喹赛多在鲤体内的药物动力学及残留的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以反相高效液相色谱(RP-HPLC)法为定性和定量手段,研究喹噁啉类新药喹赛多在鲤(Cyprinus carpio L.)体内的单剂量静脉注射和口灌给药后的药物动力学过程,以及药饲后组织中残留消除规律。静脉注射和口灌给药后,分别在0.08~48h内定时从鲤静脉采血,迅速分离血浆,于-20℃避光保存。血浆样品于测定前以甲醇去蛋白处理,取上清液作HPLC分析测定。实验数据处理采用Millemnium~(32)分析系统,选用ODS-C_(1(?))分析柱(150×4.6mm,5μm),以甲醇∶水(15∶85/V∶V)为流动相,流速0.9mL/min,检测波长305nm。喹赛多(脱二氧喹赛多)对照品的最低检测限(LOD)0.005(0.01)μg/mL,最低可定量限(LOQ)0.01(0.02)μg/mL,浓度在0.01~1.0(0.02~2.0)μg/mL时与峰面积呈良好线性关系,线性方程为C=6×10~(-6)A-0.0019,r=0.9996(C=11.78×10~(-6)A+0.0119,r=0.9989)。血浆中喹赛多(脱二氧喹赛多)浓度在0.015、0.125、1.0μg/mL(0.03、0.25、2.0μg/mL)时,日内、日间变异系数分别<5%(10%)和<10%(15%),平均回收率>85%(80.0%)。静注给药后血药浓度-时间数据符合无吸收三室开放模型,药物动力学方程为C=11.4201e~(-8.0650t)+0.4926e~(-0.8327t)+0.0736e~(-0.0548t)。其主要药动学参数为:吸收速率常数(K_α)8.065h~(-1),吸收半衰期(T_(1/2α))0.086h,中央室表观分布容积(V_c)166.86mL/kg wb;消除速率常数(K_β)0.8327h~(-1),半衰期(T_(1/2β))0.832h;残留后相消除速率常数(K_γ)0.0548h~(-1),药时曲线下面积(AUC)3.35(μg/mL)h。口灌给药后血药浓度-时间数据符合一级吸收一室开放模型,药物动力学方程为C=0.1371×(e~(-0.0823t)-e~(-0.3099t))。其主要药动学参数为:一级吸收速率常数(K_α)0.3099h~(-1),吸收半衰期(T_((?)α))2.24h;一级消除速率常数(K_((?)))0.0823h~(-1),消除半衰期(T_(1/2α))8.42h,表观清除率(CL_b)0.597L/h。药物在血液中达峰时间(T_((?)))5.83h,最大血药浓度(C_((?)))0.0623μg/mL。
     以含喹赛多100mg/kg剂量,连续药饲投喂鲤12w,检测其在组织中的残留。于末次药饲投喂后0(当天)、2、4、5、6、8、10、15、20、25、30d随机取样五尾鱼,收集肝脏、肌肉和皮,-20℃避光保存。测定时,室温下解冻,每个样品以不同的方法预处理后进行分析测定:一份样品以常规方法预处理,经匀浆、提取、脱脂后作HPLC检测;另一份样品以碱水解、SPE柱净化后再作HPLC检测。常规方法预处理样品,同时测定喹赛多、喹噁啉-2-羧酸、脱二氧喹赛多三种化合物。碱水解方法预处理样品,测定喹噁啉-2-羧酸,该处理可将结合及游离态的喹噁啉-2-羧
    
    哇赛多在鲤体内的药物动力学及残留的研究
    酸全部从组织中释放出来,并作为靶代谢物进行检测,以了解鲤的肌肉、皮以及肝
    脏组织中药物残留情况,并据此定出休药期。常规方法预处理中哇赛多、哇嚷琳一2-
    梭酸、脱二氧喳赛多三种化合物的最低检测限分别为0.005、0.01、0.01陀/g,最
    低可信定量限0.01、0.02、0.02陀/g,日内、日间变异系数分别<10%和<15%
     (n=5),回收率在70~90%之间。肌肉中喳嗯琳一2一梭酸的含量最高,消除最慢。水
    解预处理方法中喳嗯琳一2一梭酸在鲤组织中的最低检测限为0.01件g/g,最低可信定
    量限0.02陀/g。组织中喳嗯琳一2一梭酸的平均回收率为81.8士2.1%,日内及日间
    变异系数分别<5%和<10%(n=5)。
     实验结果显示:哇赛多在鲤体内的药物动力学及残留的研究方法准确、可靠。
    哇赛多在鲤体内具有分布迅速、广泛,而消除缓慢的药物动力学特点。与哺乳动物
    相比具有较长的消除半衰期,但是生物利用度较低,仅有1.3%。残留消除实验中,
    肝脏中喳嗯琳一2一梭酸含量最高,消除最慢,因而可以认为肝脏为残留消除的靶组
    织,喳嗯琳一2一梭酸为靶化合物并存在体内的结合。喳嚷琳一2一梭酸在第巧d仍有检
    出,但己低于0.03陀/g。
     根据美国食品与药品管理局(阳A)的最新标准:喳唔琳一2一梭酸的残留限量
    (MRLs)为0.3件g/g,鲤药饲喂养12w后停药当天(5h)哇嘻琳一2一梭酸的浓度
    值就仅为0.14士0.04陀/g,那么可以确定喳赛多在鲤体内为零休药期。
The pharmacokinetics and residue depletion of cyadox were studied in carp (Cyprinus carpio L.). Cyadox levels were determined in plasma after single intravenous (2 mg/kg bw) and oral (40 mg/kg bw) administration. The residue depletion levels of cyadox and its main metabolite (the 100 mg/kg feed additives level, the treatment period for 12w) in the several tissues were also observed in this paper. Plasma samples were collected from tail-vein at every different interval after two administration. Cyadox and desoxycyadox in the plasma was extracted and de-proteined by methanol. The contents were determined by reversed-phase high performance liquid chromatography (HPLC). The chromatography separation of the plasma samples were achievd on Hypersil-C18 column (5 μm, 150×4.6 mm) with Millemnium32 HPLC instrument using a degassed mixture methanol: water(15: 85/v: v) as the mobile phase, the flow-rate is 0.9 mL/min, the wavelength is 305 nm. The limit of detection(LOD) and the limit of quanthatio
    n(LOQ) of the cyadox a
    nd desoxycyadox standard solution is respectively 0.005μg/mL, 0.01 μg/mL and 0.01μg/mL. 0.02μg/mL. The standard calibration curve of drugs solution were linear in the range of 0.01-1.0ng/mL. The linear equation of cyadox and deosxycyadox were respectively C=6.0×10-6A-0.0019(r=0.9996) and C=11.78×10-6A+0.0119 (r=0.9989). When the plasma concentration of cyadox was at 0.015, 0.125. 1.0μg/mL, the intra-day and inter-day coefficient of variance was respectively less than 5% and 10%, the average recovery was over 85.9%. Whereas, the plasma concentration of desoxycyadox was at 0.03, 0.25. 2.0 μg/mL, the intra-day and niter-day coefficient of variance was respectively less than 10% and 15%, the average recovery was over 79.2%. The single dose intravemous and oral administrations concentration-time data were analyzed by pharmacokinetic compartment analysis soft (PKANALYST). The procession of cyadox after intravenous administration was fit the three-compartment open model pharmacoki
    ne
    tic equation:
    C=11.4201e-8.0650t+0.4926e-0.327t + 0.0736V0.0548t. The main pharmacokinetic parameters of cyadox in carp were as follows: AUC 3 .3503 μg h/mL, Vc 166.8574 mL/kg wb, CL 11.9393L/h,T1/2a. 0.086 h,T1/2beta 0.832 h.T1/2gamma, 12.64 h. The procession of cyadox after oral administration was fit the one-compartment open model, pharmacokinetic equaion:
    
