南海北部内潮与非线性内波:观测与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于水文观测和数值模拟研究了南海北部内潮和非线性内波现象,主要内容有:吕宋海峡的测流观测与线性内波配极关系的比较;南海北部非线性内波背景环境及运动学参数的地理特征及其季节变化;中尺度涡旋对内孤立波传播影响的数值模拟;南海北部陆坡区内孤立波极性转换的数值模拟和吕宋海峡双屋脊上内波产生的数值模拟。
     1.吕宋海峡内潮的观测分析
     鉴于吕宋海峡观测流的稀少,开展了该海域的海流锚定观测。运用统计和经验正交函数分析方法研究了观测流特征。谱分析和能量计算均显示全日潮和半日潮为主要的能量频带,近惯性频率峰值仅出现在斜压分量。在66m以浅,显著分潮和近惯性频率分量都基本符合线性内波能量一致性关系式E+(ω)/E-(ω)=(ω-f)~2/(ω+f)~2;在其它观测深度,并非所有的主要分潮都满足上述关系。正压潮和内潮均为混合潮,潮日不等现象明显。全日分潮平行与垂直于陆架方向的分量几乎相等;而半日分潮垂直于陆架方向分量远大于平行于陆架方向分量;M2和S2潮垂向结构主要表现为第一模态,而K1和O1潮则接近于第二模态;在主温跃层附近,它们的短轴与长轴之比与比值f/ω接近。
     2.南海北部非线性内波背景环境及运动学参数的地理特征及其季节变化
     从遥感图像的统计分析表明,南海北部内波呈现显著的季节变化。基于海洋再分析资料研究了南海北部的层化特征和非线性内波运动学参数的地理分布特征和季节变化。南海北部季节性密度跃层从2月开始出现,最大浮力频率约在20m;它在6-7月达到最强,自8月开始减弱,在10月消退。在8-11月出现另一较深的密度跃层,最大浮力频率约在80m,冬季大致在120m。季节性密度跃层在4-9月十分明显,在8-10月出现双跃层现象,而在冬季仅出现较弱的第二密度跃层。在1-3月和10-12月深水区最大浮力频率值要大于浅水区,而在5-9月情况则相反。浮力频率最大值所在深度随季节变化显著,冬季最深;6-7月则最浅。线性内波相速度、频散系数和幅度放大因子的空间分布主要取决于地形变化;平方(立方)非线性系数与地形关系较小,随季节变化较大,它们主要取决于局地海洋环境特征。分析了变系数扩展KdV方程中出现的系数特征,解释了为何在夏季南海北部最容易观测到大振幅内孤立波和在吕宋海峡以东海域难以观测到孤立波的原因。
     3.中尺度涡旋对内孤立波传播影响的数值模拟
     内波和中尺度涡都是海洋中出现的普遍现象,中尺度涡对内波的传播具有怎样的影响呢?应用准地转模型假定得到中尺度涡旋场,变系数扩展KdV方程用于模拟内孤立波通过中尺度涡的形变。计算结果表明,中尺度涡旋修改了线性内波的垂直模态结构,而且气旋涡和反气旋涡对内波传播的背景环境具有不同的影响。仅考虑第一模态垂直结构背景场,则中尺度涡对小振幅内孤立波的传播几乎不存在影响。但是,对高模态的垂直结构背景场,对内孤立波的传播的影响十分明显。在观测中,通常在不同位置观测到的内孤立波波形各异,研究结果表明除了地形影响因素外,中尺度涡背景场对内孤立波的传播和形变也是一个重要的影响因素,且不同的中尺度涡对内孤立波具有不同的影响。
     4.南海北部陆坡区内孤立波极性转换的数值模拟
     卫星图像经常观测到南海北部陆坡区内波的极性转换现象,采用数值模拟研究了南海北部陆坡区内孤立波极性转换的物理过程。深水区的下降型内孤立波在向陆坡传播过程中,受地形变浅的影响,波形尾部加陡,并在尾部分裂出孤立子列,逐渐出现上凸型的内孤立波;随着水深越来越浅,上凸型内孤立波幅度也逐渐增大,且头波与后面波列的距离也逐渐增大,体现了内波的频散特性。
     5.吕宋海峡双屋脊上内波产生的数值模拟
     卫星图像观测表明吕宋海峡是南海北部内波产生的重要源区,数值模拟吕宋海峡双屋脊上内波的产生,表明在表层难以追踪到内波信号,这与从卫星图像观测到的内波信号也主要出现在120.5°E以西海域相一致。落潮阶段在吕宋海脊的西侧形成涌潮;当落潮流减弱并开始转向时,首先在涌潮前锋裂变出孤立子,当潮流转向和涨潮流加强时,更多的孤立子裂变出来。在吕宋海脊东侧,无论是涨潮还是落潮均存在一个上升型波,但未发现有孤立子从东侧的上升型波裂变出来。对于全日潮和半日潮,吕宋海峡两个海脊都是超临界地形,潮程参数小于1,处于内潮生成区,因此潮流与地形相互作用促使内潮生成,内潮波束向上和向下辐射逐渐演变成内潮涌,再由于非线性加陡和频散效应裂变成孤立子波。
This paper investigates phinomina of internal tide and nonlinear internal wave inthe Northern South China Sea (NSCS) based on hydrographic field observation andnumerical simulation. Including: the analysis of direct-obervation current data in theLuzon Strait (LS), and comparition between observation and polarization relations forlinear internal wave; the geostriphical distribution and seasonal characteristic of thebackground environment and mechanism parameters of nonlinear internal wave in theNSCS, the influence of mesoscale eddy on internal solitary wave propagation, thenumerical simulation for depression to elevation conversation of large-amplitudeinternal solitary wave in the shelf of the NSCS, and the numeicial simulation of thegeneration for internal wave on the double ridges in the LS.
