小型高效太阳能吸收式制冷系统涡旋发生器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸收式制冷技术作为一种以热能为驱动力、对臭氧层无破坏作用的制冷方式,近年来越来越受到工业界及相关科研工作者的重视。太阳能吸收式制冷因为可有效地利用低品位热源和可再生能源,成为了近年来吸收式制冷技术研究的重点。但由于受热源温度的限制,太阳能吸收式制冷系统的制冷系数不能得到有效提高,从而得到广泛应用。为了提高太阳能吸收式制冷系统的性能,本文从溴化锂溶液的特性着手,根据旋流理论在国内首次提出了利用流体的旋转运动,降低吸收式制冷系统发生器内溴化锂溶液的蒸发压力,从而降低溶液的蒸发温度,在不增加外界热源的情况下,增加用于制冷循环的冷凝蒸气量,提高吸收式制冷系统制冷效率的方法。根据旋流理论提出了一种新型的用于吸收式制冷循环的双室涡旋发生器。
     吸收式制冷循环是利用相变过程伴随的吸、放热来获取低温,以消耗热能为动力的制冷方式。吸收式制冷循环中工质的化学和热物理性质对系统性能起着关键性作用。为了更好地研究溴化锂吸收式制冷系统,提高系统的性能,建立了溴化锂溶液和水蒸气随压力、温度和浓度的热物性参数方程。同时分析了采用本文所提出的双室涡旋发生器的小型太阳能吸收式制冷系统的热质平衡特性。
     为了得到最优的双室涡旋发生器结构,提高太阳能吸收式制冷系统的效率,建立了一种具有切向入口的涡旋发生器结构,使流体通过切向入口进入到发生器内产生旋转运动。采用流体动力学软件FLUENT模拟了不同结构的涡旋发生器内流体的流动及传热特性。模拟结果表明:流体通过切向入口进入到涡旋发生器后,产生了强烈的旋转运动,形成了以中部为核心的Rankin组合涡。在发生器内,流体的压力呈抛物线分布规侓,在中心处,压力最小魈逶诜⑸髂诘难沽Γ?着流体入口速度的增大而减小;随着入口喷嘴尺寸减小,发生器内的压力减小,从而有效地降低了发生器内溴化锂溶液的蒸发温度,形成有利于溴化锂溶液蒸发的环境。通过数值模拟可知:利用流体的旋转运动,可有效地降低涡旋发生器内的蒸发压力,从而降低进入到发生器中溴化锂溶液的蒸发温度,提高热源的可利用温差。在不改变外界热源质量与数量的前提下,达到增加用于制冷循环的冷凝蒸气量,提高系统制冷系数的目的。
     根据数值模拟计算结果设计了一种由圆锥体和圆柱体组成的双室涡旋发生器。双室涡旋发生器的锥角为20°,流体的入口采用与圆柱体相切的三段式渐缩喷嘴保证流体切向进入到发生器内产生旋流运动。双室涡旋发生器由高压发生室和低压发生室组成。低压发生室利用流体的旋转运动降低溴化锂溶液的蒸发压力,高压发生室用来对产生的冷凝蒸气进行压力恢复。介绍了采用双室涡旋发生器的吸收式制冷系统实验装置的循环流程以及实验装置中各设备的选型及参数,为小型太阳能吸收式制冷系统双室涡旋发生器流体特性的研究提供实验平台。
     通过实验研究了双室涡旋发生器内流体的流动及传热特性。实验研究结果表明:流体在双室涡旋发生器中产生强烈的旋转运动,有效地降低发生器中部的发生压力,提高了溶液的可利用温差,产生更多用于制冷循环的冷凝蒸气量。采用双室涡旋发生器的吸收式制冷系统,其COP随着入口温度的增加而增大。当溶液入口温度达到90℃时,其COP值达到0.83,比传统吸收式制冷系统的COP值高22%。采用双室涡旋发生器的吸收式制冷系统由于可以在低温情况下实现高效制冷,因此可以有效地利用太阳能、废热、地热等低品位热源,解决能源利用以及单效吸收式制冷系统由于热源温度低,系统性能较低的问题。
As one method of refrigeration, which is driven by heat energy and has no damage on the ozone layer, absorption refrigeration technology has attracted more and more attention from industry and related researchers. Solar absorption refrigeration has become the researching emphases of absorption refrigeration because which can use the low-grade heat source or the renewable energy. But the improvement of the coefficient of performance (COP) of the solar refrigeration system is limited due to the lower temperature of the heat source, thus can not be widely used. In this paper, according to the vortex flow theory, a new dual chamber vortex generator model is suggested to improve the COP of the absorption refrigeration system. The vortex generator uses the rotating flow of the fluid to reduce the evaporation pressure and temperature at the generator. The main purpose is that at no additional external heat source to increase the refrigerant vapor and improve the COP of the solar absorption refrigeration system.