    
    
    C=0.1371×(e-0.0823t-e-0.3099t). The main pharmacokinetic parameters of cyadox in carp were as follows: Cmax was 0.0623 ug/mL at 5.83 h post-injection. The Vj area was 7.2506 mL/kgbw.
    Moreover, according to the pharmacokinetics results, the feed additives was supplied and given the same diet supplemented with 100 mg kg-1 levels cyadox, the treatment period with feed additives 12 w consecutive days. Then, the tissue samples (muscle, skin and liver; 5 animals/time-point) were collected at every different interval (0, 2, 4, 5, 6, 8, 10, 15, 20, 25, 30 d) after administration. The samples were stored at-20℃ until analysis. When determination, the samples were dissolved under physical temperature and were used to analysis with two routes: one part-samples was treated with regular (method 1); other part-samples was dealed with hydrolysis (method 2). On the method 1, cyadox, desoxycyadox, QCA (floating) of the samples was detected simultaneously in one HPLC system. On the method 2, we considered the tissues occured to the bounding residue, therefore, the operation acted with hydrolysis method. By this method, the bounding and floating status of QCA were all released and detected as the final ta
    r
    
    get metabolite. According to the condition, we can gain the drug withdrawal period. In method 1, the LOD and LOQ of cyadox, desoxycyadox, QCA (floating) were respectively 0.005, 0.01, 0.01μg/mL and 0.01, 0.02, 0.02μg/mL. The average recovery was over 69.2 ~ 86.3 % at the concentration lever of 0.02, 0.04, 0.08, 0.16 ug/mL and the intra-day and inter-day coefficient of variance were respectively less than 10 % and 15
引文
1.王群,孙修涛.土霉素在黑鲷体内的药物代谢动力学研究.海洋水产研究.2001,22(1):42-47
    2.王立.色谱分析样品处理.北京:化学工业出版社,2000
    3.于世林.高效液相色谱方法及应用.北京:北京化学工业出版社,2000
    4.冯淇辉.兽医药物代谢动力学.北京:科学出版社,1987
    5.刘昌孝.药物代谢动力学.湖南科学技术出版社,1980年
    6.刘昌孝.我国药代动力学最近进展.中国药学杂志,1992,12(1):707-709
    7.刘茂春,蔡中华.链霉素在鲤鱼体内的血药浓度测定.鱼病学研究论文集(第二辑).北京:海洋出版社,1995
    8.农业部.关于发布《动物性食品中兽药最高残留限量》的通知[2].农牧发[1997]17号文件
    9.孙毓庆.现代色谱法及其在医药中的应用.北京:人民卫生出版社,1998
    10.孙毓庆.分析化学(第三版上册).北京:人民卫生出版社,1986
    11.朱秋华,钱国英.三种药物在甲鱼内的残留研究.中国水产科学,2001,8(3):50-53
    12.朱家璧(译).药物动力学.北京:科学出版社,1987年
    13.朱蓓蕾.动物源性食品残留.上海:上海科技出版社,1993
    14.沈建忠.动物性食品的安全性及其监控.中国兽医杂志,2001,37(1):38-39
    15.汤仲明.蛋白多肽类药物药代动力学方法学和设计.国内外药物代谢与药代动力学研究新进展研讨会资料汇编,1998
    16.陈会波,翁艳玲,郭少忠.鳗康素的药代动力学研究.鱼病学研究论文集(第二辑).北京:海洋出版社,1995.
    17.陈杖榴.兽医药理学研究进展.药理学研究进展.北京:人民卫生出版社,2001
    18.陈红,陈杖榴.喹乙醇在动物可食性组织中残留的高效夜相色谱检测方法.兽医药理毒理学会第七次学术讨论会,北京,2000
    19.张雅斌,张乍新.不同给药方式鲤对若氟沙星的药代动力学研究.水产学报,2000,24(6):559-563
    20.张剑勇.兽药残留监测与动物食品安全卫生.中国兽药杂志,2001,35(4):60-61
    21.张晓斌,云自厚.液相色谱检测方法.北京:北京化学工业出版社.2000
    2Z.余晓捷.药名查对手册(标准).北京:人民军医出版社,2002年
    23.宋振玉.药物代谢研究-意义、方法、应用.北京:人民卫生出版社,1990
    24.宋祖才.动物源性食品中兽药残留监控的意义.饲料世界,2001,88(1):27-28
    25.李俊琐,邱明月,王超.兽药残留分析.上海:上海科学技术出版社,2002
    26.李发美.医药高效液相色谱.北京:人民卫生出版社,1999年
    27.李健.王群.噁喹酸对水生生物细菌病的防治效果几残留研究.中国水产科学,2001,8
    
