围油栏拦油数值实验平台及拦油失效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海上溢油对自然资源造成严重的环境损害,不幸的是即使尽最大努力也不能防止溢油事故的发生,只要发生大量溢油事故,就一定要采取相应清理手段,围油栏是在处理海上溢油事故中一种常用的,有效的设备。但是由于受风、波浪和水流等因素的影响,经常会发生拦油失效导致围油栏效率降低。前人关于围油栏拦油大效研究主要集中在纯水流作用下固定档板式围油栏的拦油实验和数值研究,即使是考虑波浪对围油栏拦油作用研究也仅仅是局限于简单的单个波长的线性波作用下实验研究。因此本文使用商用计算流体力学软件FLUENT,利用计算平台的用户接口功能,从计算模型、程序实现、数据存取、结果分析等多个方面对FLUENT计算平台进行了改进,建立了基于黏性流理论和VOF方法的、可对波浪、水流作用下可动浮子式围油栏拦油问题进行数值研究的数值试验平台。与物理实验平台相比,具有费用低、无触点流场测量、减小比尺效应、消除了物理模型实验中由传感器尺寸及模型变形等因素对流场的影响,可获得较详细的流场信息等优点。
     在搭建围油栏拦油数值实验平台的过程中,数值造波、消波方法是否合适、有效是决定数值实验平台建立成功与否的关键性问题之一。在无旋势流条件下,利用有限体积法,结合连续方程和不可压缩雷诺平均N-S方程,并利用k-ε方程封闭方程组,采用VOF方法追踪相界面,分别采用推板造波、设置速度入口造波、质量源造波和动量源造波方法完成线性规则波、二阶Stokes波、孤立波的模拟,针对不同波浪理论,详细分析和评述了不同数值造波方法,为不同情况下采用何种造波方法提供了指导性意见。
     影响围油栏拦油效果因素除了栏深、水深、水流速度、油品外,波浪参数对拦油效果的影响也很重要。因此波浪水流作用下围油栏拦油效果分析就显得很重要。基于以上二维数值波浪水槽模型,经过改进,建立能够模拟波浪水流相互作用的二维数值波流水槽模型,讨论水平均匀流与波浪共线时波流相互作用问题。数值结果符合依据波动的射线理论和由变分原理导出的波作用量守恒定律推导的Doppler效应——顺流时波长变大、波高减小,而逆流时波长变小、波高增大,甚至出现波浪破碎。水流也会改变波浪传播方向,引起波浪折射,使波浪出现辐聚或辐散。进一步研究了不同波陡下水流对波峰的影响,波流同向工况时,波陡增大.相同流速下对波峰的改变就越大,在波流逆向工况下,波陡增大,相同流速对波峰的改变越小。然后基于线性波流水槽发展了非线性波流水槽,模拟了弱非线性波和强非线性波流耦合作用问题,研究了水流对波浪非线性的影响,研究发现,波流反向作用时使得波浪非线性进一步增强,顺流减弱了波浪的非线性作用,非线性波流作用也符合多普勒效应。
     最后基于以上建立的恒定水深黏性数值波流水槽,结合三相流模型,对波流作用下油层形态演变进行数值模拟和分析,在此基础上添加围油栏模型,使用FLUENT中动网格模型和“半耦合”数值模拟方法实现波流作用下垂直方向浮子式围油栏的升沉运动,成功搭建可动浮子式围油栏拦油数值实验平台。基于此数值实验平台进行围油栏拦油失效数值模拟,分析波浪和水流对栏前油层演变的影响,模拟结果显示水流方向决定油层前进方向,波流同向时油层厚度最大,长度最小,反之,波流逆向时油层厚度最小,油层长度最大,油层形态变化与波面升高变化同相,当波谷传到围油栏处时油层厚度最小,当波峰传到围油栏处时,油层厚度最大,易发生拦油失效;接着定量详细分析了栏深、水深、水流速度、油品、波浪参数与拦油初始失效速度之间的关系,结果表明,三种工况下油密度越大,越会加剧拦油失效,增大初始溢油体积会减小拦油失效速度,围油栏栏深越大,拦油失效速度也越大,且拦油失效速度与栏深之间呈线性增加关系,拦油失效速度随波高的增大而减小,波浪周期越大,拦油失效速度也越大,通过实验研究及结果分析,并最终提出预测波流同向、纯水流和波流逆向工况下浮子式围油栏拦油失效速度公式:纯水流工况为Uf0=1.98UKH+(0.39+0.078Q-0.5)D(?),波流同向工况当波陡较小(s<0.02)时为:Uf0+Uf0(-0.0005ρ+0.3304),当波陡s≥0.02时,拦油失速度公式为:
     Uf=Uf0+Uf0(-0.0005ρ+0.3304)-1893.6s2+82.108s-0.8622,
     波流逆向工况为:
     Uf=Uf0+Uf0(0.0014ρ-1.293)-121.38s2+0.0889s+0.1004。
Marine Oil spills can cause serious damage to natural resources and to those whose livelihoods depend on these resources. Unfortunately, experience shows that even the best safety efforts cannot prevent occasional oil spill accidents on the sea. Hence, it is important to improve techniques and equipment that facilitate spill cleanup under such circumstances. Oil spill containment booms are the most commonly adopted techniques employed to collect and contain oil on sea surface, or to protect specific areas against slick spreading. Oil containment, however, is often attempted under open-sea conditions, where currents, winds, and waves are present, and it is generally accepted that the effectiveness of booms is reduced under these conditions due to oil containment failure. The previous researches about oil containment failure mainly focus on the experimental and numerical study of oil containment by fixed barrier under pure current conditions; even the consideration of the influence of wave parameters on oil containment failure was limited to the case of experimental study of oil containment under a single wavelength of linear wave. So in the dissertation, CFD software FLUENT is re-developed in mathematical model, programming procedure, data access and analysis method to establish a numerical experimental platform based on viscous flow and VOF method, which can be used to simulate oil containment by floating boom under wave and current conditions. When compared with physical experimental platform, the numerical experimental platform has the advantage of low cost, non-contact flow measurement, reducing the scale effect, eliminating sensor size used in physical experimental, model deformation and other factors influencing the flow field, getting more detailed flow field information, and so on.
