石油烃对海洋微藻的毒性效应及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油烃导致的海洋环境污染是全球性的重大环境问题之一,海洋生态系统不可避免会受到石油烃毒性作用的明显影响。海洋微藻是海洋食物链的基础,提供了海洋的主要初级生产力,它不仅驱动着整个海洋生态系统的能量流动和物质循环,而且对调节全球气候变化起着重要的作用。海洋微藻是海洋浮游生物的主要组成部分,海洋微藻种群和群落的动态变化一旦受到破坏将会危及其它海洋生物及整个海洋生态系统。大量研究表明,石油类污染物对海洋微藻的生长有显著影响,但现有的资料主要侧重于细胞密度、初级生产力以及少量的生理生化指标的探讨,在种群动态和种间关系定量化、光合作用特征和细胞过氧化及抗氧化能力研究方面,尚缺乏足够的数据说明石油烃对海洋微藻的作用机理。因此,研究石油烃胁迫下不同海洋微藻种群动态和种间竞争关系对短期急性毒性和长期亚急性毒性响应差异及其作用机制是十分必要的。
     本文以三种海洋微藻:绿藻门的饵料藻青岛大扁藻(Platymonas helgolandicavar. tsingtaoensis)、金藻门的饵料藻球等鞭金藻(Isochrysis galbana)、硅藻门的赤潮微藻小新月菱形藻(Nitzschia closterium f. minutissima)为受试生物,在实验室条件下研究了石油烃对三种微藻急性和亚急性毒性效应,并探讨了石油烃胁迫下海洋微藻种间竞争关系、光合作用特征和细胞过氧化、抗氧化酶活性及抗氧化物质含量的变化,初步探明了海洋微藻对石油烃胁迫的响应机制。结果如下:
     1石油烃对海洋微藻的急性毒性作用研究
     (1)石油烃对海洋微藻的生长有明显的抑制作用。三种海洋微藻的石油烃胁迫96h EC50值分别为:青岛大扁藻13.84mg/L,球等鞭金藻18.83mg/L,小新月菱形藻6.73mg/L。对石油烃毒性敏感性大小顺序为:小新月菱形藻>青岛大扁藻>球等鞭金藻。
     (2)三种海洋微藻的叶绿素a含量受到不同程度的抑制。小新月菱形藻的叶绿素a含量受石油烃抑制的敏感性较青岛大扁藻和球等鞭金藻高。
     (3)三种海洋微藻的叶绿素荧光参数受到石油烃急性作用的不同影响。除青岛大扁藻0.5mg/L石油烃处理组qP值显著增加外,三种微藻的Fv/Fm,ETR,qP等参数均受到了不同程度的抑制。
     (4)在较低浓度石油烃胁迫下,除球等鞭金藻的Fv/Fm和qP参数外,三种微藻叶绿素荧光参数受石油烃抑制的敏感性明显高于同一处理组的叶绿素a含量的变化,因此,叶绿素荧光参数更适合作为石油污染急性毒性海洋浮游植物初级生产力监测的参考依据。
     2石油烃对海洋微藻种群动态的影响
     (1)亚急性毒性剂量石油烃胁迫对三种海洋微藻的逻辑斯蒂模型有显著的影响。青岛大扁藻和球等鞭金藻处理组的环境承载力K值比对照组间显著降低,且随着石油烃浓度的增大而减小,瞬时最大增长率r值均比对照组显著降低。两者三个处理组生长曲线达到拐点时间均比对照组推迟。
     (2)在相同的相对石油烃浓度胁迫下,小新月菱形藻的环境承载力下降最多,敏感性最高。而从三种微藻的逻辑斯蒂模型参数及其生长曲线拐点出现时间来看,小新月菱形藻比青岛大扁藻和球等鞭金藻能更早更快地进入种群稳定期,存在占据种群相对优势的能力。
     3石油烃对海洋微藻种间竞争关系的影响
     (1)混合培养对两种微藻种群生长的逻辑斯蒂模型参数及其生长曲线拐点出现时间有显著影响。青岛大扁藻-小新月菱形藻和球等鞭金藻-小新月菱形藻混合培养后的三种海洋微藻环境承载力K值均有显著降低。但小新月菱形藻在两个组合中均表现出瞬时最大生长率r值和生长曲线拐点出现时间Tp上的优势性。
     (2)不同起始生物量比例对两种海洋微藻种间竞争关系有显著的影响。本研究中,在空白对照试验组中,起始生物量上的优势,不是长期培养下海洋微藻成为优势种的决定性因素。但相对起始生物量较高的种群,能够在石油烃毒性胁迫下占据一定的优势。
     4石油烃对海洋微藻光合作用的影响
     (1)三种海洋微藻叶绿素a含量受到亚急性毒性剂量石油烃的显著影响,叶绿素a含量显著降低,且随石油烃浓度的提高和作用时间的延长而降低。小新月菱形藻的叶绿素a含量变化受到石油烃的影响最为显著。
     (2)青岛大扁藻、球等鞭金藻和小新月菱形藻的各项叶绿素荧光参数受到石油烃的不同影响。从Fm/Fv、Yield、ETR、qP、NPQ参数的变化来看,青岛大扁藻和球等鞭金藻受石油烃胁迫程度比小新月菱形藻弱。
     (3)小新月菱形藻的RuBPCase活性在整个试验周期各石油烃处理浓度均比对照组显著降低。球等鞭金藻和青岛大扁藻在实验初期RuBPCase活性变化不明显,后期显著降低。
     (4)小新月菱形藻在石油烃胁迫下,光合作用各项参数反映出的受害程度明显大于青岛大扁藻和球等鞭金藻,这可以考虑是其相对敏感性高,种群环境承载力受影响较大的原因。
     5石油烃对海洋微藻的过氧化及抗氧化酶和抗氧化物质的影响
     (1)三种微藻MDA含量受石油烃胁迫后显著升高,石油烃对海洋微藻的脂质过氧化作用显著。青岛大扁藻MDA含量上升最多,小新月菱形藻相对较少。
     (2)石油烃胁迫下的三种海洋微藻SOD、GPx、GR活性均出现波动,呈先升高后降低的趋势,说明石油烃胁迫作用下,三种海洋微藻抗氧化酶的保护作用被激活,但在长期胁迫作用下会抗氧化酶活力下降,三种微藻均受到石油烃的伤害。
     (3)低浓度石油烃对青岛大扁藻和小新月菱形藻的GSH含量影响不显著,1/596h EC50石油烃处理组的球等鞭金藻GSH含量在实验中期上升最明显。
     (4)长期亚急性毒性剂量石油烃对三种海洋微藻的细胞过氧化、抗氧化酶和抗氧化物质有显著影响,海洋微藻在接触石油烃的开始阶段,抗氧化酶活性普遍升高,抗氧化物质含量下降,中后期抗氧化酶活性降低,抗氧化物质含量出现波动,脂质过氧化物含量随实验的进行不断上升。小新月菱形藻在MDA含量、SOD活性指标优于青岛大扁藻,而与球等鞭金藻相当,这可能是其在青岛大扁藻-小新月菱形藻培养组合中取得优势地位或保持竞争共存,而在球等鞭金藻-小新月菱形藻组合中被球等鞭金藻取代而失去优势的原因之一。
