车用液力缓速器设计理论和控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以制动力矩系数最大、启效时间短及恒转矩工作范围大作为液力缓速器设计的目标,着重做了以下工作:
     在分析和阐述液力缓速器工作特性的基础上,运用CFD技术,建立了液力缓速器单流道模型。为部分充液工况的流场的初始化奠定了基础。
     调整液力缓速器的结构参数,达到最大制动力矩系数的目的;得出叶片数为36,前倾角度为55°,循环圆形状为长圆形时制动力矩系数最大。
     以最大制动力矩系数的结构参数建模,全充液工况下,在考虑叶片强度的前提下,根据液力缓速器斜直叶片的结构特点,运用坐标变换、曲面拟合等方法,得到了叶片表面的压力随局部坐标变化的分布函数,根据拟合的压力分布函数,编制APDL加载程序,将叶片表面分布载荷施加到所建立的有限元模型中,从而实现了对压力载荷作用下的液力缓速器叶片强度精确分析。确定额定制动力矩及额定转速,当转速大于额定转速应设计为恒转矩工作范围,以免工作轮叶片过载。
     在部分充液工况下,采用Mixture多相流模型对部分充液工况下的气-液两相流动进行了数值模拟,得出充液率的变化影响流场的压降。通过数值模拟与试验对比,分析了出入口压差、充液率与制动力矩之间的变化规律,并结合全充液工况的计算结果,建立了基于流场分析的液力缓速器制动力矩控制模型。
     采用电磁比例阀的气压控制系统,能够满足车用液力缓速器快速响应的控制要求,并对其控制原理和工作过程作了简介。
     对装有液力缓速器的车辆制动过程进行动力学分析,建立了整车联合制动的数学模型,该数学模型包含的子模型有:汽车制动过程的动力学模型、主制动装置的制动力模型,液力缓速器的制动力模型。利用MATLAB/SIMULINK模块化建模软件,编写S函数模拟真实的恒速下坡制动特性。为有效预测装有液力缓速器车辆的整车制动性能提供可行方法。
     本文的创新点在于:
     (1)将液力缓速器动静交界面定义为内部边界,有效解决了液流出入口在同一平面内的问题,建立了液力缓速器流场计算的稳态模型,引入损失分析的方法,使得流场分析更为深入。
     (2)液力缓速器空转时数值模拟的结果与试验值迥异的根本原因是:循环腔内还存在着部分油液而不是以空气为介质的单相流,再加上传动链中的机械摩擦损失。
     (3)当缓速器的有效直径和动轮转速相同时,影响缓速能力的主要因素是在流场中是否形成涡旋,形成的涡旋强度越大,缓速能力就越强。以定轮的质量平均螺旋度作为衡量制动能力的量化指标,为液力缓速器的设计提供一种新方法。
     (4)对液力缓速器工作叶轮进行有限元分析,计算中不仅考虑了液力缓速器工作时的离心载荷,还引入了三维流场计算时所得的叶片工作时的流动载荷,利用坐标变换、曲面拟合以及基于单元的分布载荷加载方法,实现了流固耦合中数据交换,确定额定制动力矩M_N及对应的转速n_N,在超过n_N转速后,制定恒转矩工作的制动原则,以免工作轮过载。
     (5)利用Mixture多相流模型,对液力缓速器部分充液工况下的气液两相流场进行了数值模拟,得到充液率与流场压降的函数关系,建立了全工况下液力缓速器制动力矩控制模型。
In the paper,to make a optimization design target of maximum 2,minimum response time and large scope of constant moment,the main research structure and highlights of the paper are as followed:
     On the basis of characteristic of hydraulic retarder,By using the time-averaged N-S equation and the standardκ-εturbulence and the SIMPLE-C algorithm simultaneously,the internal characteristics of flow field is simulated which establish the foundation of two-phrase model's initialization.
     The geometrical parameters is adjusted in order to obtainedλ_M and results show that the model with 36 blade number,55 degree of lean-front blade and oval section recycled circle has the biggest braking impact.