     1. The analysis of observational current in the LS
     Due to rare observation for current in the LS, the moring observation was carriedout. The characteristics of current are investigated by using statistic analysis andEmpirical Orthogonal Function. Spectral analysis and energy estimation show that thediurnals and semidiurnals carry most of the energy of internal tides. Near-inertialpeaks are only present in the baroclinic component. The behavior of typical tidalfrequencies and the near-inertial frequency is basically consistent with linear internalwave theory, which predicts E+(ω)/E-(ω)=(ω-f)~2/(ω+f)~2at depths above66m, whilenot all prominent tidal components coincide well with the relation of the linearinternal wave field at other depths. The surface tides and internal tides are both ofmixed type. The K1and O1tides have comparable cross-and along-shelf components,while the M2and S2tides propagate toward the shelf in the northern South China Seaas wave beams. The M2and S2tides appear to have structures dominated by the firstmode, while the K1and O1tides resemble second-mode structures. The minor tomajor axis ratios are close to expected values of f/ω in the thermocline.
     2. Geostriphical distribution and seasonal characteristic of the backgroundenvironment and mechanism parameters of nonlinear internal wave in theNSCS
     The phenomena of internal waves in the SCS show remarkable seasonal andinterannual variance from satellite image. On the basis reanalysis data, the stratification characteristics, and the geographical and monthly variability of theeKdV equation coefficients, are analyzed. Seasonal pycnocline with maximalbuoyancy frequency at about20m depth, begins to appear in February, is strongest inJun and Jul., weakens in Aug., starts to dissipate in Oct. Another deeper pycnoclineappears with maximal buoyancy frequency at about80m depth during Aug. and Nov.,and maximal buoyancy frequency moves to120m depth in winter. The seasonalpycnocline is very distinct from Apr. to Sep.. The double pycnocline is obvious fromAugust to Oct.. In winter, only the second pycnocline exists. Maxima buoyancyfrequency in deeper basin is higher than that in shallow shelf area from Jan. to Mar.and from Oct. to Dec., but the configuration is opposite during May and Sep.. Thedepth of maxima buoyancy frequency varies with season. It is deepest in winter, andis shallowest in June and July. It is shown that the variations of the long wave phasespeed, the dispersion parameter and amplitude factor are mainly related to topographycharacteristics without obvious seasonal variation. The quadratic nonlinear parameteris very sensitive to variations of the vertical stratification, and the cubic nonlinearparameter depends on water depth and stratification condition. Holding higheroccurrence in summer in the NSCS and the scarce existence of nonlinear internalwave on east of the LS is interpreted by using theses coefficient characteristic.
     3. Mesoscale eddy effects on the internal solitary wave propagation
     The mesoscale eddy and internal wave both are phenomena commonly observedin oceans. This paper aims to investigate how the presence of a mesoscale eddy in theocean affects waveform deformation of the internal solitary wave propagation. Anocean eddy is produced by a quasi-geostrophic model in f-plane, and theone-dimensional nonlinear eKdV equation is used to simulate an internal solitarywave passing through the mesoscale eddy field. The results suggest that the modestructures of the linear internal wave are modified due to the presence of themesoscale eddy field. A cyclonic eddy and an anticyclonic eddy do differentinfluences on background environment of internal solitary wave propagation. Theexistence of a mesoscale eddy field has almost no prominent impact on thepropagation of a small-amplitude internal solitary wave only based on the first modevertical structure, but the mesoscale eddy background field exerts a considerableinfluence on solitary wave propagation if considering high-mode vertical structures.Furthermore, whether an internal solitary wave first passes through anticyclonic eddyor cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest formation of the waves, excepttopography effect, this study shows that the mesoscale eddy background field is alsoan considerable factor which influences the internal solitary wave propagation anddeformation.