     Numerical methods of wave generating and absorbing are key techniques in the establishment of numerical experimental platform of oil containment by floating boom. Under the irrotational potential flow conditions, different numerical modeling methods (the pusher flap wave maker, the method of defining velocity of water particle on the inlet boundary, mass source wave-maker and momentum source wave-maker) have been employed to deal with the wave generating simulation of linear wave, second-order Stokes wave and solitary wave, using the Navier-Stokes or Reynolds Averaged Navier-Stokes (RANS) equation model and featuring closure via the k-ε turbulent model, employing the VOF (volume of fluids) method, which was developed to manage interfaces between multiple phases, i.e., water and air. The above wave generating methods for linear and nonlinear waves are firstly analyzed and compared in detail, the advantage and disadvantage of different methods are summarized and commented, some conclusions on application are then obtained.
     Wave parameters including boom draft, water depth, flow velocity and oil parameters have great influence on oil containment efficiency. Therefore, the effect analysis of oil containment by boom under wave and current conditions come necessary and urgently. Based on the model established above, the two-dimensional numerical wave tank is re-developed in source function, boundary conditions to establish the numerical wave and current tank of the viscous fluid with constant water depth simulating wave-current interactions, and then the interactions of wave and uniform current were discussed. The numerical results compared well to wave and ray theory and the Doppler Effect derived from wave action balance equation according to variational principle. The variations of wave profile under current action and the influence of the current velocity on the wave parameters were studied. The finds show that wave length is increased (reduced) and wave height is reduced (increased) by coplanar (counter) currents, even wave breaking occurs in counter currents. Currents will also cause wave refraction, wave amplitude converge and diverge by changing the propagating direction of wave. The effects of currents on wave crest with different wave steepness were further studied, for coplanar (counter) current cases, the same current velocity will change wave crest with bigger wave steepness more (less). Then a fully nonlinear numerical wave and current tank was developed based on the linear wave and current tank. The interactions of weakly nonlinear waves, strong nonlinear wave-current coupling were simulated and the effects of currents on wave nonlinearity were analyzed, it shows that opposing (coplanar) current increased (reduced) the wave nonlinearity, the nonlinear wave-current coupling interactions match Doppler Effect well.
     Finally, the variations of oil shape before boom under waves and currents were simulated and analyzed based on the numerical wave and current tank of the viscous fluid with constant water depth established above combined with using the three-phase flow model. Then the numerical experimental platform was established successfully by adding floating booms to the tank, utilizing the dynamic mesh model in FLUENT and the "half coupling" method to simulate the vertical heave motion of floating boom under waves and currents. Based on the numerical experimental platform, oil containment by floating boom under waves and currents were numerically studied, the effects of waves and currents on variations of oil shape before boom were analyzed. The finds show that oil slick moves toward the boom under the action of currents, the coplanar wave accelerate and the counter wave decelerate the oil slick moving towards boom slightly, oil slick thickness reached maximum in coplanar current conditions and minimum in counter current conditions, oil slick length reached minimum in coplanar current conditions and maximum in counter current conditions, the thickness of oil slick and the free-surface elevation at the boom were approximately in phase. When the wave at the boom is at its trough, the oil slick achieves its minimum thickness, and when the wave at the boom is at its crest, the oil slick achieves its maximum thickness and oil containment failure prone to take place. Then the relationship between oil containment failure velocity and oil boom draft, water depth, current velocity, oil parameters, wave parameters was quantitatively analyzed in detail. The results show that an increase in oil density is detrimental to oil containment under pure current condition, coplanar current condition and counter current condition. The bigger the initial oil volume, the lower the oil containment failure velocity. The greater the oil boom draft, the higher the oil containment failure velocity, and the relationship between oil boom draft and oil containment failure velocity show linear trend. The results also indicate that an increase in wave height will reduce oil containment failure velocity. Another important wave parameter likely to influence oil containment is the wave period. The variation of failure velocity with wave period was investigated. As the finds show, the longer the wave period, the higher the failure velocity and that a short and high wave is most detrimental to oil containment. According to the experimental research and analysis of the numerical results, empirical equations were proposed for the prediction of the initial failure velocity of oil containment by the floating boom under pure current condition, coplanar current condition and counter current condition respectively.
引文
[1]封星.海上溢油行为预测模型及其在茂名海域的应用:(硕士论文).大连:大连海事大学,2008年6月.
    [2]赵文朋.船舶溢油应急决策系统的研究与开发:(硕士论文).上海:上海海事大学,2007年6月.
    [3]王祖纲,董华.美国墨西哥湾溢油事故应急响应、治理措施及其启示.国际石油经济,2010,pp:1-4.