     Stress of an actual three dimensional blade is analyzed with digitization model which obtain AM o According to the structural feature of hydraulic retarder,pressure distribution is obtained by using coordinate transformation and surface fitting,which vary with x-coordinate and y-coordinate in local coordinates.Pressure loads are loaded on the FEA model by compiling program with APDL.Noted moment and speed is determined under the promise of blade strength,and controlling strategy is made that noted braking moment is carried out when speed is higher than noted value.
     The two-phase flow of the partially filled in the hydraulic retarder is simulated by using the Mixture multiphase model.The experimental data is analyzed and compared with the numerical results,which show that variation of volume fraction effect the pressure drop.With the analysis results in full-filled condition,the braking torque control model is built by normalization method.
     Gas pressure controlling system which electromagnetic proportion valve is adopted meet the requirement of rapid response,while working principle and controlling method is discussed.
     The mathematic model of united braking system is set up which involved the hydraulic retarde and primary braking device.Simulink software is employed to analyse the simulation of emergency braking,nonemergency braking and contionous braking, especially using S function to simulate constant speed during downhill.
     The major innovations in this paper are as follows:
     (1) The interface between rotator and stator is defined as interior boundary in hydraulic retarder which effectively solve the problem of fluid flow in and out in the same plane.The internal characteristic of flow field is simulated and the method of loss analysis is proposed in order to make analysis furthermore.
     (2) Indicate that why the experiment data of air blass loss is larger than numerical result is that there are a few liquid oil not purely air in the flow field,in addition to the mechanical friction loss in driveline
     (3) Indicated that braking essential reason to the hydraulic retarder is that the more intensity of vortex,the more capacity of braking performance,and the method of analysis is proposed which mass-average helicity is used to compare the retarder ability.
     (4) Stress of an actual three dimensional blade is analyzed with digitization model, in which the stress and strain distribution of impellers are discussed in detail.It is noted about the calculation that not only the centrifugal load but also the flow load resulted from the 3D numerical simulations of the flow field of the blade are considered.By using coordinate transformation and surface fitting,pressure loads are loaded on the FEA model according to ANSYS Parametric Design Language to realize the data transformation in liquid-solid coupling.
     (5) The two-phase flow of the partially filled in the hydraulic retarder is simulated by using the Mixture multiphase model and indicate that volume fraction is in functional relationship with pressure drop and the braking torque control model is built by normalization method.
引文
[1]国家统计局.中国统计年鉴[M].北京:中国统计出版社.2001
    [2]何仁.汽车辅助制动装置[M].北京:化学工业出版社.2005
    [3]杨凯华,郑慕侨,阎清东,项昌乐.车辆传动中液力减速器的技术发展[J].工程机械,2001(6):32-35;
    [4]时军,过学迅.车用液力减速制动器的现状与发展趋势[J].车辆与动力技术,2001(4):52-57:
    [5]吴修义.德国福伊特(VOITH)液力缓速器[J].汽车与配件.2005(33):30-33
    [6]马建,陈荫三,余强等.汽车缓行器辅助制动效果分析[J].西安公路交通大学学报.1999(3):79-82
    [7]马建,陈荫三等.缓行器在汽车下长坡中的应用研究[J].西安交通大学学报,1999(4):86-88
    [8]朱经昌,魏宸官,郑慕侨等.车辆液力传动(上)[M].国防工业出版社.1982
    [9]赵玉新.Fluent中文教程[J].中国流体机械论坛.