     4. The numerical simulation for polarity covertion of interal solitary wave in theself of the NSCS
     The phenomia of polarity covertion of internal solitary wave oftern are capturedby satellite images in the shelf of the NSCS. The physical process that internal wavetransfers their polrity is investigated by the numerical simulation. When the depressssolitary wave propates from deeper water area to shallower water area, the rear of thewave begin to speepen owing to effect of shallower topography, some soliton split outfrom the rear of the wave, the elevation solitary wave appears slowly, with theshallower water depth, the amplitude of the elevation solitary wave is growing, andthe distance between the front wave and behind wave is also increasing, showing thepersperion property of internal wave.
     5. The numerical simulation for generation of internal wave on the doubleridges in the LS
     The satellite images show the LS is an important original area for internal wavein the NSCS. It is difficult to trace the internal wave siginal in the sea surface of theLS from the results of the numerical simulation, this consists with observations fromsatellite images, which also demonstrated that the internal signals mainly present westof120.5°E. The tidal bore is firstly built up to west of the Luzon ridge in the ebbyphase. When the ebby tide current weaks and becomes flood, the soliton splits outfrom the front of the tidal bore. More and more solitons split out with the enhancedflood. An elevation wave is observed to east of the Luzon ridge during both ebby andflood phases, howere, there is no any solion fission from the evevation wave. Thedouble ridges is supercritical with respect to both diurnal and semidiurnal tides, andthe tide excursion parameter is less than1, so the LS is suitable for the generation ofinternal tides. The tidal beam radiates upward and downward and evolutes the internaltidal born, and the solitary waves split out on the premise of nonlinear and dispersioneffects.
引文
[1] Apel J. R., Badiey M., Chiu C. S., et al. An overview of the1995SWARM shallow-waterinternal wave acoustic scattering experiment. IEEE J Ocean Eng,1997,22(3):465~500
    [2] Apel J. R., Ostrovsky L. A., Stepanyants Y. A., Lynch J. F., Internal solitons in the oceanand their effect on underwater sound, J. Acoust. Soc. Am.,2007,121(2).
    [3] Bole J. B., C. C. Ebbesmeyer, and R. D. Romea, Soliton currents in the South China Sea:measurements and theoretical modeling, Offshore Technology Conference,1994,OTC7417:367~376
    [4] Benoit C.R., Beckers J.M. Introduction to geophysical fluid dynamics, Vol.98, SecondEdition: Physical and Numerical Aspects. Acdemic Press.2009.
    [5] Buijsman, M. C., Y. Kanarska, and J. C. McWilliams, On the generation and evolution ofnonlinear internal waves in the South China Sea, J. Geophys. Res.,2010,115, C02012,doi:10.1029/2009JC005275.
    [6] Broutman D, Rottman J W, and Eckermann S D. Ray Methods for Internal waves in theAtmosphere and Ocean. Annu. Rev. Fluid Mech,2004,36:233~53.
    [7] Christopher O T, Worcester P F, Cornuelle B D. Acoustic remote sensing of internal solitarywaves and internal tides in the Strait of Gibraltar. J Acoust Soc Am,2001,110(2):798~811.
    [8] Cai, S., and J. Xie, A propagation model for the internal solitary waves in the northernSouth China Sea, J. Geophys. Res.,2010,115, C12074, doi:10.1029/2010JC006341.
    [9] Cai, S., and J. L. Liu and X.M Long, A mode Study on the generation of internal tides bytidal flows over a submerged seamount in the channel. Commun. Comput.Phys.2010,81(1):95~114.
    [10] Cai S. Q., Gan Z. J., Long X. M. Some characteristics and evolution of the internal solitonin the northern South China Sea. Chin Sci Bull,2002,47:21C27.
    [11] Cai S. Q., X. Long, and Z. Gan, A numerical study of the generation and propagation ofinternal solitary waves in the Luzon Strait, Oceanol. Acta,2002,25:51~60
    [12] Cai S. Q., X., Long, D.P. Dong and S.G. Wang, Background current affects the internalwave structure of the northern South China Sea. Progress in Natural Science,2008.18:585~589
    [13] Cai S Q, long X M, Wu R H, Wang S G. Geographical and monthly variability of the firstbaroclinic Rossby radius of deformation in the South China Sea. Journal of Marine Systems,2008,74(1-2):711~720.
