提高重轨力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为全面了解鞍钢生产的重轨的化学成分和力学性能的情况,对2004年7月~2006年2月鞍钢生产的重轨的化学成分和力学性能进行了统计分析,最终明确了与化学成分相关的性能回归方程。根据实验找出影响重轨冲击韧性的各种因素,提出解决措施,提高重轨的冲击韧性合格率。结果表明:
     (1)鞍钢大型厂生产的重轨化学成分范围窄,P、S含量低。U75V作为高强度重轨,其抗拉强度比U71 Mn重轨高90MPa左右,延伸率低约1%。近年来,鞍钢重轨生产工艺的改造及生产水平的提高,已经使重轨的内在质量有了明显的提高,性能也更加稳定。
     (2)C、Si、Mn、P、S这5种常规元素的微小变化,对重轨性能仍有一定的影响,我们可以通过对化学成分的优化来进一步提高重轨的抗拉强度和延伸率等力学性能。
     (3)实验得出的回归方程描述了鞍钢的重轨生产工艺现状,是适合鞍钢现行工艺的有效回归方程。利用该回归方程可以由具体化学成分推出其相关性能,为简化检验提供了可能。
     (4)终轧及开轧温度是影响重轨冲击韧性的主要因素,降低终轧温度可提高冲击韧性。
     (5)重轨在加热炉中的加热时间和加热温度对重轨冲击韧性有较大影响,均热时间短、加热温度低有利于提高其冲击韧性。
     (6)缓冷工艺和装炉方式对重轨冲击韧性也有较大影响,采用缓冷工艺和冷装炉能提高重轨的综合机械性能。以上结论对重轨的生产具有一定的指导意义。
In order to comprehensively under stand the conditions of chemical composition and mechanical properties of the steel rails produced in Angang, the ones produced from July, 2005 to Feb.,2006 are statisticed and analyzed. At last property regression equation related to chemical composition was expressed. Moreover through the experiment we can find out the every kind of factor affect the impact tenacity of heavy rails, and brought up the measure to solve the problem, and increased the qualified rate of the impact toughness of the heavy rails. Conclusions were gained as follows:
     (1) The chemical composition range of heavy rail that produced by Angang large mill was narrow, the content of P and S is little, U75V as the high strength heavy rail, its tensile strength is higher about 90MPa than U71Mn heavy rail, its elongation percentage is lower about 1%. In recent year, the improving of the process and the increasing of product level of Angang heavy rail made the inherent quality of heavy rail increased obviously and the performance steady.
     (2) The little change of element of C、Si、Mn、P、S will influence the property of the heavy rail, we can improve the tensile strength and elongation percentage of the heavy rail by the way of optimizing the chemical composition.
     (3) The regression equation we got described the process present state of Angang heavy rail is adapted to the effective regression equation used by Angang. Using this regression equation can presume the property by the specific chemical composition, it supply the possibility of simplying the check.
     (4) The finishing temperature and beginning temperature is the chief factor of influencing the heavy rail's impact toughness. Reducing the finishing temperature can increasing the impact toughness.
     (5) The heating time and heating temperature in the heating furnace influenced the impact toughness of the heavy rail widely, reducing the soaking time and heating temperature can increase the impact toughness.
     (6) Slowing cool process and the way of charging also effect the impact toughness, using the Slowing cool process and cold charging can increase the whole mechanical property. All of the above conclusions are useful to guiding the product of heavy rail.
引文
铩颷1]沈宏峻,Shen Hongjun.城市轨道交通中的“轻轨“与”重轨.城市轨道交通研究,1998 Vol.1.
    [2]周壹平,严学模,战东平等.我国重轨钢冶炼技术的发展.材料与冶金学报,2004 Vol.3.王笑天.《金属材料学》.机械工业出版社,1991.
    [3]戚正风.《金属热处理原理》.机械工业出版社,1992.
    [4]周清跃,张银花,陈朝阳.高速铁路用钢轨的若干问题.铁道建筑技术,2004,(2):54-62.