     Absorption refrigeration cycle is the use of phase change accompanied by the absorption process, to obtain low-temperature heat and consume the thermal energy for cooling. In the absorption cycle, the chemical and physical properties of the working pair play a key role for the system performance. In the paper, the relationship of the pressure, temperature and concentration of lithium bromide solution has been set up. At the same time, the heat and mass balance of the small-scale solar absorption system which uses the dual chamber vortex generator is analyzed.
     A new generator model which has a tangential inlet is set up. The optimum structure of the dual chamber vortex generator has been obtained through using the CFD software to simulate the flow and heat characteristics of different structure vortex generator. The results of the study showed that fluid entered the generator through the tangential inlet produced a strong rotation and the Rankin vortex at the center of the generator. The pressure distribution is parabola regulation. At the center the pressure is lower than around of the generator. The pressure decreased with the fluid inlet velocity increased and the inlet diameter decreased. According to the characteristic of the Lithium Bromide solution the evaporation temperature decreased in the generator with the fluid inlet velocity increased and the inlet diameter decreased. A low pressure region is created because of the vortex flow which will help the evaporation of Lithium Bromine solution at low temperature. The available temperature difference of lower-temperature heat source from an external resource increased to generate more refrigerant vapor and improve the COP of the solar absorption chiller.
     A novel dual chamber vortex generator which consisted of a lower chamber and upper chamber is designed in according to the numerical simulation. The lower chamber is composed of a cylinder and a cone part whose conic angle is 20°with a tangential inlet. The tangential inlet is composed of three parts to ensure the rotating flow of the fluid in the generator. The upper chamber is a cylinder with a central inlet at the bottom and two outlets at the side. Due to the rotating flow, the pressure was reduced toward the central portion of the lower chamber. And the refrigeration vapor which produced in the lower chamber came back the condensing pressure in the upper chamber. In order to investigating the flow and heat transfer characteristic, a small solar absorption chiller testing system is set up. Main four flow loops of the experiment system and the parameters of apparatus are introduced. In the thesis a novel dual chamber vortex generator was investigated under different temperatures and solution mass flow rates. The experiments and analysis results showed that the fluid enters the vortex generator to create a strong rotation.
     The lower pressure developed in the lower chamber could help the evaporation in the generator. The higher the pressure difference, the lower the saturated temperature which can utilize heat source to generate more refrigerant. And the higher the inlet temperature, the larger the available temperature difference. The higher the inlet temperature, the higher the vapor mass flow rate and the evaporation ratio. As solution mass flow increases, the evaporation ratio decreases and the vapor mass flow rate increases The COP increases as the solution inlet temperature increases. When the inlet temperature is 90℃, the COP can reach 0.83, which is higher than that of a conventional absorption chiller by 22%. The experiment research has depicted that the COP can be improved much higher by using the novel dual chamber vortex generator in the solar absorption chiller.
