损伤转子动力学特性及故障特征提取的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步和现代工业的发展,旋转机械在电力、能源、交通、国防和化工等领域中得到了广泛应用并发挥着越来越重要的作用,对旋转机械动力学特性的研究也逐渐得到了人们的重视。复杂旋转机械,时常由于各种线性或非线性因素激发起各种故障,进而会使机器发生严重事故,甚至是机毁人亡的重大事故。因此,研究转子系统故障机理和诊断技术有着十分重要的意义,目前国内外科技工作者在这些方面进行了大量的研究,并取得了丰硕成果。
     本课题以沈阳鼓风机集团有限公司与东北大学联合进行的“大型压缩机转子振动实验系统”项目为背景,以试验台轴系为研究对象。首先利用闻邦椿教授提出的面向产品广义质量的1+3综合设计法对轴系进行了设计和校核,确定了系统的一些动力参数;然后利用非线性有限元方法研究了考虑碰摩故障、裂纹故障以及裂纹—碰摩耦合故障的多盘悬臂转子—轴承系统的动力学特性,并利用小型转子试验台对转子—轴承系统的若干故障进行了模拟实验,对实验所测的带有各种故障的振动信号进行了详细的时频故障特征提取;最后对碰摩转子响应时间序列的混沌特性进行了研究。本文具体研究内容如下:
     (1)利用闻邦椿教授提出的面向产品广义质量的1+3综合设计法对试验台轴系进行了设计,首先把试验台轴系作为一个产品,进行产品功能优化设计,形成初步的轴系设计图纸,接着对设计的轴系进行了动态优化设计并对碰摩系统进行了智能优化设计,最后,对轴系进行了可视优化设计。
     (2)介绍了求解非线性问题的非线性有限元方法,利用非线性有限元方法研究了单点碰摩、局部弧形碰摩和整周碰摩情况下转子的动力学特性,并考察了碰摩间隙、碰摩刚度、碰摩位置和偏心量等参数对系统动力学特性的影响。研究发现单点碰摩主要是冲击碰撞,频率成分以高倍频成分为主,局部弧形碰摩则碰撞和摩擦都很严重,频率成分低频和高频并存,随着碰摩的弧形区域的加大,出现了更低的频率成分,整周碰摩则以摩擦为主,幅值谱图出现连续谱。
     (3)利用非线性有限元方法对转轴出现的裂纹故障进行了研究,并考察了裂纹深度和裂纹位置对系统动力学特性的影响。研究发现浅裂纹对系统动力学影响不大,当裂纹扩展到半径深度以后,对系统的动力学特性有很大影响,裂纹位置在远离叶轮时,主要以2X为主,裂纹位置逐渐靠近叶轮时,主要以5X为主;但裂纹激起的主要是规则的高倍频成分。
     (4)利用非线性有限元方法对裂纹—碰摩耦合故障进行了研究,研究表明当裂纹加深时,引发的碰摩更加严重,从轴心轨迹可以清楚看到碰摩引起的反进动。对于弧形碰摩和整周碰摩,幅值谱图上均有连续谱出现,其中5X比较明显。
     (5)利用小型转子试验台,对转子系统经常发生的转定子碰摩、转轴裂纹、裂纹—碰摩和油膜失稳—轴承碰摩耦合故障进行了实验研究,对测得的振动信号,利用三维谱振图、重排小波尺度图、幅值谱图、轴心轨迹进行了故障特征提取。对单点碰摩研究表明,频率成分主要以高倍频成分为主,出现的频率成分越高,表明碰摩越严重;局部弧形碰摩研究表明,在临界转速前发生的碰摩主要以低频成分为主,产生的频率系列越低,表明碰摩越严重,在临界转速附近发生的碰摩低频和高频成分并存,且当碰摩较轻时以高倍频为主,严重时出现不可公约的低频成分和有色噪声成分。
     (6)对裂纹—碰摩耦合故障的研究表明,碰摩较轻时以规则的X/2谐波系列为主,当碰摩加重时产生X/4谐波系列,再加重时幅值谱图产生连续谱。通过小波分解后,再利用重排小波尺度进行故障特征提取,可以有效的提取碰摩引起的冲击成分,研究结果表明发生轻微碰摩时,一周碰一次且碰摩程度一次轻一次重交替出现。
     (7)对发生油膜失稳—轴承碰摩故障进行了研究,结果表明油膜失稳前引发的碰摩主要以高倍频成分为主;油膜失稳后引发的轻微碰摩出现组合频率成分,但成分较少;油膜失稳后引发的严重碰摩时出现较多的组合频率;其中出现较低的组合频率时,暗示系统发生油膜振荡,此时的碰摩也是最严重的。
     (8)对碰摩转子响应时间序列的混沌特性进行了研究。首先利用代替数据法对实验和仿真数据进行非线性识别,接着计算其最大Lyapunov指数、关联维数、复杂度、近似熵和混沌度等非线性参数。结果表明,对碰摩仿真数据而言,碰摩严重时系统所具有的非线性参数,均较轻微碰摩时大。利用关联维数、复杂度和近似熵对碰摩实验数据进行分析,结果表明关联维数对碰摩程度敏感度最高,近似熵次之,复杂度再次之,最大Lyapunov指数最差。
     (9)通过对裂纹—碰摩实验数据在3个不同碰摩阶段的实验数据利用混沌指数进行分析表明,在14s~15s和17s~18s的碰摩具有相近的混沌指数,同属于轻微碰摩阶段;而在18s~19s的碰摩混沌指数最大,表明系统碰摩最严重。
With the development of science & technology and modern industry, rotating machinery is taking more and more important part in many fields such as power system, transportation, national defense and chemical industry, etc., consequently, the study of the dynamics of rotating machinery receives more and more recognition. A complicated machine system may vibrate violently due to nonlinearity that inherently exists in the system and multi-kind of faults, catastrophic disasters may occur if the vibration is violent enough, which can cause the machine to destroy and the operators to death. So it signifies much to study the nonlinear dynamics of rotor systems with faults or malfunctions and the technology to diagnosis the faults. Researchers all over the world made much study in these fields and made great progress.