    [14] Cai S Q, Long X M, Liu H L, et al. Tide model evaluation under different conditions. ContShelf Res,2006,26:104~112
    [15] Chao S.Y. P-T Shaw, M-K Hsu and Y-J Yang, Reflection and diffraction of internalsolitary waves by a circular island, J. Oceanogr.,2006,62(6):811~823
    [16] Chen, G., Y. Hou, and X. Chu, Mesoscale eddies in the South China Sea: Mean properties,spatiotemporal variability, and impact on thermohaline structure, J. Geophys. Res.,2011,116, C06018, doi:10.1029/2010JC006716
    [17] Carton X. Hydrodynamical Modeling Of Oceanic Vortices. Surveys in Geophysics,22:179–263,2001. doi:10.1023/A:1013779219578.
    [18]蔡树群,甘子钧,龙小敏,南海北部孤立子内波的一些特征和演变,科学通报,2001,46(15)
    [19]蔡树群,龙小敏,黄企洲.南海北部孤立子内波生成条件的初步数值研究.海洋学报,2003,25(4):119~124.
    [20]蔡树群,龙小敏,甘子钧,孤立子内波对小直径圆柱形桩柱的作用力初探,水动力学研究与进展,2002,17(4):497~506
    [21]蔡树群,甘子钧,仇德忠.三次样条插值在浮性频率计算中的应用[J].热带海洋,1997,16(3):54~62.
    [22] Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T. Y. Tang, andY. J. Yang, Internal tide and nonlinear internal wave behavior at the continental slope in thenorthern South China Sea, IEEE J. Oceanic Eng.,2004,29:1105~1130.
    [23] Du T. Yu-Heng Tseng, and Xiao-Hai Yan, Impacts of tidal currents and Kuroshio intrusionon the generation of nonlinear internal waves in Luzon Strait,. J. Geophys. Res.,2008,113,C08015, doi:10.1029/2007JC004294
    [24]戴德君.若干地形下内波传播及内潮生成问题的理论解:[博士学位论文].青岛:中国海洋大学,2003
    [25] Emery W J, Thomson R E. Data Analysis Methods in Physical Oceanography.2nd ed. NewYork: Elsevier,2004.516C551.
    [26] Elgar S., and Guza R T, Statistics of bicoherence, IEEE Trans.Acoust., Speech, Signal Proc.,1988,36:1667~1668.
    [27]方文东,施平,龙小敏等,南海北部孤内波的现场观测.科学通报,2005,50(13):1400~l404
    [28]方欣华,杜涛,海洋内波基础和中国海内波,青岛:中国海洋大学出版社,2005
    [29] Fluent, Incorporated. Gambit2.3user’s guide. Fluent, Incorporated, Lebanon, NH,USA.,2006
    [30] Fan Z.S., Zhang Y.L., Song M. A study of SAR remote sensing of internal solitary waves inthe north of the South China Sea: Ⅰ. Simulation of internal tide transformation,ActaOceanologica Sinica2008a,27(4):39~56.
    [31] Fan Z.S., Zhang Y.L. Song M. A study of SAR remote sensing of internal solitary waves inthe north of the South China Sea: Ⅱ Simulation of SAR signatures of internal solitarywaves, Acta Oceanologica Sinica2008b,27(5):37~48.
    [32] Fan Z S, Shi X G, Liu A K, Liu H L, and Li P L. Effects of ebb and flood backgroundcurrents on nonlinear internal solitary waves in South China Sea. Chinese Journal ofOceanology and Limnology,2011, in press.
    [33] Fang G, Kwok Y K, Yu K, et al. Numerical simulation of principal tidal constituents in theSouth China Sea, Gulf of Tonkin and Gulf of Thailand. Cont Shelf Res,1999,19:845~869.
    [34]范植松,海洋内部混合研究基础,北京:海洋出版社,2002
    [35] Fringer, O. B., Gerritsen, M., Street, An unstructured-grid, finite-volume, nonhydrostatic,parallel coastal ocean simulator,Ocean Modelling,2006,14:139~173
    [36] Fett R W, Rabe K. Satellite observation of internal wave refraction in the South China Sea.Geophys Res Lett,1977,4(5):189~191.
    [37] Fu L. L., Observations and models of intertial waves in the deep ocean, Rev.,Geophys.,1981,19:141~170
    [38] Fu L. L. Holt B., Some examples of detection of oceanic mesoscale eddies by the SEASATsynthetic-aperture radar. J Geophys Res,1983,88:1844~1852.
    [39] Filonov A. E., and M. F. Lavn, Internal tides in the Northern Gulf of California, J. Geophys.Res.,2003,108(C5),3151, doi:10.1029/2002JC001460.
    [40] Hsu, M. K., and A. K. Liu, Nonlinear internal waves in the South China Sea, Canadian J.Rem. Sens.,2000,26:72~81
    [41] Grimshaw R, Pelinovsky E, Kurkin A,2004. Simulation of the transformation of internalsolitary waves on oceanic shelves. J. Phys. Oceanogr.,34:2774~2791.