引文
1 Dincer Ibrahim. Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 2000, (4):157-175
    2 Palph Luken T, Tamas Grof. The Montreal Pretocol’s multilateral fund and sustainable development. Ecological Economics, 2006, 56:241-255
    3 Billiard F.制冷与可持续发展.制冷学报, 2003, (2):22-26
    4 Randall Spalding-Fecher, Harald Winkler, Stanford Mwakasonda. Energy and the World Summit on Sustainable Development: what next. Energy Policy, 2005, 33:99-112
    5 Best R., OrTega N. Solar Refrigeration and Cooling. Renewable energy, 1999, 16:685-690
    6 Izquierdo M., Venegas M., Rodriguez P. Crystallization as a limit to develop solar air-cooled LiBr-H2o absorption systems using low-grade heat. Solar Energy Materials &solar cells, 2004, 81:205-216
    7王长庆,龙惟定,谭洪卫.日本燃气空调发展.能源技术, 2002, 23(2):158-161
    8 Yoon Jung-In, Kwon Oh-Kyung. Cycle analysis of air cooled absorption chiller using a new working solution. Energy, 1999, 24:795-809
    9王林.小型风冷绝热吸收制冷关键技术研究.浙江大学[D].2006
    10王如竹,丁国良.最新制冷空调.北京:科学出版社, 2002
    11 D.S.Kim, C.A.Infante Ferreira. Solar refrigeration options-a state-of-the-art review. Int. J .Refrig. 2008, 31:3-15
    12耿惠彬,戴永庆,蔡小荣.从第7届国际吸收式热泵会议看顾吸收式技术的研究与开发.制冷与空调,2003, (4):1-9
    13郑贤德.制冷原理与装置.北京:机械工业出版社,2002
    14戴永庆.溴化锂吸收式制冷技术及应用.北京:机械工业出版社,2000
    15王如竹,代彦军.太阳能制冷.北京:化学工业出版社, 2008, 1
    16 W. Rivera, A. Xicale. Heat transfer coefficients in two phase flow for the water/lithium bromide mixture used in solar absorption refrigeration systems. Solar Energy Materials & Solar Cells. 2001, 70:309-320
    17 Pongsid Srikhirin, Satha Aphornratana, Supachart Chungpaibulpatana. A review of absorption refrigeration technologies. Renewable and Sustainable Energy Reviews. 2001, (5):343-372
    18 P.Lamp, F.Ziegler. European research on solar-assisted air conditioning. Int J. Refrig. 1998, 21:89-99
    19 Perez Blatnco H. Absorption heat pump performance for different types of solution. International Journal of Refrigeration. 1984, 7(2):115-122
    20耿望阳.空调节能在绿色建筑中的应用.智能建筑.2006, (7): 25-27
    21 Trombe F, Foex M. The production of cold by means of solar radiation. J Solar Energy. 1957,51-52
    22何梓年,朱宁,刘芳,郭淑玲.太阳能吸收式空调及供热系统的设计和性能.太阳能学报, 2001, 22(1):6-11M.
    23 Hammand, M.Audi. Performance of a solar LiBr-water absorption refrigeration system. Int.J.Renewable Energy. 1992, (2):275-282
    24 M. HAMMAD and Y.ZURIGAT. Performance of a second generation solar cooling unit. Solar energy. 1998, 62(2): 79-84.
    25 Grandhidasan P. Performance analysis of an open-cycle liquid desiccant cooling system using solar energy for regeneration. International Journal of refrigeration, 1994, 17:475-480
    26 Ravikumar T S, Suganthi L, Samuel Anand A. Energy analysis of solar assisted double effect absorption refrigeration system. Renewable Energy, 1998,14:55-59
    27徐士鸣,刘渝宏.以空气为携热介质的开式太阳能吸收式制冷循环研究与分析.太阳能学报,2004, 25(2):205-210
    28刘渝宏.以空气为携热介质的开式太阳能吸收式制冷循环系统的研究和分析.硕士论文,大连理工大学,2003
    29 H.M.Hellmann, G.Grossman. Simulation and analysis of an open-sycle dehumidifier-evaporator-regenerator (DER) absorption chiller for low-grade heat utilization. Int.J.Refrig, 1995, 18(3):177-189
    30陈光明,冯仰蒲,王剑锋.一个用太阳能驱动的新型吸收制冷循环.低温工程. 1999, (1):50-54
    31 GuangMing Chen,Eiji Hihara. A new absorption refrigeration cycle using solar energy. Solar Energy. 1999, 66(6):479~482
    32 M.B.Arun, M.P.Maiya, S.Srinivasa Murthy. Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems. Applied Thermal Engineering. 2000, 20:227-242
    33 F.Summerer. Evaluation of absorption cycles with respect to COP and economics. Int.J.Refrig. 1996, 19(1):19-24