     The dissertation takes the project, Vibrating Test System of Large Scale Air-compressor Rotor, conducted by the Shenyang Blower (Group) Ltd. Corp and Northeastern University, as the background and Test Rotor-Bearing System is regard as the research subject. Firstly, "1+3 Synthesis Design Method for Product-Oriented generalized mass" presented by professor Bangchun Wen is used to design and check the test rotor-bearing system and some dynamic parameters are determined. Subsequently, the dynamic characteristics of multi-disk over-hung rotor-bearing system with rub-impact fault, crack fault and the coupling fault with crack and rub-impact are studied by nonlinear finite element method and some faults of rotor-bearing system are simulated by small-size rotor test rig. The time-frequency features of the various fault vibration signals collected by experiment are extracted in detail. Finally, the chaotic characteristics of response time series of rub-impact rotor system are researched. The main research contents are as follows:
     (1) "1+3 Synthesis Design Method for Product-Oriented generalized mass" presented by professor Bangchun Wen is used to design the test rotor-bearing system. Firstly, the function optimization design of the test rotor-bearing system is performed, subsequently, the dynamic optimization design of the test rotor-bearing is performed and the rub-impact system of the test rotor-bearing system is designed by intelligent optimization method. Lastly, the visual optimization of the test rotor-bearing system is carried out.
     (2) Introduce the principal theory of modern contact mechanics and the nonlinear finite element method for solving the contact problems, the dynamic characteristics of rotor system are studied by nonlinear finite element method under three kinds of rub-impact conditions, namely the single rub-impact, local arc-shaped rub-impact and the annular rub-impact. And the effects of the clearance between rotor and stator, stiffness of stator, the position of rub-impact and the eccentricity are investigated. The results show that the single rub-impact mainly arouses impact and the frequency components are mainly high-level double frequency; local arc-shaped rub-impact mainly arouses impact and rubbing, the frequency components include low frequency components and high frequency components and the lower frequency components appear with the broadening of rub-impact arc-shaped region; the annular rub-impact mainly arouses rubbing and continuous spectrum appears in the amplitude spectrum.
     (3) The rotor crack fault is studied by nonlinear finite element method and the effects of crack depth and position are investigated. The results show that shallow crack has little effect on dynamic characteristics of rotor system. When the crack propagates radius depth, the system dynamic characteristics will greatly change. When the crack position keeps away from impeller, the amplitude of 2X is secondary to that of 1X(X denotes rotating frequency). When the crack position is close to impeller, the amplitude of 5X is secondary to that of 1X. The frequency components caused by crack are mainly regular high frequency components.
     (4) Finally, the coupling fault with crack and rub-impact is studied by nonlinear finite element method. The research results show that the rub-impact aggravates and backward whirl can be clearly seen from the trajectory. For arc-shaped rub-impact and annular rub-impact, the continuous spectra all appear and the 5X frequency component is comparatively obvious.
     (5) The dynamic characteristics of rotor-system with rotor-stator rub-impact, rotor crack, coupling fault with crack and rub-impact and coupling fault with oil-film instability and bearing rub-impact are studied by experiments. The fault features of the collected vibration signals are extracted by spectrum cascade, reassigned wavelet scalogram, amplitude spectrum and trajectory.The results show that frequency components are mainly high-level double frequency for the single rub-impact. The arisen frequency component is higher, the rub-impact degree is more serious. The local arc-shaped rub-impact research shows that the frequency components are mainly low frequency components and the frequency is lower the rub-impact is more serious when rub-impact occurs before the critical speed. Low frequency and high frequency components all exist, high frequency components are main in slight rub-impact stage and irreducible low frequency and color noise components appear in serious rub-impact stage.
     (6) The research result for coupling fault with crack and rub-impact shows that the frequency components are mainly X/2 harmonic series in slight rub-impact stage, X/4 harmonic series appear when rub-impact aggravates and continuous spectra appear in amplitude spectra plot when rub-impact becomes serious. The wavelet-decomposed signals are analyzed by reassigned wavelet scalogram, which can effectively extract the impact components caused by rub-impact. The analyzed results show that rub-impact appear once in a rotation period and one times slight rub-impact and next times serious rub-impact appear alternately.
     (7) The coupling fault with oil-film instability and bearing rub-impact is studied. The results show that the frequency components are mainly high-level doubling frequency components when rub-impact appears before oil-film instability; the slight bearing rub-impact caused by oil-film instability will arouse the combination frequency components of rotating frequency and oil whirl frequency and the combination frequency components are few; the serious bearing rub-impact will caused many combination frequency components; the appearance of the lower combination frequency component suggests that oil whip appears and at this time rub-impact is also most serious.