    [42] Grimshaw R, Pelinovsky E and Talipova T. Modeling internal solitary waves in the coastalocean. Surveys in Geophysics,2007,28:273~298.
    [43] Grimshaw R, Evolution equations for long nonlinear waves in stratified shear flows [J],Stud. Appl. Math.,1985,65:159~188.
    [44] Grimshaw R, Pelinovsky E, Talipova T, Kurkina O. Internal solitary waves:propagation,deformation and disintegration, Nonlin. Processes Geophys,2010,17,633-649.
    [45] Guo P, Fang W D, Gan Z J, et al. Internal tide characteristics over northern South China Seacontinental slope. Chin Sci Bull,2006,51(Suppl. II):17~25, doi:10.1007/s11434-006-9017.
    [46] Gill A E. Atmosphere-Ocean Dynamics. New York: Orlando, Academic Press,1982.247~315.
    [47] Gonella J., A rotary-component method for analyzing meteorological and oceanographicvector time series. Deep-Sea Res.,1972,19:833~846.
    [48] Gerkema, T., C. Staquet, and P. Bouruet-Aubertot, Decay of semi-diurnal internal-tidebeams due to subharmonic resonance, Geophys. Res. Lett.,2006,33, L08604,doi:10.1029/2005GL025105.
    [49] Holloway, P. E., A regional model of the semidiurnal internal tide on the Australian NorthWest Shelf, J. Geophys. Res.,2001,106,19:625~19,638, doi:10.1029/2000JC000675
    [50] Holloway P E, Pelinovasky E and Talipova T. A generalised Korteweg-de-Vries model ofinternal tide transformation in the coastal zone. J. Geophys. Res.,1999,104:(C8)18333~18350.
    [51] Hibiya, T., M. Nagasawa, and Y. Niwa, Nonlinear energy transfer within the oceanicinternal wave spectrum at mid and high latitudes, J. Geophys. Res.,2002,107(C11),3207,doi:10.1029/2001JC001210.
    [52]韩桂军等,中国近海及邻近海域海洋再分析技术报告.国家海洋信息中心,2009
    [53]甘锡林,黄韦艮,杨劲松,李晓峰,楼琇林,史爱琴。利用多源遥感卫星数据研究南海内波的时空分布特征。遥感技术与应用,2007,22(2):242~245
    [54]甘锡林.合成孔径雷达海洋内波遥感研究:[硕士学位论文].杭州:国家海洋局第二海洋研究所,2007
    [55]蒋国荣,张军,施伟来,刘群燕编著,海洋内波及其对海战的影响,气象出版社,北京.,2009
    [56] Jan S, Chern C S, Wang J, et al. Generation of diurnal K1internal tide in the Luzon Straitand its influence on surface tide in the South China Sea. J Geophys Res,2007,112: C06019,doi:10.1029/2006JC004003
    [57] Kantha L.H. and Tierney C.C. Global baroclinic tides, Prog Oceanography,1997,40:163~178,
    [58] Klymak J M, Pinkel R, Liu C T, et al. Prototypical solitons in the South China Sea.Geophysical Research Letters,2006,33(11): L11607.
    [59] Konyaev, K. V., K. D. Sabinin, and A. N. Serebryany, Large-amplitude internal waves at theMascarene Ridge in the Indian Ocean. Deep-Sea Res. I,1995,42:2075~2091.
    [60] Karuss, K., Internal tides resulting from the passage of surface tides through an eddy filed.J. Geophys. Res.,1999,104:18,323~18,331.
    [61] Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. RahmstorfOn the driving processes of the Atlantic meridional overturning circulation, Rev. Geophys.,2007,45: RG2001, doi:10.1029/2004RG000166.
    [62] Kirby D. S., Barton E. D., MitehelsonJacob E. G. et a1. Synthetic aperture radar (SAR)remote sensing of wind driven circulation in the Gulf of Tehuantepee, Mexico. In: Proc3rdERS Symp. Florence, Italy: ESA Publication.1997. SP-4l4,1273-1277.
    [63] Lamb, K. G. Numerical experiments of internal wave generation by strong tidal flow acrossa finite-amplitude bank edge. J.Geophys. Res. Oceans,1994.99:843~864
    [64] Li, Qiang, David M. Farmer, Timothy F. Duda, Steve Ramp, Acoustical Measurement ofNonlinear Internal Waves Using the Inverted Echo Sounder. J. Atmos. Oceanic Technol.,2009,26:2228~2242.
    [65] Lien R C, Tang T Y, Chang M H, et al. Energy of nonlinear internal waves in the SouthChina Sea. Geophys Res Lett,2005,32: L05615, doi:10.1029/2004GL022012
    [66] Liu, A. K., Y. S. Chang, M. K. Hsu and N. K. Liang, Evolution of nonlinear internal wavesin the East and South China Seas, J. Geophys. Res.,1998.103:7995~8008.
