用户名: 密码: 验证码:
含溴和含磷阻燃剂的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。溴系阻燃剂和磷系阻燃剂是有机阻燃剂的主要品种。
    本文主要合成了两种溴系阻燃剂:高效低毒阻燃剂十溴二苯乙烷和2,3-二溴丁二酸酐,两种磷系阻燃剂:阻燃增塑剂IPP和膨胀型阻燃剂BPMPA,并对它们的应用进行了初步探讨。
    合成的第一个溴系阻燃剂为新型高效低毒阻燃剂十溴二苯乙烷。十溴二苯醚是用量最大的溴系阻燃剂,但“dioxin"问题使得其应用倍受非议。十溴二苯乙烷具有阻燃效率高、原料价廉易得、燃烧时不产生“dioxin"等优点,是十溴二苯醚的理想取代品,可广泛应用于聚烯烃、工程塑料、电线电缆及橡胶中。
    首先对其关键性中间体1,2-二苯乙烷的合成进行了研究。从易于工业化的角度,选择了两种方法合成1,2-二苯乙烷:1、烷基化方法以苯和二氯乙烷为原料,对该合成的工艺条件进行了优化选择,并对苯和催化剂的回收利用问题进行了讨论。2、偶联法以苄基氯和铁为原料,采用正交实验的方法对工艺条件进行了优化并比较了各种影响因素的影响大小;对后处理进行了改进,采用加酸溶解铁粉后趁热分液、甲醇重结晶的方法,具有产品收率高、设备投资小、操作简单、步骤少、能耗低、产品质量较高等优点。3、对两种合成方法的比较表明:烷基化方法原料成本低,但偶联法在环保、操作及设备投资等方面具有优势。
    对十溴二苯乙烷的合成工艺条件进行了优化选择,并首先解决了二苯乙烷的液态连续滴加问题,最后采用微碱性条件下研磨、高温下烘焙的方法提高产品质量,产品质量接近美国同种产品水平。
    合成的第二个溴系阻燃剂是新型反应型阻燃剂2,3-二溴丁二酸酐。与添加型阻燃剂相比,反应型阻燃剂不仅可使材料达到永久性阻燃,而且基本不影响其优异性能。在酸(酐)类反应型阻燃剂中四溴苯酐的用量最大,但其价格昂贵;2,3-二溴丁二酸酐的含溴量高、阻燃性能好、原料价廉易得,目前文献鲜有报道,更无商品出售。对2,3-二溴丁二酸酐的合成采用直接溴化加成的方法,与取代法相比,溴素利用率高、设备腐蚀小;选择了无毒无污染的溶剂,无需催化剂;粗产品的
    
    提纯采用蒸馏重结晶的方法,可得到纯度较高的产品。以上合成及提纯方法未见报道。
    合成的第一个磷系阻燃剂为阻燃增塑剂IPP(异丙苯基苯基磷酸酯)。阻燃增塑剂因具有阻燃和增塑的双重功能而受到青睐,磷酸三甲苯酯(TCP)曾是用量最大的一种,但其毒性大、生产成本高。IPP性能优异,且生产成本低,又无毒无味,可应用于聚烯烃、橡胶、塑料运输带、电线电缆、人造革等。该反应分两部分:烷基化反应中采用对羟基苯磺酸为催化剂,并对工艺条件进行了优化;酯化反应的后处理过程中,采用加入定量水后过滤的方法除去AlCl3,与酸洗法相比,具有工艺简单、污染少、产品质量高等特点;产品质量经检验完全符合中华人民共和国HG/T 2425-93优等品的标准。该烷基化催化剂及酯化后处理方法未见文献报道。
    合成的第二个磷系阻燃剂为膨胀型阻燃剂环状磷酸酯N,N'-双(2-氧代-5,5-二甲基-1,3,2-二氧磷杂环己基-2)间苯二胺(BPMPA)。 膨胀型阻燃剂被认为是未来阻燃剂的发展方向之一,它无需协效剂,可单独使用;燃烧时不会产生大量的烟尘及有毒气体,符合绿色环保的要求;不产生融滴,这一点对于聚烯烃的阻燃尤为重要。对合成BPMPA的工艺进行了探讨,并经红外和元素分析对产品结构进行了鉴定。
    对上述合成的阻燃剂的应用进行了初步探讨。对它们的热分析表明,十溴二苯乙烷、阻燃增塑剂IPP及BPMPA均具有很好的热稳定性,其热分解温度与多数聚合物的热氧降解温区重叠,具有较好的阻燃配伍性能。
    将它们用于软PVC、不饱和聚酯树脂等中的阻燃,实验结果表明:十溴二苯乙烷在软PVC中具有优异的阻燃效能,其最佳锑溴比为1/3,最佳溴含量为13.7%;在PS中也具有较好的阻燃性能,其最佳锑溴比为1/6;在不饱和聚酯树脂中,有一定的阻燃作用,当三锑溴比为1/6时,有最佳的阻燃效果。阻燃增塑剂IPP在软PVC中,既具有较好的阻燃性,同时还对材料有良好的增塑性,具有阻燃和增塑的双重功能。膨胀型阻燃剂BPMPA具有较高的成炭率,对软PVC也具有良好的阻燃作用。
Flame retardant (FR) is a kind of additive which can enhance the material's flame resistance. Among the organic flame retardants, brominated and phosphorus- containing flame retardants are the most important. Although "dioxin" problem of polybromodiphenyl ethers made it be challenged, brominated flame retardant will keep its leading position in FRs.