    (3):45-49
    28.李美同,郭文林,仲峰.土霉素在鳗鲡组织中的消除规律.水产学报,1997,21(1):39-43
    29.李新,曾苏.药物Ⅱ代谢反应酶系及其进展.药理学研究进展,北京:人民卫生出版社,2002
    30.邱银生,袁宗辉,殷居易.猪食用组织中喹噁啉-2-羧酸的高效液相色谱检测方法.中国兽医学报,2003,23(3):286~288
    31.钟大放.药物代谢.北京:中国医药出版社,1996
    32.钟大放.对我国药物代谢与药物与药物动力学基础研究发展战略的思考.药学科学前沿与发展方向.北京:科学技术出版社
    33.袁宗辉.饲料药物学.北京:中国农业出版社,2001
    34.杨先乐.中华绒螫蟹学淋巴内盐酸环丙沙星的RP-HPLC法的建立.水产学报,2001,25(4):348-354
    35.赵克健.化学药品药名手册.天津:天津科学技术出版社,2000
    36.钱毅,赵国君(译).兽药残留分析方法.上海科学普及出版社,1992年
    37.夏文江.概述兽医药物动力学和药物代谢试验方法.中国兽医科技,1991,21(11):11-23
    38.曾经泽.生物药物分析(第二版).北京:科学出版社,1998年
    39.曾子建,李逐波.喹乙醇在鲤鱼体内的药代动力学研究.四川农业大学学报,1993,11(1)
    40.曾振灵,董漓波,陈杖榴.喹乙醇在鸡组织的消除及残留研究.畜牧兽医学报,1995,26(4):327-333
    41.班付国.动物源性食品的安全性及药物残留监控现状.河南畜牧兽医,2001,1(1):5-8
    42.蔡中华,刘茂春.庆大霉素在鲤鱼体内的血药浓度测定.鱼病学研究论文集(第二辑).北京:海洋出版社,1995
    43.谢麟.喹乙醇的安全性毒理学评价与合理应用.兽药与饲料添加剂,1999(4):25-27
    44. Abedini O S, Namdari R and Law F C P. Comparative pharmacokinetics and bioavailability of oxytetracycline in rainbow trout and chinook salmon. Aquaculture, 1998, 162(1-2): 23-32
    45. Aerts M M, Beek W M, Keukcns H J. Brinkman UA.Determination of residues of carbadox and some of its metabolites in swine tissues by high-performance liquid chromatography using on line pre column enrichment and post column derivatization with UV-VIS detection. J Chromatogr, 1988, 456(1): 105-119
    46. Albrektsen S, Sandnes K, Glette J and Waagboe R. Influence of dietary vitamin B sub(6) on tissue vitamin B sub(6) contents and immunity in Atlantic salmon, Salmo salar L. Aquacult. Res., 1995, 26(5): 331-339
    47. Alex van der L A, Jan H and Dick T H M. Estimating biotransformation rote constants of organic chemicals from modeled and measured elimination rates. Chcmosphere, 2001, 44(3): 423-435
    48. Andrew M V and William L H. Methyltestosterone pharmacolinetics and oral
    
    bioavailability in rainbow trout (Oncorhynchus mykiss).Aquatic Toxicolog, 2001, 52(3-4):177-188
    49. Baars A J, Jager L P, Spierenberg T J, de Graaf G J, Seinhorst J W. Residues of carbadox metabolites in edible pork products. Arch Toxicol Suppl., 1991, 14:288-292
    50. Baggot J D.The bioavailability, disposition kinetics and dosage of sulphadimethixine in trout. Can. J. Comp. Med., 40:310
    51. Barron M G, Schultz I R, Hayton W L. Presystemic branchial metabolism limits di-2-ethylhexyl phthalate accumulation in fish. Toxicol-Appl-Pharmacol., 1989, 98(1): 49-57
    52. Beutin L, Preller E and Kowalski B. Mutagenicity of quindoxin, its metabolites, and two substituted quinoxaline-di-N-oxides. Antimicrob Agents Chemother., 1981, 20(3): 336-343
    53. Binnendijk G M, Aerts M M, Keukens H J, Brinkman U A. Optimization and ruggedness testing of the determination of residues of carbadox and metabolites in products of animal origin. Stability studies in animal tissues, 1991, 541(1-2): 401-410
    54. Blust R. and Chowdhury M J. Pharmacokinetics of metal uptake and elimination in aquatic organisms. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2000, 126(1): 14
    55. Boon J P, Oostingh I, van-der-Meer J, Hillebrand M T. A model for the bioaccumulation of chlorobiphenyl congeners in marine mammals. Eur-J-Pharmacol., 1994, 270(2-3): 237-251
    56. Boon J P, van-der-Meer J, Allchin C R, Law R J, Klungsoyr J, Leonards P E, Spliid H, Storr-Hansen E, Mckenzie C, Wells DE. Concentration-dependent changes of PCB patterns in fish-eating mammals: structural evidence for induction of cytochrome P450. Arch-Environ-Contam-Toxicoi., 1997, 33(3): 298-311
    57. Bowden and Brent C. Pharmacokinetic Profiles of Oxytetracycline in Yellow Perch (Perca flavescens) as Determined by Plasma Concentration Following Different Routes of Administration. Environ. Toxicol. Chem.,2001, 37(4): 1772-1788
    58. Branson D R, Takahashi I T,Parker W M and Blau G E, Bioconcentration kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rainbow trout. 1985, (4): 779-788
    59. Brown J F, Lawton R W, Ross M R, Feingold J, Wagner R E and Hamilton S B. Persistence of PCB congeners in capacitor workers and Yusho patients. Chemosphere, 1989, 829-834
    60. Brown D G, Lanno R P M, van-den-Heuvel M R, Dixon D G. HPLC determination of plasma thiocyanate concentrations in fish blood: application to laboratory pharmacokinetic and field-monitoring studies. Ecotoxicol-Environ-Saf., 1995, 30(3): 302-308
    61. Bruggeman W A, Martron J M, Kooiman D and Hutzinger O. Accumulation and elimination kinetics of di-, tri-, and tetrachlorobiphenyls in goldfish after dietary and aqueous exposure. Chemosphere, 1981, (10): 811-832
    62. Bruggeman, W A. Bioaccumulation of polychlorobiphenyls and related hydrophobic chemicals
    