     (8) Chaotic characteristics of rub-impact rotor system response time series are studied. Firstly, Surrogate data method is used to carry out nonlinear identification of experimental and simulation data of rub-impact rotor system, subsequently, the nonlinear parameters, such as maximal Lyapunov exponent, correlation dimension, complexity, approximate entropy and chaotic degree, are computed. The results show that the nonlinear parameters of serious rub-impact are greater than these of slight rub-impact; correlation dimension is most sensitive for rub-impact degree, approximate entropy is secondary to complexity is tertiary and maximal Lyapunov exponent is most insensitive.
     (9) The experiment data of coupling fault with crack and rub-impact in three different rub-impact stages are analyzed by chaotic exponent. The results show that the chaotic exponents are approximate in 14s-15s and 17s~18s and they are all in slight rub-impact stage; the chaotic exponent is maximum in 18s~19s,which shows that rub-impact is most serious.
引文
1. 闻邦椿,顾家柳,夏松波,等.高等转子动力学—理论、技术与应用[M].北京:机械工业出版社,2000
    2. 张文.转子动力学理论基础[M].北京:科学出版社,1990
    3. 钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987
    4. 闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与实验[M].北京:科学出版社,2004
    5. 韩捷,张瑞林,等.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1999
    6. 陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999
    7. 黄文虎,夏松波,刘瑞岩,等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996
    8. 沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,2006
    9. 陈大禧,朱铁光.大型回转机械故障诊断现场实用技术[M].北京:机械工业出版社,2002
    10.孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9
    11.黄文虎,武新华,焦映厚,等.非线性转子动力学研究综述[J].振动工程学报,2000,13(4):497-509
    12.顾家柳,夏松波,张文.转子动力学研究的现状及展望[J].振动工程学报,1988,1(2):63-70
    13.高伟,张新江,张勇.非线性转子动力学问题综述[J].东南大学学报,2002,32(3):443-451
    14.姚红良,刘长利,李鹤,闻邦椿.采用瞬态传递矩阵法分析复杂转子系统碰摩故障[J].东北大学学报(自然科学版),2004,25(1):62-65
    15.夏南,孟光.带同心SFD的双盘悬臂柔性转子的稳态圆响应和稳定性分析[J].西北工业大学学报,1999,17(2):192-197
    16.祝长生.挤压油膜阻尼器对多盘转子高阶模态振动控制的实验研究[J].机械强度,1996,18(2):13-15
    17.秦卫阳,孟光.裂纹转子系统响应的阵发性混沌与时域分叉现象[J].上海交通大学学报,2002,36(6):824-828
    18.赵荣珍,宋曦.三支承多质量盘转子轴承系统稳定性实验研究[J].陕西工学院学报,2000,16(4):7-11
    19.赵荣珍,张优去,孟凡明.双跨转子轴承系统耦合实验研究[J].润滑与密封,2003,13(3):7-11
    20.秦卫阳,孟光,任兴民.双盘裂纹转子的非线性动态响应与混沌[J].西北工业大学学报,2002,20(3):378-382
    21. 夏南,孟光,冯心海.双盘悬臂柔性转子—挤压油膜阻尼器系统的突加不平衡和加速响应特性[J].机械强度,2000,22(1):30-32
    22.邓小文,廖明夫,Robert Liebich, Robert Gasch.双盘转子碰摩的弯曲和扭转振动实验研究[J].航空动力学报,2002,17(2):205-211
    23. Newkirk B L, Taylor H D. Shaft whipping due to oil action in journal bearing[J]. General Electric Review,1925,28:559-568.
    24.虞烈,刘恒.轴承-转子动力学[M].西安:西安交通大学出版社,2001
    25.汪慰军,杨世锡,吴昭同,曾复等.转子—轴承系统油膜失稳的Hopf分岔机理[J].中国机械工程,1999,10(3):264-266
    26.荆建平,孙毅,李剑钊,夏松波.连续转子轴承系统的非线性动力学行为研究[J].热能动力工程,2002,17(102):607-610
    27.王延博,张学延,寇胜利.汽轮发电机组轴系-支撑系统油膜失稳问题探讨[J].汽轮机技术,1999,41(3):146-149
    28. DE bently. Forward subrotative speed resonance action of rotating machinery[J]. IN:Proc. of the 4th Turbo-machinery symposium. Texas A&M University. College station. Texas:1975:103-113
    29. A Muszynska. Tracking the mystery of oil whirl [J]. Sound and vibration,1987, (2):8-12
    30.陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析[J].应用力学学报,1998,15(1):113-117
    31. Muszynska A. Whirl and whip rotor/bearing stability problem[J]. Journal of Sound and Vibration. 1986,110 (3):443-462
    32.温诗铸.摩擦学原理[M].北京:清华大学出版社,1990
    33.闻欣荣,孔建益.滑动轴承中非线性油膜力引起转子的涡动研究[J].湖北工学院学报,2003,18(2):73-74
    34.袁小阳,朱均.不平衡转子-滑动轴承系统稳定性的非线性研究[J].振动与冲击,1996,15(1):71-76
    35. 韩清凯,任云鹏,刘柯,等.转子系统油膜失稳故障的振动实验分析[J].东北大学学报(自然科学版),2003,24(10):959-961
    36.刘长利,姚红良,张晓伟,等.碰摩转子轴承系统非线性振动特征的实验研究[J].东北大学学报(自然科学版),2003,24(10):970-973
    37.丁千,郎作贵,曹树谦.双跨柔性转子—轴承系统动力学理论与实验研究[J].工程力学,2005,22(2):162-167
    38.李录平,黄志杰,邹新元,等.轴承动态标高变化引起的转子油膜失稳的实验研究[J].汽轮机技术,2003,45(1):31-33
    39. Gasch R et al. Dynamic behavior of the Laval rotor with a cracked hollow shaft-a comparison of crack models [A]. IMechE,1988, C314/88:463-471
    40. Mayes I W et al. Analysis of the response of a Multi-rotor-bearing system containing a transverse crack in a rotor [J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1984, 106:139-145
    41.高建民等.转轴上裂纹开闭模型的研究[J].应用力学学报,1992,9:108-112