    [5]中华人民共和国铁道部.200km/h客运专线60kg/m钢轨暂行技术条件.中国铁道出版社,1998,2-5.
    [6]中华人民共和国铁道部.300km/h客运专线60吨/m钢轨暂行技术条件.中国铁道出版社,1998.2-5.
    [7]董志洪.世界H型钢与钢轨生产技术.北京冶金工业出版社,1999.
    [8]中华人民共和国铁道部.350km/h客运专线60kg/m钢轨暂行技术条件.中国铁道出版社,2004.5-7.
    [9]孙浩.攀钢万能轧机生产重轨工艺装备及技术优势.四川冶金,2005,27(3):25-27.
    [10]Belaiew NT.Mineralogical Magazine,1924,20:173.
    [11]A.R.Marderand Branefitt.MetallTrans,1976,7(1801).
    [12]J.M.Hyzak and I.M.Bernstein.Metall Trans,1976,7(1217).
    [13]A.R.Marder and B.L.Branefitt.Metall Trans,1976,7(365).
    [14]G.Lanyford.Metall Trans,1977,8A(881).
    [15]D.Rarter.et al Acta Met,1978,6(1405).
    [16]J.H.Hyzake.et al Metall Trans,1976,7A(1).
    [17]G.K.Bouse.et al ASTM STP,699(195-166).
    [18]俞德刚、谈育煦.钢的组织强度学.上海科学技术出版社,1998.
    [19]Alberto J.Perez Unzueta and John H.Beynon.Microstructure and wear resistanceof pearlitic rail steels.Department of Engineering,University of LeicesterWear,1993,162-169(173-182).
    [20]M.F.Ashby.Strengthening Method in Crystals.1971(1137).
    [21]苏世坏.在线热处理工艺模拟试验研究[硕士论文].北京科技大学, 1993.
    铩颷22]王树青,周清跃等.钢轨全长淬火后的力学性能与使用效果的关系研究.机械工程材料,1999,18(6).
    [23]朱晓东.奥氏体化状态和钒对珠光体型钥轨钥韧性的影响.北京科技大学学报,1996,12,18(6).
    [24]赵志业.金属塑性变形与轧制理论.冶金工业出版社,1989.
    [25]刘永诠.钢的热处理.冶金工业出版社,1991.
    [26]候增寿.金属学原理.上海科学技术出版社,1986.
    [27]吉玉,袁伟霞,易卫东等.连铸重轨钢的生产工艺及产品性能.炼钢,2003Vol.19.
    [28]陈亚平,陶功明,张昆吾.高速铁路用钢轨轧制工艺开发.四川冶金,2003Vol.25.
    [29]杜斌,贾照威.短流程重轨生产工艺在鞍钢大型厂的应用.中国冶金,2004No.7.
    [30]唐因、古兵平、刘善青等.钢轨试验方法的研究.冶金分析,2004 Vol.24.
    [31]中华人民共和国铁道部.TB/T2344-2003《43Kg/m-75 Kg/m热轧钢轨订货技术条件》.中国铁道出版社,2003.
    [32]王君成,卫开旗.对改进重轨全长淬火质量的探讨.昆明冶金高等专科学校学报,2002 Vol.18.
    [33]纪绯绯.冷却工艺对75kg/m重轨组织性能的影响.钢铁研究,2003 Vol.32.
    [34]王永明,李凯,涛雅.重轨钢成分与性能相关关系研究.轧钢,2002 Vol.19.
    [35]韩曙光,薛念福,孙浩.重轨钢坯加热工艺优化研究.钢铁,2002 Vol.37.
    [36]李慧琴,杨慧,王贵.U74重轨钢CCT曲线测定及显微组织研究.兵器材料科学与工程,2002 Vol.25.
    [37]李宏.美国城市中的轨道运输.铁道工程学报,2001 No.3.
    [38]吴晓东,贾光勇.攀钢与新时期铁路运输.四川冶金,2001 Vol.23.
    [39]钱健清.对马钢开发高速重轨的分析.钢铁研究,2000 No.06.
    [40]李佳.万能法轧制重轨及其在马钢的应用.轧钢,1999 No.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700