Petroleum hydrocarbon caused marine environment pollution is one of the mostimportant global environment problems; petroleum hydrocarbon toxicity affect on themarine ecosystem is obviously. Marine microalgae are the base of marine food chainand are the main marine primary productivity. Marine microalgae drive the marineecosystem energy and matter cycle and global environmental change. The dynamicchange of marine phytoplankton populations and communities once damaged willendanger the other sea creatures and the whole marine ecosystem. Many studiesplaced emphasis on cell density data show that the oil pollutants have significantlyeffects on marine microalgae growth, data to illustrate the mechanism of thepetroleum hydrocarbons in marine microalgae on relationship between populationdynamics and species of quantitative, photosynthetic characteristics and cellper-oxidation and antioxidant research the was lack. Research on marine microalgaeshort-term acute toxicity and long-term sub-acute toxicity effects response differencesand mechanism of action under the condition of petroleum hydrocarbon is necessary.
     In lab, short-term acute toxicity and long-term sub-acute toxicity affects onPlatymonas helgolandica var. tsingtaoensis, Isochrysis galbana and Nitzschiaclosterium f. minutissima, competitive relation between the marine microalgae,photosynthesis characteristics, cell per-oxidation, antioxidase enzyme activities andantioxidant content changes were studied, in which the marine microalgae responsemechanism under the condition of petroleum hydrocarbon was found out.
     1Petroleum hydrocarbon acute toxicity effects on marine microalgae
     (1)Petroleum hydrocarbon had significant inhibition of the marine microalgaegrowth, only the0.5mg/L petroleum hydrocarbon had inapparent stimulated effect.96h EC50of the Platymonas helgolandica var. tsingtaoensis was13.84mg/L(12.11-18.14mg/L), Isochrysis galbana was18.83mg/L(17.22-22.39mg/L),Nitzschia closterium f. minutissima was6.73mg/L(2.76-14.11mg/L). The level ofPetroleum hydrocarbon sensitivity was Nitzschia closterium f. minutissima>Platymonas helgolandica var. tsingtaoensis>Isochrysis galbana.
     (2)Chlorophyll-a content was inhibited. Isochrysis galbana content changes weremore sensitive than Platymonas helgolandica var. tsingtaoensis and Nitzschiaclosterium f. minutissima.
     (3)Petroleum hydrocarbon acute toxicity effects on chlorophyll fluorescenceparameter were different. Platymonas helgolandica var. tsingtaoensis’s in0.5mg/Lincreased significantly. Fv/Fm,ETR and qP were inhibited.
     (4)In the lower concentration (0.5mg/L) condition, chlorophyll fluorescenceparameter changes sensitive was more obvious than the chlorophyll-a content’s,except the Isochrysis galbana Fv/Fm and qP. Chlorophyll fluorescence parameter ismore suitable for oil pollution acute toxicity biological monitoring.