    In this dissertation, two brominated FRs and two phosphorous-containing FRs were prepared and their preliminary applications in polymers were also discussed.
    The first brominated FR was a novel, high efficient and low toxic flame retardant decabromo-diphenyl ethane (DBDPE), the ideal substitution of decabromo-diphenyl ether. DBDPE has a high bromine content, with low toxicity when burns. It can be used widely in polyolefin, engineering plastics, electric wire and cable, rubber and so on.
    First of all, the key intermediate product of DBDPE-- diphenylethane (DPE) was studied. In an easy-to-industrialized way, two methods were choosed. First was alkylation reaction, this method used benzene and dichloroethane as raw materials. The optimum processing conditions were determined, furthermore, the recycle of benzene and catalyze were also discussed. Second was coupling reaction, using benzyl chloride and powdered iron as raw materials. After an orthogonal experiment, the process optimization was established. In addition, the effects of the influencing factors were compared. During the post-treatment, the redundant iron was resolved by acid, then after separation, the product was directly recrystallized. This process has many advantages such as high productivity, low equipment investment, simple operation and low energy consumption etc. The comparison between these methods indicated that: the former alkylation's has superiorities in feed stock cost, but the latter has vantages in environmental protection, operation and equipment investment.
    
    
    Subsequently, the FR DBDPE was synthesized. The process was optimized. Firstly solved problem was how to dropwise continuously in liquid state. Secondly was to upraise the quality of products. After a long-term grind and baking under high temperature, the product reached high quality.
    The second synthesized brominated FR was a new reactive-type flame retardant 2,3-Dibromosuccinic Anhydride. Contrast to the additive FR, reactive FRs seldom interfere with the material's excellent performance, and bestow the material permanent flame retardancy at the same time. By a direct addition reaction, bromine was utilized utterly, without corrosion to the equipments. The solvent selected has no toxicity, no pollution and easy to recycled, while the reaction needs no catalyst. To purify the rough product, a new method was established, we called it distillatory recrystallization.
    The first phosphorus-containing FR synthesized was flame retarding plasticizer isopropylphenyldiphenyl phosphate ester (IPP). Flame retarding plasticizer has double functions: good flame retardancy and plasticity as well, as is appreciated by many consumers. The most popular flame retarding plasticizer was trimethylphenyl phosphate ester (TCP) once, but it is toxic and costs high. IPP has low toxicity and cost, with outstanding performance as TCP, which makes it the substitution of TCP. IPP was synthesized from POCl3, phenol and propene etc. The alkylation catalyst phenol sulfonic acid was selected. Meanwhile, the optimum alkylation and esterification reaction conditions were determined. During the after-treatment process, the esterification catalyst AlCl3 was removed with a physical and chemical combined process. This process has advantages as simple operation, low pollution and high quality of products. Eventually, the quality inspection manifested that the product coincided the classy of the national standard.
    The last FR was an intumescent flame retardant (IFR), N, N'-di (2-oxo-5, 5-dimethyl -1, 3, 2-dioxy-phosphacyclohexane)-2, 2'-m-phenylene diamine (BPMPA).
    
    IFR was considered the develop direction of the FRs. It can be used alone, nee
引文
1 欧育湘,陈宇等编著.阻燃高分子材料[M].北京:化学工业出版社,2001.
    2 国家自然科学基金委员会. 高分子材料科学[M]. 北京:科学出版社,1994.
    3 欧育湘编著.阻燃剂-制造、性能及应用[M].北京:兵器工业出版社,1997.