    42. Nelson H D et al. The dynamic of a rotor system with a cracked shaft[J], ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1986,108:189-196
    43.陈永国,赵玫,朱厚军.横向裂纹转子几种裂纹开闭模型的比较[J].华北水利水电学院学报,2000,21(4):34-38
    44. Meng Guang. The nonlinear influences of whirl speed on the stability and response of a cracked rotor[J]. Journal of Machine Vibration,1992,4:216-230
    45. A.K. Darpe, K. Gupta, A. Chawla. Transient response and breathing behaviour of a cracked Jeffcott rotor[J]. Journal of Sound and Vibration,2004,272:207-243
    46. Henry T A et al. Vibrations in cracked shafts [A]. IMechE,1976,15-19
    47. Dimarogonas AD, Papadopoulos CA. Vibration of cracked shaft in bending [J]. Journal of Sound and Vibration,1983,91(4):583-593
    48. Ichimonji M, Watanabe S. The dynamics of a rotor system with a shaft having a slant crack (a qualitative analysis using a simple rotor model)[J]. JSME International Journal, Series Ⅲ,1988, 31(4):712-718
    49. Meng G, Hahn EJ. Dynamic response of a cracked rotor with some comments on crack detection[J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power,1997,119(2): 447-455
    50. Schmied J, Kramer E. Virbrational behavior of a rotor with cross-sectional crack [A]. IMechE Conference Publications:Vibrations in Rotating Machinery,1984, C279/84:183-192
    51. Sekhar A S. Vibration characteristics of a cracked rotor with two open cracks [J]. Journal of Sound and Vibration,1999,223(4):497-512
    52. Imam I, Azzaro SH, Bankert RJ, et al. Development of an on-line rotor crack detection and monitoring system [J]. Transaction of the ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design,1989,111(3):241-250
    53. Bachschmid N, et al. The influences of unbalance on cracked rotors [A]. IMechE Conference Publications:Vibrations in Rotating Machinery,1984, C304/84:483-488
    54. Schmied J, et al. Vibrational behavior of a rotor with a cross-sectional crack[A]. IMechE Conference Publications:Vibrations in Rotating Machinery,1984, C279/84:183-192'
    55.郑吉兵,孟光.考虑非线性涡动时裂纹转子的分岔与混沌特性[J].振动工程学报,1997,10(2):190-197
    56. Qin W Y, Meng G, Zhang T. The swing vibration, transverse oscillation of cracked rotor and the intermittence chaos [J]. Journal of Sound and Vibration,2003,259(3):571-583.
    57.于涛.损伤转子动力学及诊断技术关键问题的研究[D].沈阳:东北大学,2007
    58. A. S. Sekhar, B. S. Prabhu. Condition monitoring of cracked rotors through transient response [J]. Mech. Mach. Theory.1998,33(8):1167-1175
    59. A.S. Sekhar. Detection and monitoring of crack in a coast-down rotor supported on fluid film bearings [J]. Tribology International,2004,37:279-287
    60. Ming-chuan Wu, Shyh-chin Huang. Vibration and crack detection of rotor with speed- dependent bearings [J]. Int. J. Mech. Sci,1998,40(6):545-555
    61. A.S. Sekhar. Crack identification in a rotor system:a model-based approach [J]. Journal of Sound and Vibration 2004,270:887-902
    62. S. Ratan, H. Baruh, J. Rodriguez. On-line identification and location of rotor cracks [J]. Journal of Sound and Vibration,1996,194(1):67-82
    63. G.M. Dong, J.Chen, J. Zou. Parameter identification of a rotor with an open crack [J]. European Journal of Mechanics A/Solids,2004,23:325-333
    64.汤炳新.转子裂纹故障诊断方法及高速平衡新技术研究[D].沈阳:东北大学,1994
    65. Suh M.-W., Shim M.-B, Kim M-Y. Crack identification using hybrid neuro-genetic technique [J]. Journal of Sound and Vibration,2000,237(2):319-335
    66. Chinchalkar. S. Determination of crack location in beams using natural frequencies [J]. Journal of Sound and Vibration,2001,247(3):417-429
    67. Muzsynska A. Partial lateral rotor to stator rubs[J]. Proc. of third international conference of vibration in rotation machinery, C281/84, Mech, Yorkshire, UK,1984:327-335
    68. Muszynska A. Stability of whirl and whip in rotor bearing system [J]. Journal of Sound and Vibration, 1988,127(1):49-64
    69. Beatty R F. Differentiation on rotor response due to radial rubbing[J], Trans. ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1985, (107):151-160
    70.袁惠群.转子系统的若干非线性动力学问题及分岔与混沌研究[D].沈阳:东北大学,2000
    71.袁惠群.转子—机匣局部碰摩的分岔与混沌行为分析[J].应用力学学报,2001,18(SI):59-63
    72.袁惠群.发电机转子同步稳定性的非线性分析[J].东北大学学报.2001,22(4):405-408
    73.袁惠群.非线性碰摩力对碰摩转子分岔与混沌行为的影响[J].应用力学学报,2001,18(4):17-21