     2Petroleum hydrocarbon effects on marine microalgae populations dynamic
     (1)Petroleum hydrocarbon sub-acute toxicity had significant effect on Logisticmodel. In Platymonas helgolandica var. tsingtaoensis and Isochrysis galbana groupsenvironment capacity K decreased with the petroleum hydrocarbon concentrationincreasing was obvious lower than in the blank control, and so was the instantmaximum growth r. They needed more time than in the blank control to arrive at thegrowth curve inflexion point.
     (2) In the same petroleum hydrocarbon concentration condition, Nitzschiaclosterium f. minutissima K decreased the most. The Logistic model and the growthcurve inflexion point showed that Nitzschia closterium f. minutissima could arrive atthe population stability earlier and more quickly than the Platymonas helgolandicavar. tsingtaoensis and Isochrysis galbana, and which was the basis of populationrelative dominance.
     3Petroleum hydrocarbon effects on interspecific competition
     (1)Mixed cultivation had obvious effects on the Logistic mode and growth curveinflexion point. K decreased significantly in the condition of mixed cultivation ofPlatymonas helgolandica var. tsingtaoensis-Nitzschia closterium f. minutissima andIsochrysis galbana-Nitzschia closterium f. minutissima. In the two groups theNitzschia closterium f. minutissima instant maximum growth and growth curveinflexion point privilege over the other.
     (2)Different had significant effects on interspecific competition. In the blank controlgroups, the initial biomass advantage was not the determine factor of dominance inlong term marine microalgae cultivation. In the condition of petroleum hydrocarbon toxicity, the higher proportion of initial biomass privilege over the other.
     4Petroleum hydrocarbon effects on photosynthesis
     (1)Chlorophyll-a content reduced for the petroleum hydrocarbon of sub-acutetoxicity concentration, and chlorophyll-a content changes were largely in line with thetrend of the higher petroleum hydrocarbon concentration and the longer of the time,the lower chlorophyll-a content. Nitzschia closterium f. minutissima chlorophyll-awas effected the most.
     (2) Petroleum hydrocarbon effects on the Platymonas helgolandica var.tsingtaoensis, Isochrysis galbana and Nitzschia closterium f. minutissima chlorophyllfluorescence parameters were different. The Fm/Fv、Yield、ETR、qP、NPQ changesshowed that the Platymonas helgolandica var. tsingtaoensis and Isochrysis galbanawere inhibited smaller than the Nitzschia closterium f. minutissima.
     (3)In the Petroleum hydrocarbon condition, Nitzschia closterium f. minutissimaRuBPCase activity was lower than in the blank control. Isochrysis galbana andPlatymonas helgolandica var. tsingtaoensis RuBPCase activity changes were notobvious in the beginning and decreased significantly in the late.
     5Petroleum hydrocarbon Petroleum hydrocarbon effects on per-oxidation, antioxidantenzyme and antioxidant content
     (1)Petroleum hydrocarbon had effects on MDA content increase and lipidperoxidation. The Platymonas helgolandica var. tsingtaoensis MDA content rose themost, and Nitzschia closterium f. minutissima MDA content rose the lest in the threekinds.
     (2)In the condition of petroleum hydrocarbon the SOD, GPx and GR activityshowed a trend of decrease after the first rise in roughly. It showed the antioxidantenzyme protection was activated and antioxidant enzyme activity was destroyed in thelong term petroleum hydrocarbon toxicity condition, microalgae were hurt by thepetroleum hydrocarbon.
     (3)Lower Petroleum hydrocarbon concentration had little effects on Platymonashelgolandica var. tsingtaoensis and Nitzschia closterium f. minutissima GSH content.In the condition of1/596h EC50, Isochrysis galbana GSH content increasedobviously during the experimental middle.
     (4)In the long-term and sub-acute toxicity petroleum hydrocarbon concentrationcondition, the marine microalgae cell per-oxidation; antioxidase and antioxidant were significantly affected. The antioxidase activity increased and the antioxidant contentdecreased in the beginning, the antioxidase activity decreased and the antioxidantcontent fluctuated in the late, and the lipid peroxide content increased with theexperiment. Nitzschia closterium f. minutissima MDA and SOD indexes were betterthan the Platymonas helgolandica var. tsingtaoensis, and were similar to theIsochrysis galbana, which was the cause of the interspecific dominance.
引文
[1]王君丽,刘春光,冯剑丰等.石油烃对海洋浮游植物生长的影响研究进展.环境污染与防治,2011,33(4):81-86.
    [2]于志刚.近二十年来渤海生态环境的演化和相互关系的初步分析.全国第六届海洋环境与水环境学术研讨会论文集,桂林,中国海洋学会海洋环境科学分会,1999,p43.
    [3]孙培艳,高振会,崔文林等.油指纹鉴别技术发展及应用.北京:海洋出版社,2007.
    [4]李言涛.海上溢油的处理与回收.海洋湖沼通报.1996,20(1):73-83
    [5]田立杰,张瑞安.海洋油污染对海洋生态环境的影响.海洋湖沼通报.1999,23(2):15-19.