    4 欧育湘编著.实用阻燃技术[M]. 北京:化学工业出版社,2002.
    5 Grand A F,Wikie C A. Fire Retardancy of Polymeric Materials[M]. New York: Marcel Dekker, Inc.,2000
    6 王克智. 塑料助剂的开发及应用-阻燃剂[J]. 塑料科技,1996(6):46-55.
    7 李 伟,等.聚丙烯的膨胀阻燃剂[J].化学通报,1995(10):30-34,64.
    8 吴金坤.硅酮系阻燃剂及其阻燃技术[J].化工新型材料,2000,28(9):12-15.
    9 Muenzenberger, Herbert. Fireproof Silicone Sealant[P]. DE 19,629,809, 1996-07-24.
    10 欧育湘.阻燃硅氧聚氨酯[J].塑料科技,1999(6) .
    11 欧育湘,李 昕.本质阻燃高聚物[J].高分子材料科学与工程2000,16(6):1-4.
    12 汪志勇,胡源,等. 阻燃剂科学进展[J]. 精细化工,1996,13(2):31-35.
    13 Flame retardants: some new developments[J]. Plastics Additives & Compounding, May 2000:24-27.
    14 Flame retardants: current trends in North America[J]. Plastics Additives & Compounding, April 2001:22-26.
    15 秦华军,张立新. 阻燃剂的现状和展望[J]. 华北工学院学报,2001,22(2):112-115.
    16 蔡永源,刘静娴编著. 高分子材料阻燃技术手册[M]. 北京:化学工业出版社,1993.
    17 欧育湘.有机阻燃剂最新进展[J]. 现代化工,1997(4):9-12.
    18 白景瑞,腾进. 阻燃剂的应用与研究进展[J]. 宇航材料工艺,2001(2):10-12,55.
    19 林苗,郑利民. 硼系阻燃剂的发展现状[J]. 化工新型材料,2000, 28(7):8-9.
    20 Marco Zanetti, Giovanni Camino, etc.. Fire Retardant Halogen-Antimony-Clay Synergism in Polypropylene Layered Silicate Nanocomposites[J]. Chem. Mater. 2002, 14:189-193.
    21 唐谟堂,阳卫军. 氯氧化锑阻燃剂研究进展[J]. 现代化工,2000,20(6):15-19.
    22 沈淦清,康志华,刘学. 三氧化二锑阻燃剂的替代品[J]. 印染,2001(7):12-15.
    23 权 英,等.一类新型的无机聚合物--聚磷腈[J].华北工学院学报,1998,19(1):45-48.
    24 李 振,等. 聚磷腈高分子[J].功能高分子学报,2000,13(2):240-246.
    25 贡长生.积极开发磷-氮系阻燃剂[J].现代化工,1996(2):14-17.
    26 欧育湘. 膨胀型石墨及其协效剂阻燃的聚丙烯[J]. 塑料科技,1999(3):13-14.
    27 欧育湘,陈宇. 无机阻燃剂的最新进展[J]. 现代化工,1996(1):15-18.
    28 胡源,宋磊. 纳米技术在阻燃材料中的应用[J]. 火灾科学,2001,10(1):49-52.
    29 Gunter Beyer. Nanocomposites- a new concept for flame retardant polymers[J]. Polymer News, 26(11), 370-378.
    30 D. Price edited. Fire Resistant Materials[M]. Cambridge: Woodhead Publishing, Ltd., 2000.
    31 徐加艳,胡源,等. 聚丙烯酰胺/氧化石墨纳米复合材料的制备及其表征[J]. 火灾科学,2001,10(2):92-94.
    
    
    32 叶蕊主编. 实用塑料加工技术[M]. 北京:金盾出版社,2000.
    33 李昂. 橡胶阻燃及其阻燃剂[J]. 特种橡胶制品,2002,23(3):25-30.
    34 程志凌,陈文捷. 塑料阻燃剂技术的进展[J]. 齐鲁石油化工,2002,30(1):56-58.
    35 史翎,段雪. 阻燃剂的发展及其在塑料中的应用[J]. 塑料,2002,31(3):11-15.