    [67] Liu, A. K. and Zhao Y.H., Chapter1. Overview of Nonlinear Internal Waves in the SouthChina Sea,in“Satellite Remote Sensing of South China Sea”ed by Antony K.Liu,Chung-Ru Ho and Cho-Teng Liu,2008.1~24
    [68] Liu, A. K., Y. Zhao, T. Y. Tang, and S. R. Ramp, A case study of internal wave propagationduring ASIAEX-2001, IEEE J. Oceanic Eng.,2004,29:1144~1156.
    [69] Liu C.T., Yang Y., Wang D.W., et al., Chapter2. Generation of Nonlinear Internal Waves inLuzon Strait, in“Satellite Remote Sensing of South China Sea”ed by Antony K.Liu,Chung-Ru Ho and Cho-Teng Liu,2008:25~45.
    [70] Liu C T, Pink R, Hsu M K, Klymrk J M, Chen H W. Nonlinear Internal Waves From theLuzon Strait. EOS, Transactions, American Geophysical Union,2006,87(42):449~450.
    [71] Liao G. H., Yuan Y C, Arata K, et al. Analysis of internal tidal characteristics in the layerabove450m from acoustic Doppler current profiler observations in the Luzon Strait. SciChina Earth Sci,2010, doi:10.1007/s11430-010-4102-0.
    [72] Levine, M. D., A modification of the Garrett-Munk internal wave spectrum. J. Phys.Oceanorgr.,2002,32,3166C3181.
    [73]廖光洪,黄韦艮,袁耀初,徐晓华,杨成浩,王惠群,陈洪, eKdV方程的若干系数在南海北部的地理分布特征及其季节变化分析,海洋学报,2012,接收.
    [74]廖光洪,袁耀初,Kaneko A.,杨成浩,陈洪,Taniguchi N.,Gohda N., Masanori M.,吕宋海峡ADCP观测的450m以浅水层内潮特征分析研究,2011,41(1):124~140.
    [75] Lynett P. J. and Liu P. L.-F.,“A two-dimensional, depth-integrated model for internal wavepropagation over variable bathymetry,” Wave Motion,2002, vol.36(3):221~240.
    [76] Lyzenga D. R. Wackerman C.,Detection and classification of ocean eddies using ERS1andaircraft SAR images. In: Proc3rd ERS Symp. Florence, Italy: ESA Publication.1997.SP-414:1267~1271.
    [77]李俊德,南海北部陆坡区域海洋内波特征研究,硕士论文,国家海洋局第二海洋研究所,,2010:1~71.
    [78] Müller P, Olbers D J, Willebrand J. The IWEX spectrum. J Geophys Res,1978,83:479~500.
    [79] McComas, C. H., and F. P. Bretherton, Resonant Interaction of Oceanic Internal Waves, J.Geophys. Res.,1977,82(9):1397C1412, doi:10.1029/JC082i009p01397.
    [80] MacKinnon, J. A., and K. B. Winters, Subtropical catastrophe: Significant loss of low-modetidal energy at28.9, Geophys. Res. Lett.,2005,32: L15605, doi:10.1029/2005GL023376.
    [81] McWilliams J. C., The Nature and Consequences of Oceanic Eddies. In Matthew W. Hechtand Hiroyasu Hasumi, editors, Ocean Modeling in an Eddying Regime,2008, volume177of Geophysical Monograph Series,5~15. American Geophysical Union, Washington DC,USA.
    [82] Munk W, Phillips N. Coherence and band structure of inertial motion in the sea. RevGeophys Space Phys,1968,6:447~472.
    [83] Niwa Y, Hibiya T. Three-dimensional numerical simulation of M2internal tides in the EastChina Sea. J Geophys Res,2004,109: C04027, doi:10.1029/2003JC001923.
    [84] Nash J D. and Moum J N. River plumes as a source of large amplitude internal waves in thecoastal ocean, Nature.2005,437:400~403.
    [85] Orr, M. H., and P. C. Mignerey,Nonlinear internal waves in the South China Sea:observation of the conversion of depression internal waves to elevation internal waves, J.Geophys. Res.,2003,108(C3),3064, doi:10.1029/2001JC001163
    [86] Park, J.-H.,and D. R. Watts, Near-inertial oscillations interacting with mesoscale circulationin the southwestern Japan/East Sea, Geophys. Res. Lett.,2005,32, L10611,doi:10.1029/2005GL022936.
    [87] Polzin, Kurt L., Mesoscale EddyCInternal Wave Coupling. Part I: Symmetry, Wave Capture,and Results from the Mid-Ocean Dynamics Experiment. J. Phys. Oceanogr.,2008,38,2556C2574.