    [6]国家海洋局.2004年海洋环境质量公报.北京:国家海洋局,2005.
    [7] Pérezp Fernándeze Beirasr. Fuel toxicity on Isochrysis galbana and a coastal phytoplanktonassemblage: Growth rate vs. variable fluorescence. Ecotoxicology and Environmental Safety,2010,73(3):254-261.
    [8] Neff J M Stubblefield W A. Chemical and toxicological evaluation of water quality followingthe Exxon Valdez oil spill.//Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, ASTMSTP1219[C]. Philadelphia USA: American Society for Testing and Materials,1995:141–177.
    [9] Galtsoff P S Prytherch H F Smith R O, et al. The effects of crude oil pollution on oysters inLouisiana waters.The Scientific Monthly,1935,43(1).
    [10] Gaur J P, Kumar H D. Growth response of four microalgae to three crude oils and a furnaceoil. Environmental Pollution Series A: Ecological and Biological,1981,25(1).
    [11] Dela Cruz A A. Effects of oil on phytoplankton metabolism in natural and experimentalestuarine ponds. Marine Environmental Research,1982,7(4).
    [12] Fiala M, Delille D. Annual changes of microalgae biomassin Antarctic sea ice contaminatedby crude oil and diesel fuel. Polar Biology,1999,21(6).
    [13] Gamila H A, Ibrahimm B M. Algalboassay for evaluating the role of algae in bioremediationof crude oil: iisolat edstrains. Bulletin of Environmental Contamination and Toxicology,2004,73(5):883-889.
    [14] Rimet F, Ector L, Dohet A, et al. Impacts of fluoranthene on diatom assemblages and frustulemorphology in indoor microcosms. Vie Et Milieulife and Environment,2004,54(2/3):145-156.
    [15] Echeveste P, Agust A S, Dachsb J. Cell size dependent toxicity thresholds of polycyclicaromatic hydrocarb on stonatural and cultured phytoplankton populations. EnvironmentalPollution,2010,158(1).
    [16]陈刚,肖慧,唐学玺.3种海洋赤潮微藻蛋白质和核酸合成动态对芘胁迫的响应.海洋环境科学,2008,27(4).
    [17]刘娜,熊德琪等.柴油和燃料油对小球藻的急性毒性试验研究.海洋环境科学,2006年6月,第25卷增刊l:29-32.
    [18]王修林,杨茹君,祝陈坚.石油烃污染物存在下旋链角毛藻生长的粒度效应初步研究.中国海洋大学学报,2004,34(5):849-853
    [19]张蕾,王修林,韩秀荣等.石油烃污染物对海洋浮游植物生长的影响——实验与模型.青岛海洋大学学报,2002,32(5):804-810.
    [20] J.Fabregas.林凤翔译.油和消油剂对微型海藻Tetraselmissueeiea的生长和叶绿素a含量的影响.1985,海洋译丛4:52-54.
    [21]联合国海洋污染科学问题专家组编.海洋健康状况评价.海洋出版社,1984.
    [22] Elshee M M, Elnaggar A H, Osmanm E H, et al. Comparative studies on the green algaeChlorella homosphaer a and Chlorella vulgaris wish respect to oil pollution the river Nile. Water,Air, and Soil Pollution,2000,124(1/2).
    [23]王悠,唐学玺,李永祺等.低浓度蒽对两种海洋微藻生长的兴奋效应.应用生态学报,2002,13(3).
    [24] Hjort H M, Vester J, Henriksen P, et al. Function aland structural responses of marineplankton food web to pyrene contamination. Marine Ecology Progress Series,2007(338):21-31.
    [25] Dunstan W M, Atkinson L P, Natoli J.Stimulationand in hibition of phytoplankton growth bylow molecular weight hydrocarbons. Marine Biology,1975,31(4):305-310.
    [26] Gonzalez J, Figueiras F G, Aranguren-Gassis M, Crespo G B, Fernandez E, Moran X A G,Nieto-Cid M.2009. Effect of a simulated oil spill on natural assemblages of marine phytoplankton.Estuarine, Coastal and Shelf Science,83:265-276.
    [27] Stepanyan O V, Voskoboinikov G M. Effect of oil and oil products on morphofunctionalparameters of marine macrophytes. Russ ian Journal of Marine Biology,2006,32(1):32-39.
    [28] Stgarrd K, Eide I, Jensen A. Exposure of phytoplankton to ek of isk crude oil. MarineEnvironmental Research,1984,11(3):183-200.
    [29] Bate G C, Crafford S D. Inhibition of phytoplankton photosynthesis by the WSF of usedlubricating oil. Marine Pollution Bulletin,1985,16(10):401-404.
    [30] Stepaniyan O V. Effects of crude oil on major functional characteristics of macroalgae of theBarents Sea. Russian Journal of Marine Biology,2006,34(2):131-134.
    [31] Krause GH, Wei E. Chlorophyll fluorescence and photosysthesis:The basis. Ann Rev PlantPhysiol Plant Mol Biol,1991,42:313-349.