    in fish. (Ph D dissertation). Lelystad: Universiteit van Amsterdam & Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, 1983
    63. Bruggeman W A, Opperhuizen A, Wijbenga A and Hutzinger O. Bioaccumulation of super-lipophilic chemicals in fish. Toxicol. Environ. Chem., 1984, (7): 173-189
    64. Carbadox gains US tolerance. Animal pharm., 1998, 395:21
    65. Chaisuksant Y, Yu Q and ConnellD W. Bioconcentration of bromo- and chlorobenzenes by fish (Gambusia affinis). Water Res., 1997, (31): 61-68
    66. Chue V, Larry J, Schmidt, Guy R, Stehly and William H. Gingerich. Liquid chromatographic determination of florfenicol in the plasma of multiple species of fish. Journal of Chromatography B, 2002, 780(1): 111-117
    67. Claire M, Lathers, Chiaki Mukai, Cedric M, Smith and Paul L. A new goldfish model to evaluate pharmacokinetic and pharmacodynamic effects of drugs used for motion sickness in different gravity loads. Acta Astronautica, 2001, 49(3-10): 419-440
    68. Clewell H J, Crump K S, Gentry P R, Shipp A M. Site-specific reference dose for methylmercury for fish-eating populations. Fuel Process. Technol., 2000, 65-66
    69. Coliss J P. Acccumulation and depletion of oxytetracylcine in juvenile white shrimp. Aquaculture, 1977, 16:1
    70. Corbet R L, MuirD C C and WebsterG R B. Fate of 1,3,6,8-T4CDD in an outdoor aquatic system. Chemosphere, 1983, 12:523-527
    71. Cox W R and Rainnie D J. Oxytetracycline for the treatment of vibriosis in Atlantic salmon. Source, 1991, 91:3
    72. Delorme P D, Muir D C G, Lockhart W L, Mill K H and Ward F J. Deputation of toxaphene in lake trout and white suckers in a natural ecosystem following a single i.p dose. Chemosphere, 1993, 27:1965-1973
    73. De-Niu P, Radman D P, Jaworski E M, Deol H, Gentz R, Su J, Olsen H S, and Wagner G F. Development of a human stanniocalcin radioimmunoassay: serum and tissue hormone levels and pharmacokinetics in the rat. Mol-Cell-Endocrinol.,2000,162(1-2): 131-144
    74. Enger O, Husevaag B and Goksoeyr J. Presence of the fish pathogen Vibrio salmonicida in fish farm sediments. Appl. Environ. Microbiol., 1989, 55(11): 2815-2818
    75. Eric D, Parka, Donald V, Lightnera, Nicholas M, Michael M, Douglas L, Parkd, James M, Giffordb and Thomas A. Bella Exploratory bioavailability and pharmacokinetic studies of sulphadimethoxine and ormetoprim in the penaeid shrimp, Penaeus vannamei. Aquaculture, 1995, 130(2-3): 113-128
    76. Fribourgh J H. Oxytetracycline levels produced in catfish serum by three methods of treatment. Tech.Papers Bureau Sport Fish. Wilslife, 39:3
    77. Fribourgh J H. Oxytetracycline residues in tissues of blue and channel catfishes.Tech.Papers
    