    [10]赵兴艳,苏莫明,张楚华等.CFD方法在流体机械设计中的应用[J].流体机械.2000,28(3):22-25
    [11]Schulz H,Greim R,Volgmann W.Calculation of Tree-Dimensional Viscous Flow in Hydrodynamic Torque Converters[C].International Gas Turbine and Aeroengine Congress and Exposition,ASME94-GT-208,1994,
    [12]Yan Qing-dong,Wei wei.Numeric Simulation of Single Passage Ternary Turbulence Model in Hydraulic Torque Converter[J].Journal of Beijing Institute of Technology.2003,12(2):172-175
    [13]廖利恒.用于大客车的ZF整体式液力缓速器介绍[J].商用汽车.2000(3):50-51
    [14]Timothy J.Cooney,Joel E Mowatt.Development of a Hydraulic Retarder for the Allison AT545R Transmission[R].SAE paper 952606
    [15]Timothy J.Cooney,Paulo Roberto Cassoli Mazzali.The MT643R-An Automatic Transmission with Retarder for the Latin American Market[R].SAE paper 973127
    [16]黄榕清,吴磊,邵建华.汽车液力缓速器的原理及应用[J].汽车电器.2006(11):9-11
    [17]黄榕清,李刚营,胡宏.液力缓速器和电涡流缓速器[J].机电工程技术.2005(10):82-85,106
    [18]范守林.福伊特液力缓速器(上)[J].商用汽车.2004(8):66-68
    [19]范守林.福伊特液力缓速器(下)[J].商用汽车.2004(9):62-64,66
    [20]胡宁.汽车液力缓速器参数的匹配分析[J].上海工程技术大学学报.2003(2):7-10
    [21]过学迅,时军.车辆液力减速制动器的设计和试验研究[J].汽车工程.2003(3):31-34
    [22]杨凯华,阎清东.车辆液力缓速器仿真计算研究[J].液压与气动.2002(7):52-53,51
    [23]鲁毅飞,颜和顺,项昌乐,闫清东.车用液力缓速器制动性能的计算方法[J].汽车工程.2003(2):182-185,155
    [24]时军.车用液力减速器制动器研究[D].武汉:华中科技大学硕士学位论文.2003
    [25]李雪松.车用液力减速器三维流场分析与特性计算[D].吉林:吉林大学硕士学位论文.2006
    [26]刘岩.电控液力缓速器进气系统的压力控制阀特性研究[D].吉林:吉林大学硕士学位论文.2007
    [27]王凯峰.液力缓速器的热交换系统传热性能仿真与试验方法研究[D].吉林:吉林大学硕士学位论文.2007
    [28]陆中华.重型汽车电控液力缓速器整车制动性能仿真与分析[D].吉林:吉林大学硕士学位论文.2007
    [29]王铁.车用电控液力缓速器三维流场分析的仿真方法研究[D].吉林:吉林大学硕士学位论文.2007
    [30]龙一兵.发动机与液力缓速器热交换系统的传热性能研究[D].吉林:吉林大学硕士学位论文.2008
    [31]梁在潮.工程湍流[M].武汉:华中理工大学出版社.1999
    [32]陶文铨.数值传热学[M].西安:西安交通大学出版社.2001
    [33]窦国仁.湍流力学[M].北京:高等教育出版社.1985
    [34]罗邦杰.液力机械传动[M].北京:人民交通出版社.1983
    [35]F.J.Wallace,A.Whitefield and R.Sivalingam.A thearetical Model for The Prediction of Fully Filled Fluid Coupling,Int.J.Mesh.Sci,Vo120,335-347,1977
    [36]童祖楹.流道变参数液力偶合器符合特性的计算[J].上海交通大学学报.1986(5):21-29
    [37]倪胜福,程述生,赵遵道等.调速型液力偶合器动态特性分析[J].哈尔滨工业大学学报.1994(3):3742
    [38]童祖楹,刘详春.液力偶合器[M].上海交通大学出版社.1988
    [39]王峰.基于流场分析的液力缓速器制动性能分析[D].北京:北京理工大学博士学位论文.2007
    [40]Yu Dong,Vamshi Korivi,Pradeep Attibele,Yiqing Yuan.Torque Converter CFD Engineering Part Ⅰ:Torque Ratio and K Factor Improvement through Stator Modifications[M].SAE 2002-01-0883
    [41]B.E.Launder,D.B.Spalding.Lectures in Mathematical Models of Turbulence[M].Academic Press,London,1972
    [42]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社.2004
    [43]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社.2004
    [44]陈波.电控液力缓速器性能试验方法的研究[D].吉林:吉林大学硕士学位论文.2007
    [45]Y.Dong,B.Lakshminarayana,D.Maddock.Steady and Unsteady Flow Field at Pump and Turbine Exits of a Torque Converter ASME Journal of Fluids Engineering.1998.Vol.120.538-548
    [46]Y.F.Liu,B.Lakshminarayana,J.Bumingham.Experimental lnvestigationoftheFlow Field in the Turbine Rotor Passage of an Automotive Torque Converter.3rd ASME/JSME Joint Fluids Engineering Conference.1999.FEDSM 99-330.1-14