    [32]赵会杰,邹奇,余振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,2000,34(3):248-251
    [33]冯建灿,胡秀丽,王训申.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,2002,20(4):14-18
    [34] Banet G, Pick U, Malkin S, et al.Defferential responses to different light spectral ranges ofviolaxanthin de-epoxidation and accumulation of Cbr, an algal homologue of plant early lightinducible proteins, in two strains of Dunaliella.Plant Physiol.Biochem,1999,37(11):89-93
    [35] Jin E, Yokthongwattana K, Polle J E W,et al.Role of the reversible xanthophyll cycle in thephotosystemⅡ damage and repair cycle indunaliella salina. Plant Physiol,2003,132(1):352-364
    [36] Jin E S, Polle J E W, Melis A.Involvement of zeaxanthin and of the Cbr protein in the repairof photosystem Ⅱ from photoinhibition in the green alga Dunaliella salina.Biochimica etBiophysica acta,2001,1506:244-259
    [37]林植芳,彭长连,林植铢等.强光诱导叶片和盐藻505nm的差示吸收和叶绿素荧光的变化.热带亚热带植物学报,1997,5(3):27-34
    [38]宋立荣,雷腊梅,何振荣等.滇池水华蓝藻铜绣微囊藻和绿色微囊藻的生长生理特性和毒素分析.水生生物学报,1999,23(5):402-408
    [39] Sayed O H,El-shahed A M.Growth,Photosynthesis and circadian patterns in chlorellavulgaris(chlorophyta)in response to growth temperature.Algoi,2000,21(3):283-290
    [40]蒲光兰,周兰英,胡学华,等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响.干旱地区农业研究,2005,23(3):44-48.
    [41]王建程,严昌荣,卜玉山.不同水分与养分水平对玉米叶绿素荧光特性的影响.中国农业气象,2005,26(2):95-98.
    [42]杨晓青,张岁歧,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报,2004,24(5):812-816.
    [43] Parkhill J,Maillet G,Cullen.J J.Fluorescence-based maximum quantum yield for PSII as adiagnostic of nutrient stress.Phycol,2001,37:517-529
    [44] Lippemeier S,Frampton D M F,Blackburn S I,et al.Influence of phosphorus limitation ontoxicity and photosynthesis of Alexandrium minutum(Dinophynece)monitored by in-line detectionof variable chlorophyll fluorescence.Phycol,2003,38:320-331
    [45] Mallick N, Mohn F H.2003. Use of chlorophyll fluorescence in metal-stress research: a casestudy with the green microalga Scenedesmus. Ecotoxicology and Environmental Safety,55:64-69.
    [46] Perez P, Estevez-Blanco P, Beiras R. Fernandez E,2006. Effect of copper on thephotochemical efficiency, growth, and chlorophyll a biomass of natural phytoplanktonassemblages. Environmental Toxicology and Chemistry25,137-143
    [47] Sabatini S E, Jua rez A B, Eppis M R, Bianchi L, Luquet C M, Molina M C R.2009.Oxidative stress and antioxidant defenses in two green microalgae exposed to copper.Ecotoxicology and Environmental Safety72:1200-1206.
    [48]刘碧云,周培疆,李佳洁,吴兆录,宋立荣.丙体六六六对斜生栅藻生长及光合色素和膜脂过氧化影响的研究.农业环境科学学报,2006,25(1):204-207.
    [49]梁英,王帅,冯力霞,田传远.2009.重金属胁迫对三角褐指藻生长及叶绿素荧光动力学的影响.海洋环境科学,28(4):374-382.
    [50]于腾.多溴联苯醚对2种海洋饵料微藻的急性毒性效应研究:[硕士学位论文].青岛:中国海洋大学,2011
    [51] Sargian P, Mas S, Pelletier E, Demers S.2007. Multiple stressors on an Antarcticmicroplankton assemblage: water soluble crude oil and enhanced UVBR level at Ushuaia(Argentina). Polar Biology,30:829-841.
    [52] Carrera-Martinez D, Mateos-Sanz A, Lopez-Rodas V, Costas E.2011. Adaptation ofmicroalgae to a gradient of continuous petroleum contamination. Aquatic Toxicology,101:342-350.
    [53] El-Dib M A, Abou-Waly H F, El-Naby A H.2001. Fuel oil effect on the population growthspecies diversity and chlorophyll (a) content of freshwater microalgae. Intemational Journal ofEnvironmental Health Research,11:189-197.