    [88] Polzin, Kurt L., Mesoscale Eddy–Internal Wave Coupling. Part II: Energetics and Resultsfrom PolyMode. J. Phys. Oceanogr.,2010,40:789~801. doi:10.1175/2009JPO4039.1.
    [89] Pelinovsky E, Talipova T, Ivanov V. Estimations of nonlinear properties of internal wavefield off the Israel coast. Nonlinear Process Geophys,1995,2:80~88.
    [90] Poloukhin N V, Pelinovsky E N, Talipova T G, et al. On the effect of shear currents on thevertical structure and kinematic parameters of internal waves. Oceanology,2004,44:22~29.
    [91] Pelinovsky E, Talipova T, Stepanyant Y. Modeling of nonlinear internal wave propagationin the horizontally inhomogeneous ocean, Izvestiya, Atmospheric and Oeeanic, Physics,1994,38:79~85.
    [92] Pawlowicz R, Beardsley R, Lentz S. Classical tidal harmonic analysis including errorestimates in MATLAB using T_TIDE. Compu Geosci,2002,28:929~937.
    [93] Phillips, O. M., The Dynamics of the Upper Ocean.2nd edition. Cambridge, CambridgeUniversity Press1980
    [94] Ramp, S. R., T. Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. L.Bahr, H.-R.Kim, and Y. J. Yang, Internal solitons in the northeastern South China Sea Part I: source anddeep water propagation, IEEE J. Oceanic Eng.,2004,29:1157~1181.
    [95] Rainville, Luc, Robert Pinkel, Baroclinic Energy Flux at the Hawaiian Ridge: Observationsfrom the R/P FLIP. J. Phys. Oceanogr.,2006,36:1104C1122.
    [96] Shaw, P.-T., D. S. Ko, and S.-Y. Chao, Internal solitary waves induced by flow over a ridge:With applications to the northern South China Sea, J. Geophys. Res.,2009,114:C02019,doi:10.1029/2008JC005007.
    [97] Shroyer E L., Moum J N. and Nash J D. Observation of polarity reversal in shoalingnonlinear internal waves. J. Phys. Oceanogr.2009,39:691~701.
    [98] Smith W H. and Sandwell D T. Global seafloor topography from satellite altimetry and shipdepth soundings, Science,1997,277(19):1957~1962.
    [99] Simmons, H.L., Hallberg, R.W., Arbic, B.K., Internal wave generation in a globalbaroclinic tide model. Deep-Sea Research II,2004,51,3043C3068.
    [100] Stastna, M., and K. G. Lamb. Sediment resuspension mechanisms associated with internalwaves in coastal waters. J. Geophys. Res,2008,113. C10016, doi:10.1029/2007JC004711.
    [101] Sumer, B. M., M. B. Sen, I. Karagali, B. Ceren, J. Freds e, M. Sottile, L. Zilioli, and D. R.Fuhrman, Flow and sediment transport induced by a plunging solitary wave, J. Geophys.Res.,2011,116, C01008, doi:10.1029/2010JC006435.
    [102] Shi X G, Fan Z S, A numerical calculation method for eigenvalue problems of nonlinearinternal waves. Journal of Hydrodynamics,2009,21(3):373~378.
    [103] Torrence, C., and Compo G P., A Practical Guide to Wavelet Analysis,Bull.Am.Meteorol.Soc.,(1998),79(1):61~78.
    [104]石新刚,范植松,李培良.正压潮流对南海东北部深水海域大振幅内孤立波影响的数值模拟.中国海洋大学学报,2009,39(sup. II):297~302.
    [105] Vlasenko, V. I., and K. Hutter, Generation of second mode solitary waves by the interactionof a first mode soliton with a sill. Nonlinear Proc. Geophys.,2001,8:223~239.
    [106] Vlasenko, Vasiliy, Kolumban Hutter, Numerical Experiments on the Breaking of SolitaryInternal Waves over a Slope–Shelf Topography. J. Phys. Oceanogr.,2002,32:1779~1793.
    [107] Vlasenko V. I., Stashchuk N. and Hutter K. Baroclinic Tides: Theoretical Modeling andObservational Evidence. Cambridge University Press,2005.
    [108] Van Haren, H., L. Maas, and H. van Aken, On the nature of internal wave spectra near acontinental slope, Geophys. Res. Lett.,2002,29(12):1615, doi:10.1029/2001GL014341.
    [109] Van Haren, H., Shear at the critical diurnal latitude, Geophys. Res. Lett.,2007,34,L06601,doi:10.1029/2006GL028716.
