P. D'Silva, I. A. Easton. A General Treatment and Classification of the Solute Adsorption Isotherm Part. II. Experimental Interpretation. Journal of Colloid and Interface Science, 1974, 47(3): 766~778.
    201 K. László, A. Sz?cs. Surface Characterization of Polyethyleneterephthalate (PET) based Activated Carbon and the Effect of pH on its Adsorption Capacity from Aqueous Phenol and 2,3,4-trichlorophenol Solutions. Carbon, 2001, 39(13): 1945~1953.
    202 H. Haghseresht, G. Lu. Adsorption characteristics of phenolic compounds onto coal-rejected-derived adsorbents. Energy and Fuels, 1998, 12(6): 1100~1107.
    203 G. Gusler, T. Browne, Y. Cohen. Sorption of organics from aqueous solution onto polymeric resins. Industrial and Engineering Chemistry Research, 1993, 32(11): 2727~2735.
    204 A. McClellan, H. Harnsberger. Cross-sectional areas of molecules adsorbed on solid surfaces. Journal of Colloid and Interface Science, 1967, 23: 577~599.
    205 L. Ding, V. L. Snoeyink, B. J. Mari?as, et al. Effects of Powdered Activated Carbon Pore Size Distributionon the Competitive Adsorption of Aqueous Atrazine and Natural Organic Matter. Environmental Science and Technology, 2008, 42(4): 1227~1231.
    206 D. L. Sparks. Kinetics of Soil Chemical Processes. Academic Press, New York, 1989.
    207 G. McKay, S. J. Allen, I. F. McConvey, et al. Transport processes in the sorption of colored ions by peat particles. Journal of Colloid and Interface Science, 1981, 80(2): 323~339.
    208 G. M. Walker, L. Hansen, J.A. Hanna, et al. Kinetics of a Reactive Dye Adsorption onto Dolomitic Sorbents. Water Research, 2003, 37(9): 2081~2089.
    209 K. K. H. Choy, D. C. K. Ko, C. W. Cheung, et al. Film and Intraparticle Mass Transfer during the Adsorption of Metal Ions onto Bone Char. Journal of Colloid and Interface Science, 2004, 271(2): 284~295.
    210 E. V. Murphree. Relation between Heat Transfer and Fluid Friction. Industrial and Engineering Chemistry. 1932, 24(7):726~736.
    211 W. J. Jr. Weber, J. C. Morris. Equilibria and Capacities for Adsorption on Carbon. Journal of Sanitary Engineering Division. Proceedings of the American Society of Civil Engineers, 1963, 89: 31~59.
    212 G. McKay, H. S. Blair, J. Gardner. The Adsorption of Dyes in Chitin, III. Intraparticle Diffusion Processes. Journal of Applied Polymer Science, 1983, 28: 1767~1778.
    213 T. Furusawa, J. M. Smith. Intraparticle Mass Transport in Slurries by Dynamic adsorption studies. J.AIChE, 1974, 20(1): 88~93.
    214 A. K. Bhattacharya, C. Venkobachar. Removal of Cadmium (II) by Low Cost Adsorbents. Journal of Environmental Engineering-ASCE, 1984, 110(1): 110~122.
    215 C. C. Lin, H. S. Liu. Adsorption in Centrifugal Field-Basic Dye Adsorption by Activated Carbon. Industrial and Engineering Chemistry Research, 2000, 39(1): 161~167.
    216 S. J. Allen, L. J. Whitten, M. Murray, et al. The Adsorption of Pollutants by Peat, Lignite and Activated Chars. Journal of Chemical Technology & Biotechnology, 1997, 68(4): 442~452.
    217 D. Sarkar, D. K. Chattoraj. Activation Parameters for Kinetics of Protein Adsorption at Silica-Water Interface. Journal of Colloid and Interface Science, 1993, 157(1): 219~226.
    218 R. S. Juang, R. L. Tseng, F. C. Wu, et al. Liquid Phase Adsorption of Phenol and Its Derivatives on Activated Carbon Fibers. Separation Science and Technology. 1996, 31(14): 1915~1931.
    219 R. S. Juang, S. L. Swei. Effect of Dye Nature on Its Adsorption from Aqueous Solution onto Activated Carbon. Separation Science and Technology. 1996, 31 (15): 2143~2158.
    220 C. Moreno-Castilla, J. Rivera-Utrilla, M. V. López-Ramón, et al. Adsorption of some substituted phenols on activated carbons from a bituminous coal. Carbon, 1995, 33(6): 845~851.
    221 J. S. Mattson, H. B. Mark Jr., M. D. Malbin, et al. Surface chemistry of active carbon: specific adsorption of phenols. Journal of Colloid and Interface Science, 1969, 31(1): 116~130.