    [54]余叔文编.植物生理与分子生物学,北京:科学出版社,1992:202-214
    [55] Clifford S. Duke1,Brain E. Lapointe, J. Ramus. Effects of light on grouth, RuBPCaseactivity and chemical composition of ULVA species (Chlorophyta).Journal of Phycology.1986:22,(3),362-370
    [56] Ghanshyam D. Heda1, Michael T. Madigan. Thermal properties and oxygenase activity ofribulose-1,5-bisphosphate carboxylase from the thermophilic purple bacterium, Chromatiumtepidum. FEMS Microbiology Letters1988:51,(1),45-50
    [57]郭程瑾,李宾兴,王斌.不同磷效率小麦品种的光合特性及其生理机制.作物学报.2006:32(8),1209-1217
    [58]范琼花,孙万春,李兆君等.硅对短期低温胁迫小麦叶片光合作用及其主要相关酶的影响.植物营养与肥料学报,2009,15(3):544-550
    [59]刘强,李晓红,李蕴等.铝胁迫对油菜叶片光合特性的影响.井冈山学院学报(自然科学).2008,29(2)
    [60]莫亿伟,郭振飞,谢江辉.温度胁迫对柱花草叶绿素荧光参数和光合速率的影响.草业学报,1996,20(1)
    [61] Paseual P, Pedrajas J R,Toribiol F etal.Effect of Food Deprivation on oxidative StressBiomarkers in Fish(Sparusaurata). Chem. Biol. Interaetl.2003,145:191-199
    [62] Oruc E O, Sevgiler Y, UnerN, Tissue-Specific Oxidative Stress Responses in Fish Exposed t o2,4-D and Azinphosmethyl. Comp. Bio-them. Phys. C.2004,137:43-51.
    [63] Box A, Sureda A, Deudero S. Antioxidant response of the bivalve Pinna nobilis colonised byinvasive red macroalgae Lophocladia lallemandii. Comp Biochem Physiol C Toxicol Pharmacol.2009,149(4):456-60.
    [64] Cheung C C,SiuYV H L, Richards on B J et al. Antioxidant Responses to Benzo[a]pyreneand Aroclor1254Exposure in the Green-LippedMussel. Perna V iridis Environl Pollutl,2004,128:393-403.
    [65] Martin-Diaz ML, Blasco J, Sales D et al. Field validation of a battery of biomarkers to assesssediment quality in Spanish ports. Environ Po11ut.2008,151(3):631-40.
    [66] Gary W W, Richard T D G. Prooxidant and antioxidant mechanism in aquatic organisms.Aquatic Toxicol,1991,19(2):137-161.
    [67] Sole M, Bue T A, Ortiz L, et al. Bioaccumulation and biochemical responses in musselsexposed to the water accommodated fraction of the Prestige fuel oil. Scientia Marina,2007,71(2):373-382.
    [68]陈荣,郑微云,郁昂等.柴油水溶性成分对僧帽牡蛎谷胱甘肽硫转移酶活性的影响.厦门大学学报(自然科学版),2005,44,增刊:199-221.
    [69]余群,郑微云,翁妍等.柴油水溶性成分对真鲷幼体抗氧化酶活性的影响.环境科学学报,2000,(增刊):71-75.
    [70] Aksmann A, Tukaj Z. The effect of anthracene and phenanthrene on the growth,photosynthesis, and SOD activity of the green alga Scene desmusarmatus depends on the PARirradiance and CO2level. Archives of Environment al Contamination and Toxicology,2004,47(2):177-184.
    [71] Tintos A, Gest O M, Miguez J M, et al. Naphthalenet reatment alters liver intermediarymetabolism and levels of steroid hormones in plasma of rainbowtrout (On corhynchusmy kiss).Ecotoxicology and Environmental Safety,2007,66(2):139-147.
    [72] Kalaimani N, Chakravarthy N, Shanmugham R et al. Anti-oxidant status in embryonic,post-hatch and larval stages of Asian seabass (Lates calcarifer).Fish Physiol Biochem.2008,34(2):151-8.
    [73] Fattman C L, Schaefer L M, Oury T D.2003. Extracellular superoxide dismutase in biologyand medicine. Free Radical Biology and Medicine,35(3):236-256
    [74] Li M, Hu C W. Zhu Q, Chen L, Kong Z M, Liu Z l.2006. Copper and zinc induction of lipidperoxidation and effects on antioxidant enzyme activities in the microalgae Pavlov a viridis(Prymnesiophyceae). Chemosphere,2006,62:565-572
    [75] Abrahamsson K, Choos K S, Pedersen M, Johansson G; Snoeijs P.2003. Effects oftemperature on the production of hydrogen peroxide and volatile halocarbons by brackish-wateralgae. Phytochemistry,64:725-734
    [76] Singer A C, Thompson I P, Bailey M J.2004. The tritrophic trinity: a source ofpollutant-degrading enzymes and its implications for phytoremediation. Current OpinionMicrobiology,7:239-244.
    [77] Sabatini S E, Jua rez A B, Eppis M R, Bianchi L, Luquet C M, Molina M C R.2009.Oxidative stress and antioxidant defenses in two green microalgae exposed to copper.Ecotoxicology and Environmental Safety72:1200-1206.
    [78] Yang C Y, Liu S J, Zhou S w, Wu H F, Yu J B, Xia C H2011. Allelochemical ethyl2-methylacetoacetate (EMA) induces oxidative damage and antioxidant responses in Phaeodactylumtricornutum. Pesticide Biochemistry and Physiology,100:93-103.
    [79]田丹,赵文,王媛,向蓓.镉胁迫对两种海洋微藻生长和抗氧化系统的影响.大连海洋大学学报,2010.25(5):417-421.