    Bureau Sport Fish. Wilslife, 38:3
    78. Fish D N, Stolpman N M, Ortiz P M. Pharmacokinetic sampling by pharmacy technicians. ASHP-Midyear-Clinical-Meeting, 1995, 30:417
    79. Fox K, Zauke G P and ButteW. Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in zebrafish (Brachydanio rerio). Ecotoxicol. Environ., 1994, 99-109
    80. FrankA P, Landrum P F and Eadie B J. Polycyclic aromatic hydrocarbon rates of uptake, deputation and biotransformation by Lake Michigan Stylodrilus heringianus. Chemosphere, 1986, 317-330
    81. George G, Zhanel and Ayman M. Noreddin Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Current Opinion in Pharmacology, 2001, 1(5): 459-463
    82. George R, Maria A, Argyro A and Ioannis N. Pharmacokinetics and tissue distribution of oxytetracycline in sea bass, Dicentrarchus labrax, at two water temperatures. Aquaculture, 2002, 201(1-4): 59-67
    83. Gingericha W H, Meinertza J R, Dawsona V K, Gofusa J E, Delaneya L J and Bunnellb P R. Distribution and elimination of [14C] sarafloxacin hydrochloride from tissues of juvenile channel catfish (Ictalurus punctatus). Aquaculture, 1995, 131(1-2): 23-36
    84. Graaf G J, Spierenburg T J. Liquid chromatographic determination of carbadox and desoxycarbadox in medicated feeds and in porcine gastrointestinal tract. J Assoc Off Anal Chem., 1985, 68(4): 658-660
    85. Graaf G J, Jager L P, Baars A J, Spierenburg T J. Some pharmacokinetic observations of carbadox medication in pigs. Vet., 1988, 10(1): 34-41
    86. Grondel J L, Nouws J F and Haenen O L. Fish and antibiotics: pharmacokinetics of sulphadimidine in carp (Cyprinus carpio). Vet Immunol Immunopathol., 1986, 12(1-4): 281-286
    87. Grondel J L, Nouws J F, Schutte A R, Driessens F. Comparative pharmacokinetics of oxytetracycline in rainbow trout (Salmo gairdneri) and African catfish (Clarioa gariepinus). J Vet Pharmacol Ther., 1989, 12(2): 157-162
    88. Guiney P D, Peterson R E, Melancon M J and Lech J J. The distribution and elimination of 2,5,2',5'-[14C] tetrachlorobiphenyle in rainbow trout (Salmo gairdneri). Toxicol. Appl. Pharmacol., 1977, 329-338
    89. Guiney P D, Melancon M J, Lech J J and Peterson R E. Effects of egg and sperm maturation and spawning on the distribution and elimination of a polychlorinated biphenyl in rainbow trout (Salmo gairdneri). Toxicol. Appl. Pharmacol., 1979, 261-272
    90. Guarino A M. Aquatic versus mammalian toxicology: applications of the comparative approach. Environ-Health-Perspect, 1987,7117-7124
    91. Hansen M K Horsberg T E. Single-dose pharmacokinetics of flumequine in halibut
    
    (Hippoglossus hippoglossus) and turbot (Scophthalmus maximus). Journal of Veterinary Pharmacology and Therapeutics, 1999, 22(2): 122-126
    92. Harvey J C, Kenny S C, Gentry P R and Annette M S. Site-specific reference dose for methylmereury for fish-eating populations. Fuel Processing Technology, 2000, 65-66:43-54
    93. Hayton W L. Considerations in compartmental pharmacokinetic modeling in fish. In: Smith, David J, Gingerich, William H. Beconi-Barker, Maria G eds., Xenobiot. Fish. New York: Kluwer Academic/Plenum Publishers, 2000. 55-72
    94. Haug T, Hals P A. Pharmacokinetics of oxytetracyline in Arctic charr (Salvelinus alpinus L.) in freshwater at low temperature. Aquaculture, 2000, 186(3-4): 175-191
    95. Hernández-Arteseros J A, Barbosa R, Compantilde and Prat M D. Analysis of quinoione residues in edible animal products. Journal of Chromatography A, 2002, 945(1-2): 1-24
    96. Herman R L. Oxytetracycline residues in different tissues of trout. Tech.Papers Bureau Sport fish. Wildlife, 1992, 37:3
    97. Hewitt L M, Parrott J L, Wells K L, Calp M K, Biddiscombe S, McMaster M E, Munkittrick K R, Van-Der-Kraak-Glen J. Characteristics of Ligands for the Ah Receptor and Sex Steroid Receptors in Hepatic Tissues of Fish Exposed to Bleached Kraft Mill Effluent. Environ. Sci. Technol., 2000, 34:20, 4327-4334
    98. Ho S P, Cheng C F, Wang W S. Pharmacokinetic and depletion studies of sarafloxacin after oral administration to eel (Anguilla anguilla). Journal of Veterinary Medical Science, 1999, 61(5): 459-463
    99. Hormazabal V, Rogstad A. Simultaneous determination of sulfadiazine and trimethoprim in plasma and tissues of cultured fish for residual and pharmacokinetic studies. J-Chromatogr-Biomed-Appl., 1992, 121(2): 201-207
    100. Horsberg T E, Martinsen B, Sandersen K and Zernichow L. Potentiated sulfonamides: In vitro inhibitory effect and pharmacokinetic properties in Atlantic salmon in seawater. J. Aquat. Anim. Health, 1997, 9(3): 203-210
    101. Hutchinson M J, Young P Y, Hewitt S A, Fauikner D, Kennedy D G. Development and validation of an improved method for confirmation of the carbadox metabolite, quinoxaline-2-carboxylic acid, in porcine liver using LC-electrospray MS-MS according to revised EU criteria for veterinary drug residue analysis. Analyst, 2002, 127(3): 342-346
    102. Intorre L, Castells G, Cristofol C, Bertini S, Soldani G and Arboix M. Residue depletion of thiamphenicol in the sea-bass. J Vet Pharmacol Ther., 2002,25(1): 59-63
    103. Intorrea L, Cecchinib S, Bertinia S, Cognetti V A M, Soldania G and Mengozzia G. Pharmacokinetics of enrofloxacin in the seabass (Dicentrarchus labrax). Aquaculture, 2000, 128(1-2): 49-59
    104. Irvin R S, Gayle O, James L. Merdinka and Skillmanc. Response relationships and
    