    74.袁惠群.非线性转子局部碰摩故障的分岔与混沌行为[J].东北大学学报,2000,21(6):610-613
    75.杨积东.转子系统故障的若干非线性动力学问题研究[D].沈阳:东北大学,2001
    76. Goldman P, Muszynska A. Analytical Model of the Impact Between Rotating and Nonrotating Elements and its application in Rotor to Stator Rubbing[J]. Science Report of Bently Rotor Dynamics Research Corporation,1992
    77. Muzsynska A. Rotor to stationary element rub-related vibration phenomena in rotating machinery. literature survey[J]. Shock and Vibration Digest,1989,21(3):3-11
    78.刘献栋,李其汉.转静件碰摩模型及不对中转子局部碰摩的混沌特性[J].航空动力学报,1998,13(4):361-365
    79.王德友.发电机转定子碰摩振动特性的提取与理论研究[D].北京:北京航空航天大学,1995
    80.单颖春,刘献栋,何田,等.双转子系统碰摩有限元接触分析模型及故障诊断[J].航空动力学报,2005,20(5):789-794
    81.杨树华,杨积东,郑铁生,等.基于Hertz接触理论的转子碰摩模型[J].应用力学学报,2003,20(4):61-64
    82. Muszynska A, et al. Influence of rubbing on rotor dynamics. NASA Contract No. Nas8-36719, Final Report. Bently Nevada Corporation, March 1989
    83. Zhengce Sun, Jianxue Xu, Tong Zhou. Analysis on complicated characteristics of a high-speed rotor system with rub-impact [J]. Mechanism and Machine Theory,2002,37:659-672
    84. Q.-S. Lu, Q.-H. Li, E.H. Twizell. The existence of periodic motions in rub-impact rotor systems [J]. Journal of Sound and Vibration,2003,264:1127-1137
    85. X. Dai, X. Zhang, X. Jin. The partial and full rubbing of a flywheel rotor-bearing-stop system [J]. International Journal of Mechanical Sciences,200,143:505-519
    86. Weiyang Qin, Guanrong Chen, Guang Meng. Nonlinear responses of a rub-impact overhung rotor [J]. Chaos, Solitons and Fractals,2004,19:1161-1172
    87. Childs D W. Fractional-frequency rotor motion due to asymmetric clearance effects [J]. ASME Journal of Engineering for Power,1982,104:533-541
    88. Choy F.K, Padovan J, Qian W. Effects of foundation excitation on multiple rub interactions in turbo-machinery [J]. Journal of Sound and Vibration,1993,164(2):349-363
    89. Choy F.K, Padovan J. Non-linear transient analysis of rotor-casing rub events [J]. Journal of Sound and Vibration,1987,113(3):529-545
    90.季进臣,虞烈.电磁轴承转子系统中高速不平衡转子跌落过程的非线性动力学[J].机械工程学报,1999,35(5):62-66
    91. Ehrich F. The dynamic stability of rotor/stator radial rubs in rotating machinery [J]. ASME Journal of Engineering for Industry,1969:1025-1028
    92. Ehrich F. Some observations of chaotic vibration phenomena in high-speed rotor dynamics [J]. Journal of Vibration and Acoustics,1991,113:50-57
    93. Ehrich F. Observations of sub-critical super-harmonic and chaotic response in rotor-dynamics [J]. ASME Journal of Vibration and Acoustics,1992,114:93-100
    94. Ehrich F. Rotordynamic response in nonlinear anisotropic mounting systems [A]. Proceedings of 4th international conferences on rotor dynamics. Chicago, USA,1994:1-6
    95. Adams M L, Abu-Mahfouz I A. Exploratory research on chaos concepts as diagnostic tools for assessing rotating machinery vibration signatures [A]. Proceedings of IFToMM Fourth International Conferenc on Rotor Dynamics, Chicago, USA,1994:29-39
    96. Shaw S W. Forced vibration of a beam with one-sided amplitude constraint:theory and experiment [J]. Journal of Vibration and Acoustics,1985,99(2):199-212
    97. Choi S K, Noah S T. Mode-locking and chaos in a Jeffcott rotor with bearing clearances [J]. ASME Journal of Applied Mechanics,1994,61:131-138
    98. Chu F, Zhang Z. Bifurcation and chaos in a rub-impact Jeffcott rotor system [J]. Journal of Sound and Vibration,1998,210(1):1-18
    99.褚福磊,张正松,冯冠平.碰摩转子系统的混沌特性[J].清华大学学报,1996,36(6):52-57
    100.孙政策,徐健学,龚蹼林.转子系统碰摩行为的研究[J].振动工程学报,2000,13(3):474-480
    101.张思进,陆启韶.碰摩转子系统的非光滑分析[J].力学学报,2000,32(1):59-69
    102. Gonsalves D H, Nelson R D, Barr A D S. A study of the response of a discontinuously nonlinear rotor system [J]. Nonlinear Dynamics,1995,7:451-470
    103. Wang X, Noah S. Nolinear dynamics of a magnetically supported rotor on safety auxiliary bearings [J]. ASME Journal of Vibration and Acoustics,1998,120:596-606
    104. Wai chin, Edward O, Helena E N, Grebogi C. Grazing bifurcation in impact oscillators [J]. Physical Review E,1994,50:4427-4444
    105:Begg I C. Friction induced rotor whirl-a study in stability [J]. ASME Journal of Engineering for Industry,1974:450-453