    [80] Cavas L, Yurdakoc K.2005. A comparative study: Assessment of the antioxidant system inthe invasive green alga Caulerpa racemosa and some macrophytes from the Mediterranean.Journal of Experimental Marine Biology and Ecology,321:35-41.
    [82] Annick M,Elisabeth P,Gerard T.Osmotic adjustment,gas exchanges and chlorophyllfluorescence of a bexaploid triticale and its parental species under salt stress.J PlantPhysiol,2004,1619(1):25-33
    [83] Cid A,Herrero C,Torres E,et al.Copper toxicity on the marine microalga phaeodactylumtricornutum:effects on the photosynthesis and related parameters.Aquatic Toxicol,1995,31:165-174
    [84] Ivorra N,Barranguet C,Jonker M,et al.Metal-induced tolerance in the freshwater microbenthicdiatom Gomphonema parvulum.Enviromental Pollution,2002,116:147-157
    [85] Pérezp Fernándeze Beirasr. Fuel toxicity on Isochrysis galbana and a coastal phytoplanktonassemblage: Growth rate vs. variable fluorescence. Ecotoxicology and Environmental Safety,2010,73(3):254-261.
    [86] Guillard R R,Ryther J H.Studies of marine planktonic diatoms.I.Cyclotella nana(Hustedt) andDetonula confervacea(Cleve)Gran.Can J Microbiol,1962,8:229-239
    [87]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. GB17378.4-2007,海洋监测规范(第4部分:海水分析)中国标准出版社,北京.2008
    [88]熊丽,吴振斌,况琪军,等.氯氰菊醋对斜生栅藻的毒性研究.水生生物学报,2002,26(1):66-73.
    [89] OECD.1984.OECD Guideline for Testing of Chemicals No.201.Alga,Growth Inhibition Test.Paris: OECD
    [90]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.GB/T21805-2008,化学品藻类生长抑制试验.中国标准出版社,北京.2008.
    [91] Stebbing A R D. Hormesis—the stimulation of growth by low levels of inhibitons. Science ofthe Total Environment,1982,22:213-234.
    [92]谢永红,苏荣国,张丽笑等.三丁基锡对中国近海常见海洋微藻的毒性效应,生态环境学报,2011,20(6-7):1075-1080.
    [93]何艺,陈欢,杨剑等.荧蒽对披针舟形藻生长及叶绿素荧光特性的影响.环境科学与技术,2011,34(4):10-13.
    [94]田继远,唐学玺,于娟等.蒽胁迫对2种海洋微藻的毒性效应.青岛海洋大学学报,2002,32(6):919-925.
    [95]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(1):51-55.
    [96] Strasser A Srivastava A Tsimilli-Michael M et al. The Fluorescence Transient as a Tool toCharacterize and Screen Photosynthetic Samples[A].//Probing Photosynthesis: Mechanism,Regulation and Adaptation. UK: Taylor&Francis Group,2000:445-483.
    [97]梁英,王帅,冯力霞等.重金属胁迫对纤细角毛藻生长及叶绿素荧光特性的影响.中国海洋大学学报,2008,38(1):59-67
    [98] De Lorenzo M.E., Taylor L.A., Lund S.A., Pennington P.L., Strozier E.D. and Fulton M.H.(2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan inhytoplankton and zooplankton. Arch. Environ. Contam. Toxicol.42:73-81.
    [99] Rioboo C., Gonzalez O., Herrero C. and Cid A.(2002) Physiological response of freshwatermicroalga(Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat. Toxicol.59:225-35.
    [100]孙儒泳,李庆芬,牛翠娟等.基础生态学.北京:高等教育出版社,2002.109-117.
    [101] Lampert W. and Sommer U. Limnoecology. New York: Oxford University Press,2007:89-147
    [102]陈德辉,刘永定,章宗涉等.微囊藻和栅藻共培养试验及其竞争参数的计算.生态学报,1999,19(6):908-910
    [103]毕蓉.多环芳烃—蒽对两种海洋微藻的种群增长和种间竞争影响的研究.[硕士学位论文].青岛:中国海洋大学,2009
    [104]郭羽丰.四列藻在几种环境胁迫下补偿和超补偿作用的研究.[硕士学位论文].广州:暨南大学,2003
    [105]金晓明.米氏冰草繁殖生态学特征及种群竞争机制.[博士学位论文].北京:北京林业大学,2011
    [106] Grossweiner L.I. Photochemistry of proteins: a review. Curr. Eye Res.1984,3:137-144
    [107]于娟,唐学玺,田继远.蒽与UV-B辐射共同作用对2种海洋微藻的毒性效应.中国水产科学,2002,9(2):157-160.
    [108]唐学玺,蔡恒江,张培玉.UV-B辐射增强对亚历山大藻和赤潮异弯藻种群竞争的影响.环境科学学报,2005,25(3):340-345.
    [109]牛明改.水体富营养化藻类资源充争与种群演替规律的初探.[硕士学位论文].苏州:苏州大学,2003.
    [110]于娟.UV-B辐射和多环芳烃-蒽对海洋微藻的单独和共同伤害作用:[硕士学位论文].青岛:青岛海洋大学,2001.