    pharmacokinetics of vitellogenin in rainbow trout after intravascular administration of 17-ethynylestradiol. Aquatic Toxicology, 2001, 51(3): 305-318
    105. Ivana S. Determinnation of cyadox and its metabolites in plasma by adsorptive voltammetry. Talanta, 1988, 35(10): 816-818
    106. James P M. Comparative toxicokinetics of tributyltin in five marine species and its utility in predicting bioaccumulafion and acute toxicity. Aquatic Toxicology, 1997, 37(4): 307-326
    107. Jeffery R, Meinertza, Guy R, Stehlya and William H. Gingericha Pharmacokinetics of benzocaine in rainbow trout (Oncorhynchus mykiss) after intraarterial dosing. Aquaculture, 1996, 148(1): 39-48
    108. Jenouml, Feketea, Zsuzsanna, Romvária, Ildikó Szepesia and Morovjána. Liquid chromatographic determination of the antibiotic fumagillin in fish meat samples Journal of Chromatography A, 1995, 712(2): 378-381
    109. Jongh J, Verhaar H J, Hermens J L. Role of kinetics in acute lethality of nonreactive volatile organic compounds (VOCs). Toxicol-Sci., 1998, 45(1): 26-32
    110. Josè M, Giorgia della R, Paola A and Giorgio G. Tissue distribution and residue depletion of oxytetracycline in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) after oral administration. Aquaculture, 1996, 147(3-4): 159-168
    111. Kalmanzon E, Zlotkin E, Aknin H R. Protein-Surfactant interactions in the defensive skin secretion of the Red Sea trunkfish Ostracion cubicns. Marine-Biology-Berlin. 1999, 135(1): 141-146
    112. Karara A H, Hayton W L. Metabolic inhibition and di-2-ethylhexyl phthalate pharmacokinetics in fish. Drug-Metab-Dispos., 1988, 16(1): 46-50
    113. Kazuaki U. Pharmacokinetic study of oxytetracycline in healthy and vibriosis infected ayu (Plecogiossus altivelis). Aquaculture, 1996, 143(1): 33-42
    114. Kazuaki U, Takahiko A, Ryuji U and Iwao M. Pharmacokinetics and metabolism of sulphamonomethoxine in rainbow trout (Oncorhynchus mykiss) and yellowtail (Seriola quinqueradiata) following bolus intravascular administration. Aquaculture, 1997, 153(1-2): 1-8
    115. Keizer J, Agostino G D and Vittozzi L. The importance of biotransformation in the toxicity of xenobiotics to fish. L Toxicity and bioaccumulation of diazinon in guppy (Poecilia reticulata) and zebra fish (Brachydanio rerio). Aqua. Toxicol., 1991, 254
    116. Koeman J H. Doorvergiftiging (toxische stoffen in voedselketens): een advies van de Gezoodheidsraad. [Secondary poisoning (toxic substances in food chains): advice from the Public Health Council]. Ned-Tijdschr-Geneeskd, 1993, 137(40): 2012-20144
    117. Konrad W and Russell A. Nichoison. RH-3421 action and toxicokinetics in the trout: reduced brain involvement versus mammals. Enviroomental Toxicology and Pharmacology, 2001, 10(3): 111-118
    
    
    118. Koss G and Koransky W. Studies on the toxicology of hexachlorobenzene, Ⅰ: pharmacokinetics. Arch. Toxicol., 1975, 212
    119. Kouml, Nemann and van Leeuwen K. Toxicokinetics in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere, 1980, 19
    120. Krzeminski S F, Gilbert J T, Ritts J A. A pharmacokinetic model for predicting pesticide residues in fish. Arch-Environ-Contam-Toxicol., 1977; 5(2): 157-166
    121. Kukkonen J and Landrum P F. Toxicokinetics and toxicity of sediment-bound pyrene in Lumbriculus variegatus (Oligochaeta). Environ. Toxicol. Chem., 1994, 1457-1468
    122. Layiwola P J, LinnecarD F C and Knights B. The biotransforamtion of 14C-labelled phenolic compounds in twelve species of freshwater fish. Xenobiotica, 1983, 107-113
    123. Leversee G J, Giesy J P, LandrumP F, Gerould S, Bowling J W, Fannin T E, Haddock J D and Bartell S M. Kinetics and biotransformation of benzo(a)pyrene in Chironomus riparius. Arch. Environ. Contain. Toxicol., 1982, 25-31
    124. Lin S Y and Jeng S L. High-performance liquid chromatographic determination of carbadox, olaquindox, furazolidone, nitrofurazone, and nitrovin in feed. J Food Prot., 2001, 64(8): 1231-1234
    125. Lisa Pursella, Tim Dineenb, Joe Kerryb, Shirley Vaughana and Pete Smitha.The biological significance of breakpoint concentrations of oxytetracycline in media for the examination of marine sediment microflora. Aquaculture, 1996,145(1-4): 21-30
    126. Lo I H, Hayton W L. Effects of pH on the accumulation of sulfonamides by fish. J-Pharmacokinet-Biopharm, 1981, 9(4): 443-459
    127. Luchtefeld RG.Detection of low-level carbadox residues in animal feeds by high pressure liquid chromatography. J Assoc Off Anal. Chem., 1977, 60(2): 279-283
    128. Lynch M J, Mosher F R, Schneider R P, Fouda H G and Risk J E.Determination of carbadox-related residues in swine liver by gas chromatography/mass spectrometry with ion trap detection. J Assoc Off Anal. Chem., 1991, 74(4): 611-618
    129. Maagd P G J. Polycyclic aromatic hydrocarbons: fate and effects in the aquatic environment. (Ph D dissertation). University of Utrecht, 1996
    130. MacIntosh A I and Neville G A. Liquid chromatographic determination of carbadox, desoxycarbadox and nitrofurazones in pork tissues. J Assoc Off Anal. Chem., 1984, 67(5): 958-962
    131. Maria T, Ioannis N and Costas K. Bioaccumulation of trimethoprim, sulfamethoxazole and N-acetyl-sulfamethoxazole in Artemia nauplii and residual kinetics in seabass larvae after repeated oral dosing of medicated nauplii. Aquaculture, 1999, 175(1-2): 15-30
    132. Martinsen B, Myhr E, Reed, E and Haastein T. In vitro antimicrobial activity of sarafloxacin against clinical isolates of bacteria pathogenic to fish. J. Aquat. Anim. Health, 1991, 3(4):
    