    [4]Zheng Quanan, Zhao Qing, Nan Walker, Li Chunyan. Oil spill in the Gulf of Mexico and spiral vortex, Acta Oceanol. Sin.,2010,29(4):1-2.
    [5]管永义,韩俊松.大连“7·16”事故海上清污行动反思与建议.中国海事,2010,12:19-21.[6] ITOPF(2011). www.itopf.com.
    [7]余枫,尹勇.海上溢油应急处理的仿真和三维可视化.中国航海,2011,34(1):72-75.
    [8]韩健.海上溢油跟踪技术研究及软件系统开发:(硕士论文).大连:大连海事大学,2010年6月.
    [9]James. Modelling pollution dispersion, the ecosystem and water quality in coastal waters:a review, Environmental Modelling & Software,2002,17:363-385.
    [10]David E. Hibbs, John S. Gulliver. Dissolution Rate Coefficients For Surface Slicks On Rivers, Water Research,1999,33(8):1811-1816.
    [11]Merv Fingas. Water-in-Oil Emulsion Formation:A Review of Physics and Mathematical Modelling.Spill Science & Technology Bulletin,1995,2(1):55-59.
    [12]Per S. Daling, Merete Verli Moldestad, Istein Johansen, Alun Lewis_& Jon Rdal. Norwegian Testing of Emulsion Properties at Sea-The Importance of Oil Type and Release Conditions. Spill Science & Technology Bulletin,2003,8(2):123-136.
    [13]Barbara E. Ornitz. Transport of Oil at the Crossroads:A Legal Perspective. Spill Science & Technology Bulletin,1999,5(2):103-107.
    [14]张同戌,张德文,任良成,谢文宁.国内外船携式溢油回收系统发展现状.水运科学研究,2008,2:10-14.
    [15]柳婷婷,田珊珊.海上溢油事故处理及未来发展趋势.中国水运,2006,4(11):27-29.
    [16]Price J M, Marshall CF, Lear EM. Supplement to oil-spill risk analysis:Gulf of Mexico OCS central and western lease sales. USA:In Mineral Management Service, Environmental Division, 2001.
    [17]高振会,杨建强,崔文林.海洋溢油对环境与生态损害评估技术及应用.北京:海洋出版社,2005.
    [18]田立杰,张瑞安.海洋油污染对海洋生态环境的影响.海洋湖沼通报,1999,(2):65-69.
    [19]周玲玲.溢油对海洋生态污损的评估及指标体系研究:(硕士论文).青岛:中国海洋大 学.2007.
    [20]姜晓娜,海洋溢油生态损害评估标准及方法学研究:(硕士论文).大连:大连海事大学,2010年6月.
    [21]张静,胡梅生,汤保贵.溢油污染对湛江生态和经济的影响与对策.湛江海洋大学学报,2005,25(2):77-81.
    [22]赵剑强,邓顺熙.溢油影响评价及清除决策.交通环保,1995,17(1):11-17.
    [23]夏文香,林海涛,张英,等.海上溢油的污染控制技术.青岛建筑工程学院学报,2004,25(1):54-57.
    [24]赵如箱.溢油应急反应中的现场燃烧技术.交通环保,2002,23(3):39-42.
    [25]赵玉慧,张友篪,孙培艳.化学消油剂在溢油污染控制中的应用及其今后发展方向.海洋环境科学,2006,25(Supp.1):97-100.
    [26]张青田.生物技术在海上溢油处理中的应用.海洋信息,2005,2:14-16.
    [27]曾德芳,罗亚田,张科.高效快速溢油回收处理技术探讨.武汉理工大学学报,2003,25(7):48-50.
    [28]Q.F.Wei, R.R.Mather and A.F.Fotheringham用于回收泄漏石油的非织造吸油材料,2003,Vol.22, No.162, pp:26-40.
    [29]卓诚裕.海洋油污染防治技术.北京:国防工业出版社,1996.
    [30]赵孟信.必须重视海上溢油污染的防治.航海技术,1994,4:68-72.
    [31]陈维皓.海上溢油应急决策支持系统的研究与开发:(硕士论文).上海:上海海事大学,2006年6月.
    [32]魏芳,林建国,许颖.围油栏研制的历史、现状及数值模拟的应用展望.船舶防污染学术年会论文集,2006.
    [33]魏芳,刘晓峰,林建国,等.围油栏性能优化的数值模拟.交通环保,2007,7:39-44.
    [34]魏芳.围油栏在多种海况下拦油效果及形状优化的数值模拟:(硕士论文).大连:大连海事大学,2007年3月.
    [35]Cormark, D. Response to marine oil pollution-Review and Assessment. USA:Kluwer Academic Publishers,1999.
    [36]Oebius, H.u. Physical properties and processes that influence the clean-up of oil spills in the marine environment. Spill Science & Technology Bulletin,1999,5(3-4):177-289.
    [37]李积军.交通行业标准《围油栏》有关问题的说明.交通环保,2003,24(3):30-35.
    [38]中华人民共和国交通行业标准JT/T465,2001.
    [39]Oil Spill Response Catalog. World catalog of oil spill response products,2005.
    [40]C.M.Lee, K.H.Kang. Prediction of oil boom performance in currents and waves. Spill science & technology bulletin.1997,4(4):257-266.
    [41]N.P.Ventikos, Emmanouil Vergetis, Harilaos N.Psaraftis et al. A high-level synthesis of oil spill response equipment and countermeasures. Journal of hazardous materials,2004,107:51-58.