    [110] Wang, G., Su, J., Chu, P. C.,2003. Mesoscale eddies in the South China Sea observed withaltimeter data, Geophys. Res. Lett.,30(21),2121, doi:10.1029/2003GL018532
    [111] Warn-Varnas, A., J. Hawkins, K. G. Lamb, S. Piacsek, S. Chin-Bing, D. King and G. Burgos.Solitary wave generation dynamics at Luzon Strait. Ocean Modelling.2010.31:9~27.doi:10.1016/j.ocemod.2009.08.002
    [112] Winters K. B., Mackinnon J. A., and Mills B. A Spectral Model for Process Studies ofRotating, Density-Stratified Flows, J. A tmospheric and Oceanic Technology,2004,21:69~94
    [113] Wunsch,C.,and R.Ferrari, Vertical mixing energy, and the general circulation of the oceans,Annu.Rev.Fluid Mech.,2004,36:281~314
    [114] Xie J. S., Cai S.Q. and He Y. H. A continuously stratified nonlinear model for internalsolitary waves in the northern South China Sea, Chinese Journal of Oceanology andLimnology,2010,28(5):1040~1048, DOI:10.1007/s00343-010-9077-3
    [115] Xie, X.-H., G.-Y. Chen, X.-D. Shang, and W.-D. Fang, Evolution of the semidiurnal (M2)internal tide on the continental slope of the northern South China Sea, Geophys. Res. Lett.,2008,35, L13604, doi:10.1029/2008GL034179
    [116] Xie, X.-H., X.-D. Shang, H. van Haren, G.-Y. Chen, and Y.-Z. Zhang, Observations ofparametric subharmonic instability-induced near-inertial waves equatorward of the criticaldiurnal latitude, Geophys. Res. Lett.,2011,38, L05603, doi:10.1029/2010GL046521
    [117] Xing, J., and A. M. Davies, Processes influencing the non-linear interaction betweeninertial oscillations, near inertial internal waves and internal tides, Geophys. Res. Lett.,2002,29(5),1067, doi:10.1029/2001GL014199
    [118] Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao, A census of eddy activities in the South ChinaSea during1993-2007, Journal of Geophysical Research,2010115, C03012,doi:10.1029/2009JC005657.
    [119] Xu Q., Zheng Q. A., Lin H., Liu Y.G., Song Y.T., Yuan Y.L., Dynamical analysis ofmesoscale eddy-induced ocean internal waves using linear theories. Acta OceanologicaSinica,2008,27(3):60~69
    [120] Xu Z.H, Yin B.S and Hou Y.J, Highly nonlinear internal solitary waves over thecontinental shelf of the northwestern South China Sea, Chinese Journal of Oceanology andLimnology,2010,28(5):1049~1054, DOI:10.1007/s00343-010-9018-1
    [121] Yanagi T, Takao T. A numerical simulation of tides and tidal currents in the South ChinaSea. Acta Oceanogr Taiwan,1998,37:17~29
    [122] Yang, Y.-J., T. Y. Tand, M. H. Chang, A. K. Liu, M.-K. Hsu, and S. R. Ramp, Solitonsnortheast of Tung-sha Island during the ASIAEX Pilot Studies, IEEE J. Oceanic Eng.,2004,29:1182~1199
    [123] Yuan, Y. L., Q. Zheng, D. Dai, X. Hu, F. Qiao, and J. Meng, Mechanism of internal wavesin the Luzon Strait, J. Geophys. Res.,2006,111, C11S17,doi:10.1029/2005JC003198.
    [124] Yuan Y C, Liao G H, Guan W B. The circulation in the upper and middle layers of theLuzon Strait during spring2002. J Geophys Res,2008,113: C06004, doi:10.1029/2007JC004546
    [125]袁耀初,廖光洪,王惠群等.采用观测与卫星资料得到的地转流和谱分析研究2002年春季吕宋海峡海流的变化.中国科学:地球科学,2009,39:370~381
    [126] Zheng, Q., R. D. Susanto, C. Ho, Y. T. Song and Q. Xu, Statistical and dynamical analysesof generation mechanisms of solitary internal waves in the northern South China Sea, J.Geophys. Res.,2007,112, C03021, doi:10.1029/2006JC003551
    [127] Zhao Z.X. and Alford M. H., Source and propagation of internal solitary waves in thenortheastern South China Sea, J. Geophys. Res.,2006,111,C11012,doi:10.1029/2006JC003644
    [128] Zhao Z, Klemas V, Zheng Q, et al. Remote sensing evidence for baroclinic tide origin ofinternal solitary waves in the northeastern South China Sea. Geophys Res Lett,2004,31:L06302, doi:10.1029/2003GL019077
    [129]张婵.合成孔径雷达海洋内波极性转换与参数的统计特征研:[硕士学位论文].杭州:国家海洋局第二海洋研究所,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700