    34 N.Velaquez, R.Best. Methodology of the energy analysis of an air cooled GAX heat pump operated by natural gas and solar energy. Applied Thermal Engineering. 2002,22:1089~1103
    35 Srinvas Garimella, Richard N. Christensen, Daryl Lacy. Performance evaluation of a generator-absorption heat-exchange heat pump. Applied Thermal Engineering. 1996, 16(7):591-604
    36 G.K.Alexis, E.D.Rogdakis. Performance of solar driven methanol-water combined ejector-absorption cycle in the Athens area. Renewable Energy. 2002, 25:249-266
    37 Y.L.LIU,R.Z.WANG. Performance prediction of a solar-gas driving double effect LiBr–H2Oabsorption system. Renewable Energy. 2004, 29:1677~1695
    38 W.B.Ma, S.M.Deng. Theoretical analysis of low-temperature hot source driven two-stage LiBr/H2O absorption refrigeration system.Int.J.Refrig,1996, 19(2):141-146
    39 Muhsin Kilic, Omer Kaynakli. Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system. Energy, 2007, 32(8):1505-1512
    40 R.Chung, J.A.Duffie. A study of a solar air-conditioner. Mech Eng,1963, 31:85
    41 Z.F.Li, K.Sumathy. Experimental studies on a solar powered air-conditioning system with partitioned hot water storage tank. Sol Energy, 2001,71(5):285-297
    42 Adman S?zen, Duran Altiparmak, Hüseyin Usta. Development and testing of a prototype of absorption heat pump system operated by solar energy. Applied Thermal Engineering, 2002, 22:1847-1859
    43 A. De Francisco, R. Illanes, J.L. Torres, M. Castillo, M. De Blas, E. Prieto, A. Garcia. Development and testing of a prototype of low-power water-ammonia absorption equipment for solar energy applications. Renewable energy. 2002, 25:537-544
    44 Chinnappa J.C, Crees M.R, Murthy S.S and Srinivasan K. Solar-assisted vapor compression/absorption cascaded air-conditioning systems. Solar Energy. 1993, 50:453-458
    45曹毅然,张小松,鲍鹤灵.太阳能驱动的压缩吸收式复合制冷循环分析. Fluid Machinery. 2002, 30(10):51-53
    46 Gu Yaxiu, Wu Yuyuan, Ke Xin. Experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator [J]. Solar Energy. 2008, 82(1):33-42
    47 Lottin O et al. Hivet Modeling of a Compression-absorption Heat Pump Prototype Using Falling Film Absorber and Desorber. 20th International Congress of Refrigeration. 1999, ⅡR/ⅡF, Sydney
    48 Adnan S ?zen, Erol Areaklioglu, Mehemet Ozalp. Performance analysis of ejector absorption heat pump using ozone fluid couple through artificial neural networks. Energy Conversion & Management. 2004, 45:2233-2253
    49 Adnan S ?zen, Mehmet ?zalp. Solar-driven ejector-absorption cooling system. Applied Energy, 2005, 80:97-113
    50万忠民,苏卡林.高效混合吸收式制冷循环实验研究.能源技术. 2004, 25(2): 51-53
    51谷雅秀,吴裕远,王艺等.新型太阳能无泵溴化锂制冷系统的实验研究.太阳能学报. 2006, 27(5): 473-477
    52 Robert MacNeill. CFD Analysis of Vortex Chamber Generator.patant, 1995.U.S
    53 Amilcar R, Arvelo Ramos, Computational Flow Analysis of a Dual Chamber Vortex Generator for an Absorption Refrigeration System, Masters Thesis Rochester Institute of Technology, 2001, June 25
    54周国兵,张于峰,齐乘英,王艳.一种强化太阳能换热的新型涡流发生器换热机理与实验研究.太阳能学报, 2003, 24:(6),781-785
    55 Martin Fiebig. Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int.J.Heat and Fluid Flow. 1995, 16:376-388
    56王长庆,虞洁莉.用螺旋槽管强化LiBr降膜式发生器传热传质的研究.制冷与空调,2004,4(6):23-26
    57王长庆,陆震.降膜式发生器的传热传质研究.同济大学学报, 2001,29(8):907-913
    58廉永旺,马伟斌,李戬洪.小型太阳能溴化锂制冷机的一种新型结构.太阳能学报, 2003, 24(5):601-604
    59赵庆国,张明贤.水力旋流器分离技术.北京:化学工业出版社, 2003
    60霍夫曼,施泰因,彭维明.旋风分离器:原理、设计和工程应用.北京:化学工业出版社, 2004
    61李玉星,冯叔初.油水分离用水力旋流器理论模型及数值模拟.石油机械. 2000, 28(11):26-29
    62 Hargreves, J.H., Silvesters, R.S. Computational fluid dynamic applied to the analysis of deoiling hydrocyclone performance. Transactions of Institution of Chemical Engineers. 1990, 68:365-383