    [42]C.M.Lee, K.H.Kang. Development of optimum oil fence in currents and waves. Annual Report of Advanced Fluids Engineering Research Center,1995, Series AFR-94-FGH:7-41.
    [43]C. M.Lee, K.H.Kang. Draft loss of a flexible oil fence in currents due to deformation. Annual Report of Advanced Fluids Engineering Research Center,1996, Series AFR-95-FGH:7-36.
    [44]J.M.Lo, K.H.Kang, Cho N.S. Prediction of oil droplet motion and containment of spilt oil with tandem oil fence. Proc. of 4th KSME-JSME Fluids English Conference Haeundae, Pusan, Korea, 1998:465-468.
    [45]ASTM. Water and environmental technology:Standard specification for oil spill response boom connection. In Annual Book of ASTM Standards,2004, volume 11.04, F962. American Society for Testing and Materials.
    [46]詹德新.某围油栏性能实验研究.武汉造船,2001,1:16-18.
    [47]王永学.无反射造波数值波浪水槽.水动力学研究与进展:A辑,1994,9(2):205-214.
    [48]D.Violeau, C.Buvat, K.Abed-Meraim, and E.de Nanteuil. Numerical modeling of boom and oil spill with SPH. Coastal Engineering,2007,54:895-913.
    [49]张政,程石勇,李晗.应用VOF方法对水流中拦油栅拦油失效进行数值模拟尝试.环境科学学报,1999,19(6):604-609.
    [50]Delvigne, G. A. L. Barrier failure by critical accumulation oil. In 11th International Oil Spill Conference,1989:143-148.
    [51]宁成浩.拦油栅失效的数值模拟研究:(硕士论文).北京:北京化工大学,2002年3月.
    [52]Wicks, M. Fluid dynamics of floating oil containment by mechanical barriers in the presence of water currents. In Conference on Preventation and Control of Oil Spills,1969:55-106.
    [53]Agrawal, R. K. and Hale, L.A. A new criterion for predicting headwave instability of an oil slick retained by a barrier. In Offshore Technology Conference, Texas, USA,1983:461-466.
    [54]Leibovich, S. A natural limit to containment and removal of oil spills at sea. Ocean Engineering, 2003,3(1):29-36.
    [55]Azin Amini, Erik Bollaert, Jean-Louis Boillat, et al. Dynamics of low-viscosity oils retained by rigid and flexible barriers. Ocean Engineering,2008,35:1479-1491.
    [56]Azin Amini, Anton J.Schleiss. Behavior of rigid and flexible oil barriers in the presence of waves. Applied Ocean Research,2009,31:186-196.
    [57]Azin Amini, Maziar Mahzari, Erik Bollaert, Anton Schleiss. Fluid structure interaction analysis applied to oil containment booms. International Oil Spill Conference,2005:1-4.
    [58]Azin Amini, Jean-Louis Boillat, Anton Schleiss. Effect of waves on a flexible containment oil barrier. International Oil Spill Conference,2008:463-467.
    [59]Azin Amini, Jean-Louis Boillat, Anton Schleiss. Entrainment of floating granules behind a barrier. Journal of Hydraulic Research,2009,47(6):711-715.
    [60]Azin Amini. Contractile Floating Barriers for Confinement and Recuperation of Oil Slicks:[dissertation].Iran:University of Teheran,2008.
    [61]R.H.Goodman, H.M.Brown, Chang-fa An, et al. Dynamic modelling of oil boom failure using computational fluid dynamics.Spill Science & Technology Bulletin,1996,3(4):213-216.
    [62]H.M.Brown, R.H.Goodman, Chang-fa An, J.BITINER. Boom failure mechanisms:comparison of channel experiments with computer modeling results.Spill Science & Technology Bulletin,1996, 3(4):217-220.
    [63]Chang-fa An, H.M.Brown, R.H.Goodman, et al. Animation of boom failure processes. Spill Science & Technology Bulletin,1996,3(4):221-224.
    [64]Song-Ping Zhu, Dmitry Strunin. Modelling the confinement of spilled oil with floating booms. Applied Mathematical Modelling,2001,25:713-729.
    [65]Song-Ping Zhu, Dmitry Strunin. A numerical model for the confinement of oil spill with floating booms. Spill Science & Technology Bulletin,2002,7(5-6):249-255.
    [66]Rachid Chebbi. Profile of oil spill confined with floating boom. Chemical Engineering Science, 2009,64:467-473.
    [67]赵文谦,江洧,吴至维.围油栏中油膜受剪切作用的稳定性分析.海洋学报,1990,12(6):773-782.
    [68]Kordyban, E. The effect of waves on the oil-slick at a retention boom. Journal of Energy Resources Technology-Transactions of the ASME,1992,114(1):31-37.
    [69]Lee, C. M., Kang, K. H., and Cho, N. S. Trapping of leaked oil with tandem oil fences with lagrangian analysis of oil droplet motion. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME,1998,120(1):50-55.
    [70]Fangxin Fang, Archie J.Johnston. Oil containment by boom in waves and wind. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,2001,127:222-239.
    [71]Selim M.Sayah, Jean-Louis Boillat, Anton Schleiss. Behavior of a contractile floating reservoir for the confinement and recovery of oil slicks. Journal of Waterway, Port, Coastal and Ocean Engineering,2004,130(5):266-271.