    [47]Y.Dong,B.Lakshminarayana.Experimental Investigation of the Flow Field in an Automotive Torque Converter Stator.ASME Journal of Fluids Engineering.1999.Vol.121:788-797
    [48]Y.Dong,B.Lakshminarayana.Rotating Probe Measurements of the Pump Passage Flow Field in an Automotive Torque Converter ASME Journal of Fluids Engineering.2001.Vo1.123:81-91
    [49]Warren D.Claudel,Ronald D.Flack,AlexanderYermakov.Average Velocity Measurements in Six Automotive Torque Converters:Part Ⅰ-Pump Measurements.Tribology Transactions.2001.Vol.44.511-522
    [50]Alexander Yermakov,Ronald D.Flack,Warren D.Claudel.Average Velocity Measurements in Six Automotive Torque Converters:PartⅡ-Turbine Measurements.Tribology Transactions.2001.Vol.44.615-625
    [51]R.Flack,K.Brun.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part 1:Model and Flow in a Rotating Passage.4th ASME/JSME Joint Fluids Engineering Conference.2003.FEDSM 2003-45401.1183-1191
    [52]R.Flaek,K.Brun.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part 2:Flow in a Curved Stationary Passage and Combined Flows.4th ASME/JSME Joint Fluids Engineering Conference.2003.FEDSM 2003-45402.1193-1201
    [53]Sehyun Shin,Hyukjae Chang,In-Sik Joo.Effect of Scroll Angle on Performance of Automotive Torque Conveter.SAE 2000-01-1158
    [54]Sehyun Shin,Kyung-Joon Kim,Dong-Jin Kim,ln-Sik Joo,Jong-Hae Hong,Young-Ki Jang.The Effect of Reactor Blade Geometry on the Performance of an Automotive Torque Converter.SAE 2002-01-0885
    [55]Sehyun Shin,Byung-Cheol Lee,Jong-Hae Hong,In-Sik Joo.Performance Improvement Using a Slotted Stator of an Automotive Torque Converter.SAE 2003-01-0247
    [56]Yu Dong,Vamshi Korivi,Pradeep Attibele,Yiqing Yuan.Torque Converter CFD Engineering Part Ⅰ:Torque Ratio and K Factor Improvement through Stator Modifications.SAE 2002-01-0883
    [57]Yu Dong,Vamshi Korivi,Pradeep Attibele,Yiqing Yuan.Torque Converter CFD Engineering Part Ⅱ:Performance Improvement through Core Leakage Flow and Caviation Control.SAE 2002-01-0884
    [58]T.Shieh,C.Pemg,D.Chu,S.Makim.Torque Converter Analytical Program for Blade Design Process.SAE 2000-01-1145
    [59]Giwoo Kim,Jaeduk Jang.Effects of Stator Shapes on Hydraulic Performances of an Automotive Torque Converter with a Squashed Toms.SAE 2002-01-0886
    [60]Jin-Hyuk Lee,Hoon Lee.Dynamic Simulation of Nonlinear Model-Based Observer for Hydrodynamic Torque Converter System.SAE 2004-01-1228
    [61]C.L.Anderson,L.Zeng,P.O.Sweger,A.Narain,J.R.Blough.Experimental Investigation of Cavitation Signatures in an Automotive Torque Converter Using a Microwave Telemetry Technique.9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.2002
    [62]Chinwon Lee,Wookjin Jang,Jang Moo Lee,Won Sik Lim.Three Dimensional Flow Field Simulation to Estimate Performance of a Torque Converter.SAE 2000-01-1146
    [63]Brad Pohl.Transient Torque Converter Performance,Testing,Simulation and Reverse Engineering.SAE 2003-01-0249