    63 Dyakowski,T., Williams, R.A. Modeling turbulent flow within a small-diameter hydrocyclone. Transactions of the Institution of Chemical Engineers. 1992, 47:1-10
    64 Malhotra,A., Branion,R.M.R., Huptmann,E.G. Modeling the flow in a hydrocyclone. Canadian Journal of Chemical Engineering. 1994, 72:953-960
    65 He,P., Salcudean,M,. Gartshore,I.S. A numerical simulation of hydryclones. Transactions of the Institution of Chemical Engineers. 1999, 77:429-441
    66 Jose A.Delgadillo, Raj K.Rajamani. A comparative study of three turbulence-closure models for the hydrocyclone problem. International Journal of Mineral Processing. 2005, 77:217-230
    67 I.H.Yang, C.B.Shin, T.-h.Kim, S.Kim. A three-dimensional simulation of a hydrocyclone for the sludge separation in water purifying plants and comparison with experimental data. Minerals Engineering. 2004, 17:637-641
    68 T.Yalcin, E.Kaukolin, A.Byers. Axial inlet cyclone for mineral processing applications. Minerals Engineering. 2003, 16:1375-1381
    69 B.Chine, F.Concha. Flow patterns in conical and cylindrical hydrocyclones. Chemical Engineering Journal. 2000, 80:267-273
    70 M.Narasimha, R.Dripriya, P.K.Banerjee. CFD modeling of hydrocyclone-prediction of cut size. Mineral Processing. 2005, 75:53-68
    71陈雪莉,吕术森,周增顺,张翎,于遵宏.一种新型旋风分离器气相流场实验研究和数值模拟.化学反应工程与工艺. 2004, 20(2):139-145
    72李文东,王连泽.旋风分离器内流场的数值模拟及方法分析.环境工程. 2004, 22(2):37-39
    73邹宽,杨茉,曹纬.水力旋流器湍流流动的数值模拟.工程热物理学报. 2004, 25(1):127-129
    74魏新利,张海红,王定标等.水力旋流器内的数值模拟研究.热科学与技术, 2005, 4(2):164-168
    75王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社.2004
    76 Yakhot V, Orszag SA. Renormalization Group Analysis of Turbulence. Journal of Scientific Computing,1986, 1(1):39~51
    77 Yakhot V, Orszag SA, Thangam S,Gataki TB and Speziale CG.Development of Turbulence Model for Shear Flows by a Double Expansion Technique.Physics of Fluids A,1992, 4(7):1510~1520
    78辛长平.溴化锂吸收式制冷机实用教程[M].北京:电子工业出版社, 2004
    79 LOWELL A.McNEELY. Thermodynamic Properties of Aqueous Solutions of Lithium Bromide. ASHRAE Trans. 1979, 85(2):413-428
    80 ASHRAE FUNDAMENTALS, 1989.17.70
    81 ASHRAE Handbook of Fundamentals, New York: American Society of Heating, Refrigeration and Air Conditioning Engineerings, Inc., 1977, 16.79~16.82
    82贾明生.溴化锂水溶液的几个主要物性能数计算方程[J],湛江海洋大学学报. 2002, 6:52~58
    83戴永庆主编.溴化锂吸收式制冷空调技术实用手册[M].北京:机械工业出版社, 1999
    84 K Murakami, H Sato, K Watanabe, Dthring charts and enthalpy-concentration charts for the LiBr/H2O and LiCl/H2O solutions, 19th Int. Congress of Refrigeration, ProceedingsⅥa, the Hague, The Netherlands, August, 1995:428~435
    85王磊,陆震.溴化锂水溶液的比焓分析.制冷学报. 2002, (1): 10~13
    86《化学工程手册》编辑委员会,化工基础数据[M].北京:化学工业出版社, 1982
    87阮复昌,陈烈强,罗运禄等.溴化锂水溶液分子扩散系数的计算方法[J].化学工程. 1991, 19(3):32-36
    88沈裕浩,丁力行. LiBr吸收式制冷机工质对的热物性(SI)[J].长沙铁道学院学报. 1994, 6:61-67
    89张占峰,汤荣铭,许宏庆.旋流器内流场的研究.流体力学实验与测量.2004, 18(4):88-92
    90 I.H.Yang, C.B.Shin, T.-h.Kim, S.Kim. A three-dimensional simulation of a hydrocyclone for the sludge separation in water purifying plants and comparison with experimental data. Minerals Engineering. 2004, 17:637-641
    91 Kelsall D F.A study of the Motion of Solid Particles in a Hydraulic Cyclone. Trans. Instn Chem. Engrs.1952, 30(1):87~108
    92王艳,俞坚,马重芳等.新型太阳能吸收式制冷系统涡旋发生器内流体流动特性的数值模拟.流体机械. 2007, 35(12):65~69
    93徐继润,罗茜.水力旋流器流场理论.北京:科学出版社, 1998:23~36
    94 Ogawa, Separation of particles from air and gases, Volume 1 and 2, CRC Press [C], Boca Raton, Florida, U.S.A. 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700