    [72]Kau-fui Vincent Wong, Diego Guerrero. Quantitative analysis of shore-line protection by boom arrangement. Spill Science & Technology Bulletin.1995,2(1):61-66.
    [73]Kau-fui Vincent Wong, Kwan Hyoung Kang. Prediction of oil boom performance in currents and waves. Spill Science & Technology Bulletin,1997,4(1):61-66.
    [74]Kau-fui Vincent Wong, Eryurt Barin, James Lane. Field experiments at the ohmsett facility for a newly designed boom system. Spill Science & Technology Bulletin,2002,7(5-6):223-228.
    [75]Kau-fui Vincent Wong, Eryurt Barin. Oil spill containment by a flexible boom system. Spill Science & Technology Bulletin.2003,8(5-6):509-520.
    [76]Kau-fui Vincent Wong, Hugho. Stewart. Oil spill boom design for waves. Spill Science & Technology Bulletin.2003,8(5-6):543-548.
    [77]Frederic Muttin. Structural analysis of oil spill containment booms in coastal and estuary waters. Applied Ocean Research,2008,30:107-112.
    [78]Atle Nordvik, Ken Bitting, Paul Hankins,et al. Full scale oil containment boom testing at sea,2005.
    [79]M.H.Kim, S.Muralidharan, S.T.Kee, et al. Seakeeping performance of a containment boom section in random waves and currents. Ocean Engineering,1998,25(2-3):143-172.
    [80]A.Castro, G.Iglesias, R.Carballo, et al. Floating boom performance under waves and currents. Journal of Hazardous Materials,2010,174:226-235.
    [81]G.Iglesias, A.Castro, J.A.Fraguela. Artificial intelligence applied to floating boom behavior under waves and currents. Ocean Engineering,2010,37:1513-1521.
    [82]张承懿,王磊,姚美旺.固体浮子式围油栏模型试验研究.实验研究与探索,2005,24(4):12-14.
    [83]林建国,刘颖.围油栏内不均匀溢油迁移扩散的解析分析.大连海事大学学报,2001,27(3):53-56.
    [84]吴乘胜,朱德祥,顾民.基于NS方程的数值波浪水池构建.第二十一届全国水动力学研讨会暨第八届全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会文集,2008.
    [85]Yeon-Seok Park, Zheng-Shou Chen, Wu-Joan Kim. CFD application to the evaluation of wave and current loads on cylindrical platform model for ocean wind turbine. Proceeding of the Ninth ISOPE Pacific/Asia Offshore Mechanics Symposium, Busan, Korea,2010.
    [86]Liang Xiu-feng, Yang Jian-min, LI Jun, et al. A numerical study on local characteristics of predetermined irregular wave trains. Ocean Engineering,2011,38:651-657.
    [87]Junwoo Choi, Sung Bum Yoon. Numerical simulations using momentum source wave-maker applied to RANS equations model. Coastal Engineering,2009,56:1043-1060.
    [88]Dong Zhi, Zhan Jie-min. Numerical modeling of wave evolution and runup in shallow water. Journal of Hydrodynamics Ser.B,2009,21(6):731-738.
    [89]Kai Huang, George Papanicolaou, Knut Solna, et al. Efficient numerical simulation for long range wave propagation. Journal of Computational Physics,2006,215:448-464.
    [90]艾丛芳,金生.模拟波浪运动的三维自由表面流动数值模型.水动力学研究与进展:A辑,2008,23(3):338-347.
    [91]宁德志,陈丽芬,田宏光.波流混合作用的完全非线性数值水槽模型.哈尔滨工程大学学报:2010,31(11):1450-1455.
    [92]邹志利.水波理论及其应用.北京:科学出版社,2005:1-565.
    [93]王本龙,刘桦.一种适用于非均匀地形的高阶Boussinesq水波模型.应用数学和力 学:2005,26(6):714-722.
    [94]R.A.Dalrymple, B.D.Rogers. Numerical modeling of water waves with the SPH method. Coastal Engineering,2006,53:141-147.
    [95]Hung-Jie Tang, Chai-Cheng Huang. Bragg reflection in a fully nonlinear numerical wave tank based on boundary integral equation method. Ocean Engineering,2008,35:1800-1810.
    [96]朱仁传,缪国平,林兆伟,向红贵.运动船体甲板上浪的三维数值模拟.水动力学研究与进展:A辑,2008,23(1):7-14.
    [97]焦颖颖.新型弧形返浪墙水动力数值模拟:(硕士论文).上海:上海交通大学,2007年1月.
    [98]Peng Zhi Lin, Philip L.-F. LIU. A numerical study of breaking waves in the surf zone. Fluid Mech,1998,359:239-264.
    [99]Arikawa T., Shimosako K. I. Numerical simulations of hydraulic overflow pressure acting on structures behind the seawall. Coastal Structure,2003,147:606-618.
    [100]周勤俊,王本龙,兰雅梅,刘桦.海堤越浪数值模拟.力学季刊:2005,26(4):629-633.
    [101]董志,詹杰民.基于vof方法的数值波浪水槽以及造波、消波方法研究.水动力学研究与进展:A辑,2009,24(1):15-21.
    [102]程用胜.基于VOF方法的二维数值波浪水槽的建立与应用:(硕士论文).上海:上海交通大学,2002年2月.
    [103]邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波.水动力学研究与进展,1996,11(1):93-103.
    [104]李胜忠,段忠东.二维规则波及不规则的数值模拟.气体物理-理论与应用,2007,2(4):366-370.