    [111]王悠,杨震,唐学玺等.7种海洋微藻对UV-B辐射的敏感性差异分析.环境科学学报,2002,22(2):225-230.
    [112] Heiskanen A S.Mass encystment and sinking of dinoflagellates during a spring bloom.Marine Biology,1993,116:161-167.
    [113] Dale B. Dinoflagellate resting cysts:“benthic plankton”. In: Fryxell G A.(ed.) Survivalstrategies of the algae. New York:Cambridge University Press,2007.69-136.
    [114]陈炳章,朱明远,王宗灵,等.赤潮藻类的适应与竞争策略.海洋环境科学,2005,24(1):70-75.
    [115]王勇,焦念志.营养盐对浮游植物生长上性效应机制的研究进展.海洋科学,2000,24(10):30-33.
    [116] Tilman D.Resource competition between planktonic algae:An experimental and theoreticalapproach. Ecology,1977,58(2):338-348.
    [117] Smayda T J.Harmful algal blooms:Their ecophysiology and general relevance tophytoplankton blooms in the sea. Limnol Oceanogr,1997,42(5):1137-1153.
    [118] Gilbert P M,Terlizzi D E.Co-occurrence of elevated urea levels and dinoflagellate blooms intemperate estuarine aquaculture ponds. Applied and environmental micro-biology,1999,65:5594-5596.
    [119] Schell D M.Uptake and regeneration of free amino acids in marine waters of southeastAlaska. Limnography and Oceanography,1974,19:260-270.
    [120] Wheeler P A,North B B,Stephens G C.Amino acid uptake by marine phytoplankton.Limnography and Oceanography,1974,19:249-259.
    [121] Palenik B,Morel F M M.Comparison of cell-surface L-amino acid oxidases from severalmarine phytoplankton. Marine ecology progress series,1990,59:195-201.
    [122]周名江,Elbrchter M.两种涡鞭毛藻的周日垂直迁移特性研究.海洋与湖沼,1994,25(2):173-178.
    [123]齐雨藻,黄长江,钟彦,等.甲藻塔玛亚历山大藻昼夜垂直迁移特性的研究.海洋与湖沼,1997,28(5):458-467.
    [124]李信书,唐学玺.亚心形扁藻超氧化物歧化酶活性对镉和铜的应答.海洋湖沼通报,2007,3:75-80.
    [125]于洋,孔繁翔,王美林,等.应用流式细胞技术研究铜对藻细胞膜完整性及脂酶活性的影响.应用与环境生物学报,2006,12(5):706-709.
    [126] Luna CM, GonzalezC A, TroppiV S. Oxidative damage caused by an excess of copper in oatleaves.PlantCellPhsiol,1994,35(1):11-21
    [127]曾韶西,王以柔,刘鸿先.低温胁迫对水稻幼苗抗坏血酸含量的影响.植物生理学报,1987,13(4):365-370
    [128]谢荣,唐学玺,李永祺,等.丙溴磷影响海洋微藻生长机理的初步研究.环境科学学报,2000,20(4):472-477
    [129] Cheung C C C, Zheng G J, Li A M Y, et al. Relationships between tissue concentrations ofpolycycic aromatic hydrocarbons and antioxidative responses of marine mussels,Perna viridis.Aquatic Toxicology,2001,52:189~203
    [130]薛凌展,黄种持,林泽等.铜离子对鳗池优势藻生长及种间竞争关系的影响亚热带资源与环境学报,2010,5(2)53-61
    [131] Bader M R, Ruuska S, Nakano H. Electron flow to oxygen in higher plants and algae: ratesand control of direct photoreduct ion (Mehler reaction) and rubisco oxygenase. BiologicalSciences,2000,1402:1433-1445
    [132]冯志立,冯玉龙,曹坤芳.光强对砂仁叶片光合作用光抑制及热耗散的影响.植物生态学报,2002,26(1):77-82.
    [133]朱新广,张其德,匡廷云. NaCl胁迫对PS II光能利用和耗散的影响.生物物理学报,1999,15(4):787-790
    [134]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,1996,32(1):1-8
    [135]彭长连,林桂珠.拟南介叶黄素缺失突变体叶绿素荧光淬灭的特性.生物化学与生物物理进展,2003.30(2):251-256.
    [136] Stewartr r c and j d bewley lipid peroxidation associated with accelerated aging of soybeanaxes. plant physiol.,1980,65,245-248
    [137] Cavas L.,Yurdakoc K. A. comparative study:Assessment of the antioxidant system intheinvasive green alga Caulerpa racemosa and some macrophytes from the Mediterranean. Journalof Experimental Marine Biology and Ecology,2005,321:35-41.
    [138]郑荣梁,黄中洋.自由基生物学.北京:高等教育出版社,2007:24.
    [139]赵元凤,吕景才,李丹彤等.海洋污染对毛蚶超氧化物歧化酶影响的研究.海洋学报,2003,25(3):77-82.
    [140]田立杰,张瑞安.海洋油污染对海洋生态环境的影响.海洋湖沼通报.1999.(2):65-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700