    235-241
    133. Martinsen B, Oppegaard H, Wichstroem R and Myhr E. Temperature-dependent in vitro antimicrobial activity of four 4-quinolones and oxytetracycline against bacteria pathogenic to fish. Antimicrob. Agents Chemother, 1992, 36(8): 1738-1743
    134. 93. Martinsen B, Horsberg T E, Varma K J, and Sams R. Single dose pharmacokinetic study of florfenicol in Atlantic salmon (Salmo salar) in seawater at 11 degree C. Aquaculture, 1993, 112(1): 1-11
    135. Martinsert B and Horsberg T E. Antimicrobial activities and pharmacokinetic properties of oxytetracycline, sulfadiazine/trimethoprim, enrofloxacin, RO 09-1168, flumequine and oxolinic acid in Atlantic salmon (Salmo salar). Program and abstracts, International symposium on aquatic animal health, 1994, univ. of california, school of veterinary medicine
    136. Mccracken A.An investigation of antibiotic and drug residues in fish. J. Appl. Bacteriol., 40:61
    137. McKim J M, Heath E M. Dose determinations for waterborne 2,5,2',5'-[14C] tetrachlorobiphenyl and related pharmacokinetics in two species of trout (Salmo gairdneri and Salvelinus fontinalis): a mass-balance approach. Toxicol Appl Pharmacol., 1983, 68(2): 177-187
    138. Melancon M J and Lech J J. Uptake metabolism, and elimination of 14C labelled 1,2,4-trichlorobenzene in rainbow trout and carp. J. Toxicol. Environ. Health, 1980, 645-658
    139. Michiel O E, Kjell A H and Henning G K. Bioavailability of flumequine after oral administration to Atlantic salmon (Salmo salar L.). Aquacultur, 1995, 136(3-4): 209-219
    140. Michiel O E, Kjell A H and Henning G K. Bioavailability of oxytetracycline from medicated feed administered to Atlantic salmon (Salmo salar L.) in seawater. Aquaculture, 1996, 143(1): 7-14
    141. Nabuurs M J, van der Molen E J, de Graaf G J, Jager LP.Clinical signs and performance of pigs treated with different doses of carbadox, cyadox and olaquindox. Zentralbl Veterinarmed A, 1990, 37(1):68-76
    142. Nakamura O, Suzuki Y, Aida K. Oral immunization specifically inhibits intestinal protein uptake in the common carp Cyprinus carpio L. Fisheries-Science-Tokyo. 2000, 66 (3): 540-546
    143. Namdaria R and F. C. P. Lawa F C P. Toxicokinetics of waterborne pyrene in rainbow trout (Oncorhynchus mykiss) following branchial or dermal exposure. Aquatic Toxicology, 1996, 35(3-4): 221-235
    144. Nouws J F, Grondel J L, Schutte A R and Laurensen J. Pharmacokinetics of ciprofloxacin in carp, African catfish and rainbow trout. Vet-Q., 1988, 10(3): 211-216
    145. Odd F E, Bjoslash M, Astrid R, Christian S, Ole B S. Dosage regime experiments with oxolinic acid and flumequine in Atlantic salmon (Salmo salar L) held in seawater. Aquaculture, 2002, 209(1-4): 19-34
    146. Ole B S, Lisa P, Peter S and Ame E. Multiple-dose pharmacokinetic study of Romet30 in
    
    Atlantic salmon (Salmo salar) and in vitro antibacterial activity against Aeromonas salmonicida. Aquaculture, 1997, 152(1-4): 13-24
    147. Ole B S, Arne E, Lisa P and Pete S. Single-dose pharmacokinetic study of oxolinic acid and vetoquinol, an oxolinic acid ester, in Atlantic salmon (Salmo salar) held in seawater and in vitro antibacterial activity against Aeromonas salmonicida. Aquaculture, 2000, 187(3-4): 213-224
    148. Onyangoa J D, Burri C and Brunb R. An automated biological assay to determine levels of the trypanocidal drug melarsoprol in biological fluids. Acta Tropica, 2000, 74(1): 95-100
    149. Peters E L, Schultz I R and Newman M C. Rubidium and cesium kinetics and tissue distributions in channel catfish (Ictalurus punctatus). Ecotoxicology, 1999, 8(4): 287-300
    150. Poher I, Blanc G. Pharmacokinetics of a discontinuous absorption process of oxolinic acid in turbot, Scophthalmus maximus, after a single oral administration. Xenobiotica, 1998, 28(11): 1061-1073
    151. Posyniak A. Pharmacokinetic quality of antibacterial medications for fish. Medycyna-Weterynaryjna, 2000, 56(5): 296-300
    152. Ramos F J, Silveira I N, Graaf G. Column liquid chromatographic determination of carbadox and olaquindox in feeds. J Chromatogr, 1991, 558(1): 125-130
    153. Robert J S. Information needed to support hazard identification and risk assessment of toxic substances. Toxicology Letters, 1995, 79(1-3): 23-28
    154. Robert S B, Michael K S. In vitro studies of the fate of sulfadimethoxine and ormetoprim in the aquatic environment. Aquaculture, 2001, 195(1-2): 95-102
    155. Rose M D, Bygrave J and Tarbin J A. Determination of quinoxaline carboxylic acid (metabolite of carbadox) in animal tissue by HPLC. Food Addit Contam., 1995, 12(2): 177-83
    156. Rouleau C, Tjalve H, Gottofrey J and Pelletier E. Environmental Toxicology and Chemistry, Mar 1995. Uptake, distribution and elimination of 54Mn(Ⅱ) in the brown trout (Salmo trutta). The Science of The Total Environment, 1998, 219(2-3): 117-135
    157. Roybal J E, Munns R K, Shimoda W. Liquid chromatographic determination of carbadox residues in animal feed. J Assoc Off Anal Chem,, 1985, 68(4): 653-657
    158. Rutalj M, Bazulic D, Sapunar-Postrznik J, Zivkovic J and Ljubicic Ⅰ. Quinoxaline-2-carboxylic acid (QCA) in swine liver and muscle. Food Addit Contam, 1996, 13(8): 879-882
    159. Ryuji U and Takahiko A. High-performance liquid chromatographic method for the rapid and simultaneous determination of sulfamonomethoxine, miloxacin and oxolinic acid in serum and muscle of cultured fish. Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 682(1): 179-181
    160. Ryuji U, Yasushi O and Takuya T. Pharmacokinetics and metabolism of miloxacin in cultured eel. Aquaculture, 2001, 193(1-2): 11-24
    161. Ryuji U. Metabolism and pharmacokinetics of sulfamonomethoxine in edible fish species. In:
    