    [105]刘加海,杨永全,等.二维数值水槽波浪生成过程及波浪形态分析.四川大学学报(工程科学版),2004,Vol36(11):28-31.
    [106]李胜忠.基于FLUENT的二维数值波浪水槽研究.哈尔滨:哈尔滨工业大学,2006.
    [107]Zhang Cheng-xing, Wang Yong-xue, Wang Guo-yu, et al. Wave dissipating of air bubble breakwaters with different layouts. Journal of Hydrodynamics Ser.B,2010,22(5):671-680.
    [108]Feng Xing, Wu Wanqing, Zhang Bin. Numerical Experimental Set-up of Oil Containment by Rigid Floating Boom in Wave. The 4th international conference on bioinformatics and biomedical engineering, ICBBE2010.
    [109]陈钰,朱良生.基于FLUENT的海洋内孤立波数值水槽模拟.海洋技术,2009,vol.28(4):72-75.
    [110]封星,吴宛青,吴文峰.二维数值波浪水槽在FLUENT中的实现.大连海事大学学报,2010,36(3):94-96.
    [111]Michael Horko. CFD optimization of an oscillating water column wave energy converter:[dissertation]. Australia:University of Western,2007.
    [112]林兆伟,朱仁传,缪国平.甲板上浪问题的二维数值模拟.船舶力学,2009,13(1):1-8.
    [113]梁修锋,杨建民,李欣,于洋.FPSO甲板上浪的数值模拟.水动力学研究与进展,2007,22(2):229-236.
    [114]毛丞弘.限定运动下甲板上浪的数值模拟与试验研究:(硕士论文).上海:上海交通大学,2000.
    [115]李凌,林兆伟,尤云详,缪国平.基于动量源方法的黏性流数值波浪水槽.水动力学研究与进展:A辑,2007,22(1):76-82.
    [116]Lu Yong-jin, Liu Hua, Wu Wei, Zhang Jiu-shan. Numerical simulation of two-dimensional overtopping against seawalls armored with artificial units in regular waves. Journal of Hydrodynamics Ser.B,2007,19(3):322-329.
    [117]Liang Xiu-feng, Yang Jian-min, LI Jun, et al. Numerical simulation of irregular wave-simulating-irregular wave train. Journal of Hydrodynamics Ser.B,2010,22(4):537-545.
    [118]Lin Peng-zhi, Philip L.-F.LIU. Internal wave-maker for Navier-Stokes equations. Journal of Waterway, Port, Coastal, and Ocean Engineering,1999,125(4):207-215.
    [119]高学平,曾广冬,张亚.不规则数值水槽的造波和阻尼消波.海洋学报,2002,24(2):127-132.
    [120]Xugui Ren, Keh-Han Wang, Kang-Ren Jin. A boussinesq model for simulation wave and current interaction. Ocean Engineering,1997,24(4):335-350.
    [121]Yun-Peng Zhao, Yu-Cheng Li, Guo-Hai Dong, et al. A numerical study on dynamic properties of the gravity cage in combined wave-current flow. Ocean Engineering,2007,34:2350-2363.
    [123]James M.Kaihatu. Application of a nonlinear frequency domain wave-curretn interaction model to shallow water recurrence effects in random waves. Ocean Engineering,2009,26:190-205.
    [124]邹志利.含强水流高阶Boussinesq水波方程.海洋学报,2000,22(4):41-50.
    [125]Wang Tao, Li Jia-chun. Effect of nonlinear wave-current interaction on flow fields and hydrodynamic forces. Science in China Ser.A,1996,40(6):622-632.
    [126]Teng B, Eatock Taylor R. Application of a higher order BEM in the calculation of wave run-up in a weak current[C]//Proceedings of the Conference ISOPE, Osaka, Japan,1994.
    [127]Weoncheol Koo, Moo-Hyun Kim. Current effects on nonlinear wave-body interactions by a 2D fully nonlinear numerical wave tank. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2007,133(2):136-146.
    [128]Ryu S, Kim M H, Lynett P J. Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank. Computational Mechanics,2003,32:336-346.
    [129]王本龙.基于高阶Boussinesq方程的海岸破波带数学模型研究:(博士论文).上海:上海交通大学,2005.
    [130]A.Chawla, J.T.Kirby. A source function method for generation of waves on currents in Boussinesq models. Applied Ocean Research,2000,22:75-83.
    [131]Bjarne Buchmann, Jesper Skourup, Kwok Fai Cheung. Run-up on a structure due to second-order waves and a current in a numerical wave tank. Applied Ocean Research,1998,20: 297-308.
    [132]李玉成,张永刚.应用Boussinesq方程对非线性波与流相互作用的理论研究.水动力学研究与进展:A辑,1996,11(2):205-211.
    [133]吴永胜,练继建,王兆印,张庆河.波浪-水流相互作用模型.水利学报:2002,4:13-17.
    [134]王福军.计算流体动力学分析.北京:清华大学出版社,2004.
    [135]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [136]张成兴.气幕防波堤试验与数值模拟研究:(博士论文).大连:大连理工大学,2010.
    [137]董志.基于VOF方法的非线性波浪数值模拟研究与应用:(博士论文).广州:中山大学,2009.
    [138]江帆,黄鹏.Fluent高级应用与实例分析.北京:清华大学出版社,2008.
    [139]Youngs, D.L. Time dependent multi-material flow with large fluid distortion[C]. Numerical Methods for Fluid Dynamics. Academic Press,1982:273-285.