    36 Lyons J W.The chemistry and uses of fire retardants[M]. New York: wiley-interscience.1970:22.
    37 Yang C P, Lee T M.. Synthesis of new flame-retarding epoxy resin based on 3',5',3'',5''-tetrabromophenolphenolphthalein[J]. J.Appl.Poly.Sci., 1987, 34(18): 2733
    38 Green J, Chung J.. Flame-retarding poly( butylene tereththalate)- properties, processing characteristics, and rheology[J]. J. Fire Sci., 1990, 8(24): 254
    39 M.P. Luda, L. Trossarelli. Mechanism of condensed phase action in flame retardants. Synergistic systems based on halogen-metal compounds[J]. Polymer Degradation and Stability, 2000 (68) , 67-74.
    40 马志领,赵文革,等. 磷氮协同阻燃作用机理研究[J]. 河北大学学报(自然科学版), 2000,20(4):400-404.
    41 丁涛,刘治国,等. 一种新型含磷-溴-氮阻燃剂的合成[J]. 化学研究,2001,12(2):33-36.
    42 刘治国,丁涛,等. 含磷-溴-氮阻燃剂的合成与应用[J]. 现代化工,21(12):38-40.
    43 刘治国,丁涛,等. 含溴芳基磷酸三聚氰胺盐的合成及应用[J]. 河南大学学报(自然科学版),2002,32(1):33-36.
    44 Menachem Lewin. Synergism and catalysis in Flame retardancy of Polymers[J]. Polym. Adv. Technol, 2001(12): 215-222.
    45 Flame retardants: trends and new developments[J]. Plastics Additives and Compounding, April 2001.
    46 梁诚. 我国阻燃剂生产现状与发展趋势[J]. 精细石油化工进展,2001,2(2):38-41.
    47 张志新. 阻燃剂[J]. 专家谈价格,2000(3):55.
    48 高伟. 从消防安全的现实来看制定阻燃制品通用技术条件国家标准的必要性[J]. 阻燃材料与技术,2002(4):3-6,15.
    49 高良. 溴及溴系阻燃剂[J]. 海湖盐与化工,28(5):7-10.
    50 阳范文,赵耀明. 阻燃剂研究新进展[J]. 合成材料老化与应用,2000(3):18-21.
    51 李颖,王建祺. 阻燃聚酰胺的发展现状[J]. 高分子材料科学与工程,1999,15(1):18-28.
    52 张志德,陈玉琴,张存兰. 溴系阻燃剂的国内外新进展[J]. 精细石油化工,1999(5):59-63. 53 陈玉琴,张志德,等. 含溴阻燃剂的现状及发展前景[J]. 化学工程师,1998(2):33-35.
    54 李志娟,李青山,杨德治. 走向21世纪的新型阻燃剂[J]. 化学工程师,2001(4):34-36.
    55 徐加艳,胡源,等. 阻燃材料工业中的绿色化学与技术[J]. 高分子材料科学与工程, 2002,18(1):17-21.
    56 Joseph Green. A review of phosphorus-containing flame retardant[J]. Journal of Fire Science, 1992, vol.10, 471-487.
    57 Edward D. Weil, Sergei V. Levchik, etc.. A Survey of Recent Progress in Phosphorus-Based
    
    Flame Retardants and Some Mode of Action Studies[J]. Phosphorus, Sulfur and Silicon, 1999, Vol 144-146, pp, 17-20.
    58 贺峥杰,陈文彬,唐除痴. 有机磷阻燃剂研究进展[J]. 化学工业与工程,1997,14(3):43-54.
    59 鹿海军,马晓燕,颜红侠. 磷系阻燃剂研究新进展[J]. 化工新型材料,2001,29(12):7-10.
    60 欧育湘. 新型磷-氮系膨胀型阻燃剂的性能、合成及应用[J]. 江苏化工,1998,26(3):6-11.
    61 贡长生,朱丽君. 磷系阻燃剂的合成和应用[J]. 化工技术经济,2002(2):9-15.
    62 肖新颜,杨卓如,陈焕钦. 膨胀型阻燃剂(膨胀阻燃体系)研究进展[J]. 化学工业与工程,2000,17(6):369-371.
    63 Cathrine Thomsen, et al.. Brominated flame retardants in archived serum sample from Norway: A study on temporal trends and the role of age[J]. Environ. Sci. Technol. 2002, 36,1414-1418.
    64 G. Soderstrom, S. Marklund. PBCDD and PBCDF from incineration of waste-containing brominated flame retardants[J]. Environ. Sci. Technol. 2002, 36,1959-1964.
    65 A. Sjodin, D. G. Patterson JR, Ake Bergman. Brominated flame retardants in serum from U.S. blood donors[J]. Environ. Sci. Technol. 2001, 35,3830-3833.
    66 周政懋. 我国阻燃技术发展新动向[J]. 阻燃材料与技术,2002(5):1,13.