    106. Choi Y S, Noah S T. Nonlinear steady-state response of a rotor support system[J]. ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design,1987,109:255-261
    107. Choi Y S, Noah S T. Forced periodic vibration of unsymmetric piecewise-linear systems[J]. Journal of Vibration and Acoustics,1988,121(1):117-126
    108. Goldman P, Muszynska A. Dynamic effects in Mechanical structures with gaps and impacting:order and chaos[J]. ASME Journal of Vibration and Acoustics,1994, 116(4):541-547
    109. Yanabe S, Kaneko S, Kanemitsu Y, Tomi N, Sugiyama K. Rotor vibration due to collision with annular guard during passage through critical speed[J].'ASME Journal of Vibration and Acoustics, 1998,120:544-550
    110.陆启韶,张思进,王士敏.转子-弹性机壳系统碰摩的分段光滑模型分析[J].振动工程学报,2000,13(2):178-186
    111. Kahraman A, Blankenship G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. ASME Journal of Applied Mechanics,1997, 64:217-226
    112. Kicinski J, Drozdowski R, Materny P. The nonlinear analysis of the effect of support construction properties on the dynamic properties of multi-support rotor systems[J]. Journal of Sound and Vibration,1997,206(4):523-539
    113. Flowers G T, Margithu D B, Szasz G. The application of floquet methods in the analyses of rotor-dynamic systems[J]. Journal of Sound and Vibration.1998,218(2):350-360
    114.刘才山,陈滨.作大范围回转运动柔性梁斜碰撞动力学研究[J].力学学报,2000,32(4):457-465
    115.戴兴建,董金平,张小章.不平衡量对转子碰摩振动的影响[J].机械工程学报,2001,137(6):90-98
    116.张宇,陈予恕.转子碰摩非线性动力学特征分析[J].天津大学学报,1998,31(3):321-325
    117. Muszynska A, Goldman P. Chaotic Responses of unbalanced rotor/bearing/stator systems with looseness or rubs[J]. Chaos, Solutions & Fractals,1995,5(9):1683-1704.
    118. Humberto C. Piccoli, Hans I. Weber. Experimental observation of chaotic motion in a rotor with rubbing[J]. Nonlinear Dynamics,1998,16:55-70
    119. Mohammed F. Abdul Azeez, Alexander F. Vakakis. Numerical and experimental analysis of a continuous overhung rotor undergoing bibro-impacts [J]. International Journal of Non-linear Mechanics,1999,34:415-435
    120.王立平,郑浩峻,李铁民,汪劲松,杨叔子.转子碰摩故障非线性特征的实验研究[J].2002,44(2):101-102
    121.刘耀宗,胡茑庆.Jeffcott转子碰摩故障实验研究.振动工程学报,2001,14(3):96-97
    122.刘长利,姚红良,张晓伟,闻邦椿.碰摩转子轴承系统非线性振动特征的实验研究[J].东北大学学报(自然科学版),2003,24(10):970-973
    123.胡茑庆,张雨,刘耀宗,胡晓棠,温熙森.转子系统动静件间尖锐碰摩时的振动特征实验研究[J].中国机械工程,2002,13(9):777-781
    124. Fulei Chu, Wenxiu Lu. Experimental observation of nonlinear vibrations in a rub-impact rotor system[J]. Journal of Sound and Vibration,2005,283:621-643
    125.崔淼,张韬,孟光,等.航空发动机转子系统碰磨故障的实验研究[J].振动与冲击,2004,23(3):17-20
    126.高艳蕾,李勇,王德友.转子—机匣系统碰摩故障特征实验研究[J].航空发动机,2002,(4):16-21
    127.吴峰崎,孟光,荆建平.基于声信号三维谱分析德转子复合碰摩故障特征提取[J].振动与冲击,2005,24(6):79-84
    128.朱占方,褚福磊.碰摩转子系统动力学特性的实验研究[J].汽轮机技术,2005,47(3):190-191
    129.戴兴建,张小章,金兆熊.转子与限位器局部与整圈碰摩实验研究[J].航空动力学报,2000,15(4):405-409
    130.于洪洁,吕和祥,裘春航.非稳态非线性油膜力作用下柔性轴裂纹转子的动力特性分析[J].固体力学学报,2002,23(4):439-445
    131.万方义.裂纹与碰摩耦合故障转子轴承系统非线性动力特性及其监测与诊断的研究[D].西安:西安交通大学,2003
    132.李振平.多故障转子系统若干非线性问题的研究[D].沈阳:东北大学,2002
    133.刘元峰,赵玫,朱厚军.考虑碰摩的裂纹转子非线性特性研究[J].振动工程学报,2003,16(2):203-206
    134.刘元峰,赵玫,朱厚军.裂纹转子在支承松动时的振动特性研究[J].应用力学学报,2003,20(3):118-121
    135.罗跃纲,曾海泉,李振平,闻邦椿.基础松动-碰摩转子系统的混沌特性研究[J].振动工程学报,2003,16(2):184-188
    136.张韬,孟光.有挤压油膜阻尼器支承的多故障转子系统的非线性响应特性研究[J].机械科学与技术,2003,22(2):543-546
    137.刘长利.多重故障转子轴承系统非线性动力学稳定性分析与实验研究[D].沈阳:东北大学,2004
    138.陈宏.带故障悬臂转子系统若干非线性动力学问题的研究[D].沈阳:东北大学,2005
    139.姚红良.故障旋转机械动力学及诊断技术中若干问题的研究[D].沈阳:东北大学,2006
    140. Duhl R, L. Dynamics of distributed parameter turborotor systems:Transfer Matrix and Finite Element Techniques [D]. Ph.D. Thesis, Cornell University, Ithaca N.Y.:1970
    141. Madhumita Kalita, S.K. Kakoty. Analysis of whirl speeds for rotor-bearing systems supported on fluid film bearings [J]. Mechanical Systems and Signal Processing,2004,18:1369-1380
    142. J. Zapome, C. H. J. Fox, E. Malenovsky. Numerical investigation of a rotor system with disc-housing impact [J]. Journal of Sound and Vibration,2001,243(2):215-240
    143.何正嘉.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2000
    144.徐玉秀,张剑,候荣涛.机械系统动力学分形特征及故障诊断方法[M].北京:国防工业出版社,2006
    145. Gary G. Yen, Kuo-Chung Lin. Conditional health monitoring using vibration signatures[J]. Proceedings of the 38# Conference on Decision & Control,1999:4493-4498.