    [140]洪方文.自由面附近运动物体流场的数值与试验研究:(博士论文).无锡:中国船舶科学研究中心,2001.
    [141]FLUENT Inc.FLUENT 6.3 User's Guide,2003.
    [142]温正,石良辰,任毅如.FLUENT流体计算应用教程.北京:清华大学出版社,2009.
    [143]王瑞金,张凯,王刚.FLUENT技术基础与应用实例.北京:清华大学出版社,2007.
    [144]Lin Zhao, Zegao Yin, Miaomiao Sun, Jian Ma. Numerical simulation of the combined wave-current force distributions on large-scale underwater objects.2009 ASME International Mechanical Engineering Congress and Exposition, Proceedings of IMECE09, Lake Buena Vista, Florida USA.
    [145]J.C.Park, YUno, T.Sato, et al. Numerical reproduction of fully nonlinear multi-directional waves by a viscous 3D numerical wave tank. Ocean Engineering,2004, vol.31, pp:1549-1565.
    [146]Gunwoo Kim, Changhoon Lee, Kyung-Duck Suh. Internal generation of waves:Delta source function method and source term addition method. Ocean Engineering,2007,34:2251-2264.
    [147]S.Y.Boo. Linear and nonlinear irregular waves and forces in a numerical wave tank. Ocean Engineering,2002,29:475-493.
    [148]A.Khayyer,H.Gotoh,S.D.Shao. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering,2008,55:236-250.
    [149]P.L.-F.Liu, GSimarro, J.Vandever, et al. Experimental and numerical investigation of viscous effects on solitary wave propagation in a wave tank. Coastal Engineering,2006,53:181-190.
    [150]杨靖培.基于CFX的波浪水槽数值模拟:(硕士论文).哈尔滨:哈尔滨工程大学,2006.
    [151]王永学,任冰.波浪冲击过程的湍流数值模拟.水动力学研究与进展,1999,14(4):409-417.
    [152]李宏伟.数值水池造波方法研究:(硕士论文).哈尔滨:哈尔滨工程大学,2009.
    [153]熊莉芳,林源,李世武.k-ε湍流模型及其在FLUENT软件中的应用.工业加热,2007,4:13-15.
    [154]王丽萍.太阳能烟囱提高室内热压通风效果的数值模拟:(硕士论文).西安:西安建筑科技大学,2004.
    [155]李良彦.船舶阻力及粘性流场的数值模拟:(硕士论文).大连:大连理工大学,2008.
    [156]周勤俊.海塘越浪的数值模拟:(硕士论文).上海:上海交通大学,2005.
    [157]郑永红,沈永明.结合抛物型缓坡方程计算波浪辐射应力.海洋学报,2000,6:110-116.
    [158]柳淑学,俞聿修,赖国璋,等.数值求解Boussinesq方程的有限元法.水动力学研究与进展,2000,15(4):399-410.
    [159]Phung Dang Hieu, Katsutoshi Tanimoto. Verification of a VOF-based two phase flow model for wave breaking and wave-structure interactions. Ocean Engineering,2006,33:1565-1588.
    [160]Roozbeh Panahi, Ebrahim Jahambakhsh, Mohammad S.Seif. Development of a VOF fracrtional step solver for floating body motion simulation. Applied Ocean Research,2006,28: 171-181.
    [161]华秀菁,吕玉麟.二维浅水域潮流数值模拟的ADI-QUICK格式.水动力学研究与进展,A辑,1996,1:79-92.
    [162]王化明.限制水域操纵运动船舶粘性流场及水动力数值研究:(博士论文).上海:上海交通大学,2009.
    [163]朱磊.弯管流量计水流特性的数值模拟及流量系数的试验研究:(硕士论文).西安:西安理工大学,2008.
    [164]宋新远,刑爱国,陈龙珠.基于FLUENT的二维滑坡涌浪数值模拟.水文地质工程地质,2009,3:90-94.
    [165]Patankar S.V.and Spalding D.B. A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer,1972,15:1787-1806.
    [166]S.V.Patankar. Numerical heat transfer and fluid flow. Hemishpere, Washington,1980.
    [167]R.I.Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting. Comput.Phys,1986,62:40-65.
    [168]郭菁,董素艳.FLUENT CFD的领跑者.软件世界,2004:71-72.
    [169]翟建华.计算流体力学(CFD)的通用软件.河北科技大学学报,2005,26(2):160-165.
    [170]姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002,24(2):137-144.
    [171]B.Raverdy, I.Mary, P.Sagaut, N.Liamis. High-resolution large-eddy simulation of flow around low-pressure turbine blade. AIAA Jouranl,2003,41(3):390-397.
    [172]V.Michelassi, J.G.Wissink, J.Frohlich, W.Rodi. Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes. AIAA Journal,2003,41(11):2143-2156.
    [173]M.Tutar, G.Oguz. Large eddy simulation of wind flow around parallel buildings with varying configurations. Fluid Dynamic Research,2002,31(5-6):289-315.
    [174]杨继业,欧阳洁.多重网格技术对SIMPLER算法的加速性能研究:(硕士论文).西安:西北工业大学,2005.
    [175]史忠军,徐敏,陈士橹.动网格生成技术.空军工程大学学报,2003,4(1):61-64.
    [176]杨亮.粘性流场中摆动尾鳍的水动力分析:(硕士论文).哈尔滨:哈尔滨工程大学,2005.