    67 冯柏成,赵志超,张田林. 1,2-二苯乙烷合成研究[J]. 山东化工,1997(1):45-46.
    68 沈晓东,丁先锋,王建新. 新型的聚合物改性剂[J]. 江南学院学报,1999,14(3):85-88.
    69 祁争健,周芩楠,等. 新型热敏纸增感剂研究[J]. 造纸化学品,1999(3):2-4.
    70 张志德,陈玉琴,等. 1,2-二苯乙烷合成研究[J]. 精细石油化工,1998(4):15-17.
    71 刘健,罗志强,等. 1,2-二苯乙烷的新合成法[J]. 应用化学,2002,19(5):489-490.
    72 陈玉琴,王洪鉴. 苄基氯法合成1,2-二苯乙烷[J]. 化学工程师,1999(3):6-8.
    73 陈洁,宋启泽编著. 有机波谱分析[M]. 北京:北京理工大学出版社,1996.
    74 唐恢同编著. 有机化合物的光谱鉴定[M]. 北京:北京大学出版社,1992.
    75 宁永成编著. 有机化合物的结构鉴定与有机波谱学[M].北京:清华大学出版社,1993.
    76 张田林,陶英丕. 1,2-二(五溴苯基)乙烷的合成及阻燃性能研究[J]. 山东化工,1998(1):20-21.
    77 US 5,324,874
    78 魏文德 编著. 有机化工大全(第二卷)[M]. 北京:化学工业出版社,1994.
    79 王文举,朱永国, 于鲁汕,等.三芳基磷酸酯阻燃剂的合成[J].化学世界,1999(3):132-134.
    80 江国顺,樊真,尤裕如. 溴代芳基磷酸酯-新型多功能助剂的合成及应用[J]. 塑料工业,1997(5):106-107.
    81 高富业,欧育湘,田雨晴. 磷-氮系膨胀型阻燃剂1,2-(二氧代-5,5-二甲基-1,3-二氧-2-磷杂环己基-2-亚氨基)乙烷及其同系物的合成[J]. 化学世界,1999(7):353-356.
    82 李巧玲,欧育湘. 新型磷-氮阻燃剂N,N'-双(2-氧-5,5-二甲基-1,3,2-二氧磷杂环己烷)-2,2'-间苯二胺的合成研究[J]. 化学世界,1999(5):239-241.
    83 杨景兴,陆光月,段玉丰. 用于聚苯乙烯材料的一种新型阻燃体系[J]. 塑料工业,2002,30(1):40-41.
    
    
    84 李永华,曾荣幸. 苯乙烯系阻燃塑料合金的研究进展[J]. 化工进展,2002,21(11):809-813.
    85 张化廷,杨兰. 溴-锑-水合硼酸锌多元复配阻燃剂的阻燃效应[J]. 矿业安全与环保,2000,27(6):46-47.
    86 杨景兴,陆光月,段玉丰. 用于聚苯乙烯材料的一种新型阻燃体系[J]. 塑料工业,2002,30(1):40-40.
    87 欧育湘,李建军. 阻燃高冲击度强度聚苯乙烯[J]. 塑料科技,1994(5):1-3.
    88 欧育湘,陈宇. 阻燃聚烯烃[J]. 塑料科技,1994(4):17-21.
    89 汪根林,江平开,朱子康. 聚乙烯的阻燃研究[J]. 中国塑料,2000,14(10):21-26.
    90 董秀洁,周光晖. 抗静电阻燃材料ABS、PP、PE的研究与开发[J]. 印染助剂,2002,19(1):48-51.
    91 王旭,黄锐. ABS/PVC/阻燃剂体系的研究[J]. 塑料工业,1996(5):86-88,96.
    92 皮红,郭少云. PVC阻燃抑烟研究进展[J]. 聚氯乙烯,2001(4):28-33.
    93 董世德. ZS-2阻燃不饱和聚酯树脂的制备[J]. 现代化工,1995(6):25-27.
    94 周菊兴编著. 合成树脂与塑料工艺[M]. 北京:化学工业出版社,2000.
    95 欧育湘,连旦军. 阻燃不饱和聚酯[J]. 塑料科技,1997(5):25-30.
    96 欧育湘,高富业,等. 阻燃软聚氯乙烯[J]. 塑料科技,1991(3):1-7.
    97 张宏伟,陈志泉. 聚丙烯膨胀型无卤阻燃体系中协同效应的研究[J]. 塑料工业,1999,27(5):26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700