    Smith, David J, Gingerich, William H. Beconi-Barker, Maria G eds., Xenobiot. Fish. New York: Kluwer Academic/Plenum Publishers, 2000. 201-212
    162. Samuelsen O B, Ervik A, Pursell L, Smith Pete. Single-dose pharmacokinetic study of oxolinic acid and vetoquinol, an oxolinic acid ester, in Atlantic salmon (Salmo salar) held in seawater and in vitro antibacterial activity against Aeromonas salmonicida. Aquaculture, 2000, 187(3-4): 213-224
    163. San-Martin B N, Bataglia J, Hernandez P, Quiroz A, Canon H. Absorption and excretion of cefquinome in coho salmon (Oncorhynchus kisutch) in freshwater at 10 degrees C. Journal-of-Veterinary-Medicine-Series-A, 1998,45(10): 615-623
    164. Schlenk D, Buhler D R. Xenobiotic biotransformation in the Pacific oyster (Crassostrea gigas). Comp Biochem Physiol C, 1989, 94(2): 469-475
    165. Schlenk D, Buhler D R. Role of flavin-containing monooxygenase in the in vitro biotransformation of aldicarb in rainbow trout (Oncorhynchus mykiss). Xenobiotica, 1991, 21(12): 1583-1589
    166. Schlenk D, El-Alfy A, Buhler D R. Down regulation of hepatic flavin-containing monooxygenase activity by 17 beta-estradiol in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 1997, 118(2): 199-202
    167. Schlenk D, El-Alfy A. Expression of branchial flavin-containing monooxygenase is directly correlated with salinity-induced aldicarb toxicity in the euryhaline fish (Oryzias latipes). Marine Environ Res., 1998, 46(1-5): 103-106
    168. Schultz I R, Hayton W L. Predicting the toxicokinetics of trifluralin in rainbow trout using clearance-volume pharmacokinetic models. In: Smith, David J, Gingerich, William H. Beconi-Barker, Maria G eds., Xenobiot. Fish. New York: Kluwer Academic/Plenum Publishers, 2000. 133-148
    169. Seubert J M, Kennedy C J. Benzo(a)pyrene toxicokinetics in rainbow trout (Oncorhynchus mykiss) acclimated to different salinities. Archives of Environmental Contamination and Toxicology, 2000, 38(3): 342-349
    170. Skarka P, Sestakova I. A new procedure for estimation of nitrovin and carbadox residues and their metabolites in food of animal origin. Arch Toxicol Suppl, 1978, (1):207-210
    171. Sohlberg S, Martinsen B, Horsberg T E, Soli N E. Evaluation of the dorsal aorta cannulation technique for pharmacokinetic studies in Atlantic salmon (Salmo salar) in sea water. J-Vet-Pharmacol-Ther, 1996, 19(6): 460-465
    172. Stehly G R, Barron M G, Hayton W L. Pharmacokinetic modeling in aquatic animals: bioconcentration and bioavailability. In: Smith, David J, Gingerich, William H. Beconi-Barker, Maria G eds., Xenobiot. Fish. New York: Kluwer Academic/Plenum Publishers, 2000. 73-86
    173. Stehly G R, Hayton W L. Effect of pH on the accumulation kinetics of pentachlorophenol in
    
    goldfish. Arch-Environ-Contam-Toxicol, 1990, 19(3): 464-470
    174. Stehly G R, Meinertz J R, Gingerich W H. Effect of temperature on the pharmacokinetics of benzocaine in rainbow trout (Oncorhynchus mykiss) after bath exposures. J-Vet-Pharmacol-Ther, 1998, 21(2): 121-127
    175. Steven M P, Kathleen R E S and Steven M M. Pharmacokinetics, tissue distribution, and metabolism of flumequine in channel catfish (Ictalurus punctatus). Aquaculture, 2000, 187(1-2):1-14
    176. Sykora I, Marhan O, Gandalovicova D. The effect of the non-antibiotic growth stimulators, Carbadox and Cyadox, on reproduction in laboratory animals. Vet Med (Praha), 1981, 26(6): 367-377
    177. Tor H and Petter A H. Pharmacokinetics of oxytetracyline in Arctic charr (Salvelinus alpinus L.) in freshwater at low temperature. Aquaculture, 2000, 186(3-4): 175-191
    178. van der Molen E J, Baars A J, de Graaf G J, Jager L P. Comparative study of the effect of the effect of carbadox, olaquindox and cyadox on aldosterone, sodium and potassium plasma levels in weaned pigs. Res Vet Sci, 1989, 47(1): 11-16
    179. Vick A M, Hayton W L. Methyltestosterone pharmacolinetics and oral bioavailability in rainbow trout (Oncorhynchus mykiss). Aquatic-Toxicology-Amsterdam. [print] May, 2001, 52(3-4): 177-188
    180. Vries H, Bojarski J, Donker A A, Bakri A, Beyersbergen van Henegouwen G M. Photochemical reactions of quindoxin, olaquindox, carbadox and cyadox with protein, indicating photoallergic properties. Toxicology, 1990, 63(1): 85-95
    181. Watze D W, Paul H L. A novel method to determine uptake and elimination kinetics of volatile chemicals in fish. Chemosphere, 1998, 36(8): 1713-1724
    182. Yasunari K, Christine M M. Models of comparative acute toxicity of injectable erythromycin in four salmonid species. Aquaculture, 2002, 211(1-4): 29-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700