    146. N.G. Nikolaou, I. A. Antoniadis. Rolling element bearing fault diagnosis using wavelet packets [J]. NDT & E International,2002,35:197-205
    147. Jing Lin. Feature extraction of machine sound using wavelet and its application in fault diagnosis [J]. NDT & E International,2001,34:25-30
    148.张金玉,张优云,谢友柏.时频分析方法在冲击故障早期诊断中的应用研究[J].振动工程学报,2000,13(2):222-228
    149.韩清凯,俞建成,邓庆绪,等.转子系统油膜振荡的小波包分解与频带能量比例特征分析[J].中国机械工程,2005,15(4):343-345
    150. S. A. Adewusi, B. O. Al-Bedoor. Wavelet analysis of vibration signals of an overhang rotor with a propagating transverse crack[J]. Journal of Sound and Vibration,2001,246(5):777-793
    151.钱立军,蒋东翔.小波变换在横向裂纹转子升速过程状态监测中的应用[J].中国电机工程学报,2003,23(5):86-89
    152.万方义,许庆余,李松涛.谐波小波变换在转子—轴承系统多故障监测中的应用[J].工程力学,2004,21(1):102-106
    153.邹剑.具有横向裂纹转子的振动特性与无损检测[D].上海:上海交通大学,2004
    154.刘献栋,李其汉.小波变换在转子系统动静件早期碰摩故障诊断中的应用[J].航空学报,1999,20(3):220-223
    155.王善永,陆颂元,童小忠.汽轮发电机组动静件碰摩的奇异谱理论与小波分析诊断方法研究[J].动力工程,1999,19(6):498-503
    156.陈丁跃,徐晖,敬晓明,阎安志.非线性“转子-轴承-基础”系统碰摩动力分析[J].动力工程,2001,21(5):1430-1433
    157.张志禹,顾家柳,汪文秉.连续小波用于碰摩信号的奇异性检测及奇异指数计算[J].振动、测试与诊断,2001,21(2):112-115
    158.段晨东,何正嘉.基于第二代小波变换的转子碰摩故障特征提取方法[J].汽轮机技术,2006,48(1):34-39
    159.彭志科,何永勇,卢青,等.用小波时频分析方法研究发电机碰摩故障特征[J].中国电机工程学报,2003,23(5):75-79
    160. Z. Peng, Y. He, Q. Lu, et al. Feature extraction of the rub-impact rotor system by means of wavelet analysis. Journal of Sound and Vibration,2003,259 (4):1000-1010
    161.张含蕾,周洁敏,李刚.基于小波分析的感应电动机复合故障诊断[J].中国电机工程学报,2006,26(8):159-162
    162. Z. K. Peng, F. L. Chu, Peter W. Tse. Detection of the rubbing-caused impacts for rotor-stator fault diagnosis using reassigned scalogram[J]. Mechanical Systems and Signal Processing,2005,19: 391-409
    163. J. Theiler, S. Eubank, A. Longtin, et al. Testing for nonlinearity in time series:the method of surrogate data[J]. Physica D,1992,58:77-94
    164. F. Mitschke, M. Daemmig. Chaos versus noise in experimental data [J]. Int. J. Bifurcation and chaos, 1993,3:209-217
    165. Takens F. On the numerical determination of the dimension of an attractor. In:Rand D, Young L S editors. Dynamic Systems and Turbulence. Warwick,1980, Lecture Notes in Mathematics, Springer-Verlag,1981,898:366-381
    166. Mane R. On the dimension of the compact invariant sets of certain nonlinear maps. In:Rand D, Young L S editors. Dynamic Systems and Turbulence. Warwick,1980, Lecture Notes in Mathematics, Springer-Verlag,1981,898:230-242
    167. Abarbanel H D I, Brown R, Didorowich J J, et al. The analysis of observed data in physical systems [J]. Reviews of Modern Physics,1993,65(4):1331-1392
    168. Fraser A M, Wwinney H. Independent coordinates for strange attractors from mutual information [J]. Physical Review A,1986,33(2):1134-1140
    169. Fraser A M. Information and entropy in strange attractors [J]. IEEE Tfans. Inf. Theory,1989,35: 245-262
    170. Grassberger P, Procaccia I. Characterization of strange attractors [J]. Physical Review Letters,1983, 50(5):346-349
    171. Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Physical Review A,1992,45(6):3403-3411
    172. Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series [J]. Physica D,1997,110(5):43-50
    173. H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, delay times and embedding windows [J]. Physica D,1999,127:48-60