    [177]Fluent Inc. FLUENT User Defined Function Manual. Fluent Inc.,2003.
    [178]Le Mehaute B. An introduction to hydrodynamics and water waves. New York:Spinger-Verlag, 1976.
    [179]毕家驹.近海力学导论.上海:同济大学出版社,1989.
    [180]左其华.水波相似与模拟.北京:海洋出版社,2006.
    [181]任福安.海洋动力学.大连:大连海事大学,2001.
    [182]陶建华.水波的数值模拟.天津:天津大学出版社,2005.
    [183]Peter Troch, Julien De Rouck. An active wave generating-absorbing boundary condition for VOF type numerical model. Coastal Engineering,1999,38:223-247.
    [184]杨联贵,杨红丽,宋金宝,等.剪切流中界面波的二阶Stokes波解.海洋科学,2008,32(8):58-63.
    [185]George Mellor. The three-dimensional current and surface wave equations:[dissertation]. New Jersey:Princeton University, Princeton,2002.
    [186]Stokes G G. Generation of wind waves over a shallow bottom. U.S. Army Corps of Engrs., Beach Erosion Board Tech. Memo,1954.
    [187]Simwe仿真论坛,、vww.simwe.com.
    [188]齐鹏,王永学.三维数值波浪水池技术与应用.大连理工大学学报:2003,43(6):825-830.
    [189]Dean R.G. Water wave mechanics for engineers and scientists. NJ:Prentice Hall,1984: 170-186.
    [190]Michael Horko. CFD optimisation of an oscillating water column wave engergy converter:[dissertation]. Australia:School of Mechnical Engineering Faculty of Engineering, Computing and Mathematics, The University of Western Australia,2007.
    [191]宁德志,滕斌,周斌珍,刘珍.源造波法在三维完全非线性数值波浪水槽中的应用.大连海事大学学报:2008,34(2):1-5.
    [192]熊志强,刘长根,陶建华.Boussinesq方程数学模型的域内造波源函数研究.港工技术,2007,4:1-3.
    [193]李本霞,俞聿修,张宁川.数值二维随机波浪水槽的建立和应用.海洋通报:2004,23(5):1-9.
    [194]刘亚男,郭晓宇,王本龙,等.基于RANS方程的海堤越浪水质模拟.水动力学研究与进展,A辑,2007,22(6):682-688.
    [195]韩朋,任冰,李雪临,王永学.基于VOF方法的不规则波数值波浪水槽的阻尼消波研究.水道港口,2009,30(1):9-13.
    [196]焦颖颖,郭晓宇,王本龙,等.规则波中弧形返浪墙的非线性水动力载荷数值模拟.水动力学研究与进展,A辑,22(4):434-441.
    [197]高山.二维数值波浪水槽模式的建立和应用及浪流相互作用研究:(博士论文).青岛:中国海洋大学,2003.
    [198]Li, Y.C. and Chwang, T.A. Effect of non-uniform current on wave fields. In:Int.Society of offsh.and Polar Eng.,1994.
    [199]王涛,李家春.波作用量守恒原理在波流相互作用中的应用.力学学报,1996,28(3):281-290.
    [200]Baddour, R.E. and Song.S. On the interaction between waves and currents. Ocean Eng.,1990,17.
    [201]白玉川.流速和潮位变化对波浪在近岸区传播的影响.海洋学报,1996,18(3).
    [202]Booi j, N. Gravity waves on water with non-uniform depth and current. Delft University of Tech.Dept.Civil Eng., Rep.1981.
    [203]Kirby, J.T. A note on linear surface wave-current interaction over slowly varying topography, J.Geophys, Res.1984,89(CI).
    [204]蒋德才.缓坡非均匀流场中随机波传播的折绕射联合模型.海洋学报,1993,15(6).
    [205]Longuest Higgins M.S. and Stewart R.W. Changes in the form of short gravity waves on long waves and tidal currents. J.F.M,1960, vol.8, pp:565-583.
    [206]Peregrine D.H. Interactions of water waves and currents. Adv.Appl.Mech.,1976,16:10-117.
    [207]Me Cowan A.D. The range of application of Boussinesq type numerical short wave models. Proc.,22nd Congress, International Association for Hydraulic Research, Lansanne, Switzerland, 1987:379-384.
    [208]Dean R G. and Sharma J N. Simulation of wave systems due to nonlinear directional spectra. Proc. Int. Symposium on Hydrodynamics in Ocean Engineering, Trondheim, Norway,1981: 1211-1222.
    [209]Ogilvie T F. Second order hydrodynamic effects on ocean platforms. Proc.Int Workshop on Ship and Platform Motions,1983:205-265.
    [210]Nwogu O. An alternative form the boussinesq equations for nearshore wave propagation. J.Water Way, Port, Coast. Ocean Engrg,1993,119(6):618-638.
    [211]Koo, W.C., Kim, M.H. Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Eng.,2004,31(16):2011-2046.
    [212]王晓华,王彦昌,顾益民.海上/岸边储运设施溢油环境风险应急分析.油气田环境保 护,21(3):3-7.
    [213]赵召.墨西哥湾漏油事件:前所未有的生态灾难.生命世界,2010,7:38-43.
    [214]Moloney, B.L.J. Oil spill containment using boom. Master thesis, James Cook University, Townsville, Australia,1996.
    [215]交通部规划研究院.国家船舶溢油应急设备库建设标准研究.P87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700