    222 H. P. Boehm. Surface Oxides on Carbon and Their Analysis: A Critical Assessment. Carbon, 2002, 40(2): 145~149.
    223 V. K. Gupta, I. A. Suhas, D. Mohan. Equilibrium Uptake and Sorption Dynamics for the Removal of a Basic Dye (Basic Red) Using Low-cost Adsorbents. Journal of Colloid and Interface Science, 265(2): 257~264.
    224 C. Namasivayam, D. Kavitha. Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, An Agricultural Solid Waste. Dyes and Pigments, 2002, 54(1): 47~58.
    225 B. H. Hameed. Equilibrium and Kinetics Studies of 2,4,6-Trichlorophenol Adsorption onto Activated Clay. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 307(1): 45~52.
    226 X. F. Xie, L. Gao, J. Sun. Thermodynamic Study on Aniline Adsorption on Chemical Modified Multi-walled Carbon Nanotubes. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 308(1): 54~59.
    227 L. R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla. Carbon Materials as Adsorbents in Aqueous Solutions. In Chemistry and Physics of Carbon. L. R. Radovic, Ed. Marcel Dekker: New York, 2001, 27: 227~405.
    228 V. López-Ramón, C. Moreno-Castilla, J. Rivera-Utrilla, et al. Ionic Strength Effects in Aqueous Phase Adsorption of Metal Ions on Activated Carbons. Carbon, 2002, 41(10): 2009~2025.
    229 G. Newcombe, M. Drikas. Adsorption of NOM onto Activated Carbon Electrostatic and Non-electrostatic Effects. Carbon, 1997, 35(9): 1239~1250.
    230 C. Moreno-Castilla, M. A.álvarez-Merino, M. V. López-Ramón, et al. Cadmium Ion Adsorption on Different Carbon Adsorbents from Aqueous Solutions. Effect of Surface Chemistry, Pore Texture, Ionic Strength, and Dissolved Natural Organic Matter. Langmuir, 2004, 20(19): 8142~8148.
    231 Q. Li, V. L. Snoeyink, B. J. Mari?as, et al. Elucidating Competitive Adsorption Mechanisms of Atrazine and NOM Using Model Compounds. Water Research, 2003, 37(4): 773~784.
    232 Q. Li, B. J. Mari?as, V. L. Snoeyink, et al. Three-Component Competitive Adsorption Model for Flow-Through PAC Systems. 1. Model Development and Verification with a PAC/Membrane System. Environmental Science and Technology, 2003, 37 (13), 2997~3004.
    233 I. N. Najm, V. L. Snoeyink, Y. Richard. Effect of Particle Size and Background Natural Organics on the Adsorption Efficiency of PAC. J. Am. Water Works Assoc., 1990, 82 (1): 65~73.
    234 R. Hopman, W.G. Siegers, J. C. Kruithof. Organic Micropollutant Removal by Activated Carbon Fiber Filtration. Water Supply, 1995, 13(3-4): 257~261.
    235 C. Pelekani, V. L. Snoeyink. Competitive Adsorption between Atrazine and Methylene Blue on Activated Carbon: The Importance of Pore Size Distribution. Carbon, 2002, 38(10): 1423~1436.
    236 T. Fukuhara, S. Iwasakia, M. Kawashimab, et al. Adsorbability of Estrone and 17β-estradiol in Water onto Activated Carbon. Water Research, 2006, 40(2): 241~248.
    237 Y. X. Ren, K. Nakano, M. Nomura, et al. A Thermodynamic Analysis on Adsorption of Estrogens in Activated Sludge Process. Water Research, 2007, 41(11): 2341~2348.
    238 Y. Yoon, P. Westerhoff, S. A. Snyder, et al. HPLC-fluorescence Detection and Adsorption of Bisphenol A, 17β-estradiol, and 17a-ethynyl estradiol on Powdered Activated Carbon. Water Research, 2003, 37(14): 3530~3537.
    239 X. Jin, J. Y. Hu, S. L. Ong. Influence of Dissolved Organic Matter on Estrone Removal by NF Membranes and the Role of their Structures. Water Research, 2007, 41(14): 3077~3088.
    240 D. R. U. Knappe, Y. Matsui, V. L. Snoeyink, et al. Predicting the Capacity of Powdered Activated Carbon for Trace Organic Compounds in Natural Waters. Environmental Science and Technology, 1998, 32(11):1694~1698.
    241 K. J. Choi, S. G. Kim, C. W. Kim, et al. Effects of Activated Carbon Types and Service Life on Removal of Endocrine Disrupting Chemicals: Amitrol, Nonylphenol and Bisphenol-A. Chemosphere, 2005, 58(11): 1535~1545.
    242 E. J. Routledge, J. P. Sumpter. Estrogenic Activity of Surfactants and Some of Their Degradation Products Assessed Using a Recombinant Yeast Screen. Environmental Toxicology and Chemistry, 1996, 15(3): 241~248.
    243吴文忠,王敬贤,徐盈,等.重组基因酵母检测环境类雌激素污染物.中国环境科学, 2004, 22(1): 60~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700