    174. L.S. Qu, A. L. Xie, X. Li. Study and performance evaluation of some nonlinear diagnostic methods for large rotating machinery [J]. Mechanical Machine Theory,1993,28:699-713
    175. W. J. Wang, J. Chen, X. K. Wu, et al. The application of some non-linear methods in rotating machinery fault diagnosis [J]. Mechanical Systems and Signal Processing,2001,15(4):697-705
    176. M.L. Adams, LA. Abu-Mahfouz. Exploratory research on chaos concepts as diagnosis tools for assessing rotating machinery vibration signatures[C]. Proceedings of IFTOMM 4th International Conference on Rotor,1994
    177.刘占生,刘成敏,刘树春.小波分析和分形几何在转子动静碰摩故障中的应用[J].哈尔滨工业大学学报,1999,31(1):55-56
    178. D.Logan, J.Mathew. Using the correlation dimension for vibration fault diagnosis of rolling element bearing-I. selection of experimental parameters [J]. Mechanical system and processing,1996,10(3): 241-250
    179. D.Logan, J.Mathew. Using the correlation dimension for vibration fault diagnosis of rolling element bearing-Ⅱ. selection of experimental parameters[J]. Mechanical system and processing,1996,10(3): 251-264
    180. M.F. Golnaraghi, D.C. Lin, P.fromme. Gear damage detection using chaotic dynamics techniques:a preliminary study. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE 15th biennial Conference on Mechanical Vibration and Noise Proceedings of the 1995[C]. ASME Design Engineering Technical Conference, Boston, MA, USA,1995,84(3): 121-127
    181.孟建.机械故障诊断技术与当代前沿科学(三)[J].设备管理与维修,1998,136(2):27-29
    182.陈进.现代信号处理技术在机械故障诊断中的发展前景探讨[J].第七届全国振动理论及其应用学术会议论文集,广东,1999
    183.姜建东等.分形集合在回转机械振动信号分析中的应用.中国机械工程,1998,9(10):39-41
    184.汪慰军,陈进,吴昭同.关联维数在大型旋转机械故障诊断中的应用.振动工程学报,2000,13(2):229-234
    185.寥明,张文明,方湄.时间序列分形特征的判断[J].北京科技大学学报,1998,20(5):412-416
    186.腾丽娜,陈兆能,佟德纯,等.关联维数在旋转机械支承系统状态监测中的应用[J].上海交通大学学报,2002,36(9):1377-1380
    187.腾丽娜.基于分形的信号处理技术在设备故障诊断中的应用研究[D].上海:上海交通大学,2002
    188.胡红英,马孝江.局域波近似熵及其在机械故障诊断中的应用[J].振动与冲击,2006,25(4):38-45
    189.胥永刚,李凌均,何正嘉.近似熵及其在机械设备故障诊断中的应用[J].信息与控制,2002,31(6):547-551
    190.胥永刚,何正嘉.分形维数和近似熵用于度量信号复杂性的比较研究[J].振动与冲击,2003,22(3):25-27
    191.胥永刚,何正嘉.基于二维近似熵度量轴心轨迹复杂性的研究[J].西安交通大学学报,2003,37(11):1171-1174
    192.杨定新,胡茑庆,张朝众.基于复杂度分析的电机转子-轴承系统早期故障检测方法[J].中国电机工程学报,2004,24(11):126-129
    193.杨文献,姜节胜,秦卫阳.机械信号复杂性快速刻划方法研究[J].西北工业大学学报,2001,19(2):216-219
    194.闻邦椿,张国忠,柳洪义,等.面向产品广义质量的综合设计理论与方法[J].北京:科学出版社,2007
    195. R.Gasch. Vibration o f large turbo-rotors in fluid-film bearings on elastic foundation[J]. Journal of sound and vibration,1976,47(1):53-73
    196.彼得.艾尔哈特,胡斌.现代接触动力学[M].南京:东南大学出版社
    197. Simo J C, Laursen T A. An augmented Lagrangian treatment of contact problems involving friction[J]. Computer & Structure,1992,42(1):97-116
    198. Francois A, Patrick F. Improving the readability of time-frequency and time-scale representations by the reassignment method [J]. IEEE transactions on signal processing,1995,43(5):1068-1089
    199.刘耀宗.碰摩转子混沌振动识别与控制技术研究[M].长沙:国防科技大学出版社,2005
    200.李艳红.脉搏信号的非线性分析及其应用的研究[D].沈阳:东北大学,2007
    201. Lempel and J. Ziv, On the Complexity of Finite Sequences [J], IEEE Trans. Info. Theory,1976, 22(1):75-81
    202. J. Ziv and A. Lempel, A universal algorithm for sequential data compression [J], IEEE Transactions on Information Theory,1977,23(3):337-343
    203.宋学锋.系统复杂性的度量方法[J].系统工程理论与实践.2002,(1):9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700