    [64]Bruce Fitts,Thomas Kneeland,Joseph Palermo.Technology Advances in the Design and Manufacture of Phenolic Torque Converter Reactors.SAE 2002-01-0602
    [65]Tetsuya Kubota,Toshio Kobayashi,Tetsuo Saga,Nobuyuki Taniguchi,Shigeki Segawa,Koji Kajitani,Takao Fukunaga,Tomohiro Tasaka,Yasunori Kunisaki.Application Study of PIV Measurement of Flow Field around Lock-up Clutch of Automotive Torque Converter.JSAE 20034528.425-430
    [66]Norihiko Watanabe,Shinya Miyamoto,Masayuki Kuba,Junichi Nakanishi.The CFD Application for Efficient Designing in the Automotive Engineering.SAE 2003-01-1335
    [67]Volker Middelmann,Ravishankar Gundlapalli,Clemens Halene,Bhaskar Marathe.Development of Axially-squashed Torque Converters for Newer Automatic Transmissions.ASME Fluids Engineering Division Summer Meeting.2000.FEDSM 2000-111326
    [68]庄礼贤,尹协远,马晖扬.流体力学[M].中国科学技术大学出版社.1991
    [69]E.Ejiri,M.Kubo.Performance Analysis of Automotive Torque Converter Elements[J].ASME Journal ofFluidsEngineering.1999,121.266-275
    [70]过学迅,时军.车辆液力减速制动器设计和试验研究[J].汽车工程.2003(3):31-34
    [71]商景泰.通风机手册[M].机械工业出版社.1994
    [72]李嵩,瞿鑫,朱之墀.考虑气动载荷的轴流通风机叶轮强度的有限元分析[J].风机技术.2004(2):11-15
    [73]韩东劲.调速型液力偶合器叶轮强度的有限元分析[J].煤矿机电.2001(6):20-23
    [74]陈国强,王乘,姬晋文.轴流式水轮机叶片刚度和强度有限元分析[J].机械强度.2003,25(6):690-693
    [75]郊兴海,张克威.水力机械叶片强度有限元分析[J].水泵技术.2004(6):19-22
    [76]宋光辉.液力偶合器叶轮三维整体有限元强度分析方法[J].传动技术,2004(6):15-17
    [77]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京:机械工业出版社.2004
    [78]蒋大为.空间解析几何及其应用[M].北京:科学出版社.2004
    [79]柯金朴.空间三维坐标转换原理及实现[J].江西测绘,2008(3):16-20
    [80]赵淑芳.标准空间二次曲面拟合的研究[D].哈尔滨:哈尔滨工业大学工学硕士学位论文.2006
    [81]袁成营,郝永生,林志华等.矩阵极小范数最小二乘法在拟合二次曲面中的应用[J].兵工自动化.2008(10):96-96
    [82]王沫然.MATLAB6.0与科学计算[M].北京:电子工业出版社.2001
    [83]张波,盛和太.ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社.2006
    [84]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社.2004
    [85]李娜.涡轮增压器压气机叶片静态和动态特性研究及优化设计[D].大连交道大学硕士学位论文.2007
    [86]金琰.叶轮机械中若干气流激振问题的流固耦合数值研究[D].清华大学博士学位论文.2002
    [87]刘万青.大型离心压缩机焊接叶轮疲劳分析[D].大连理工大学硕士学位论文.2008
    [88]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007
    [89]林宗虎.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2003
    [90]严谨.井筒气液两相流动数值模拟研究[D].西南石油学院,2005,
    [91]谭立新.水气二相流数值模拟研究[D].成都:四川大学,1999。
    [92]姚子生.液力偶合器部分充液两相流动数值模拟与分析[D].吉林:吉林大学硕士学位 论文2008
    [93]何志霞,袁建平,李德桃等.柴油机喷嘴喷孔内气液两相湍流场三维数值模拟[J].内燃机工程.2005(6):18-21
    [94]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社.2008
    [95]田华.液力变矩器现代设计理论的研究[D].长春:吉林大学.2005
    [96]闫国军,董泳,吴剑威.液力变矩器部分充液特性研究及应用[J].工程机械.2007(5):47-50
    [97]Ohkita Y,Kodama H,Nozaki O.Numerical and Experiment Investigation of Secondary Flow in a High-speed Compressor Stator[J].ASME Journal of Turbomachinery,1997(2):169-175
    [98]周华,夏南.油气分离器内气液两相流的数值模拟[J].计算力学学报.2006(6):766-711
    [99]余志毅,曹树良,王国玉.叶片式混输泵内气液两相流的数值计算[J].工程热物理学报.2007(1):46-48
    [100]卢金铃,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报.2003(2):237-240
    [101]Pierre Degond,Giacomo Dimarco,Luc Mieussens.A moving interface method for dynamic kinetic-fluid coupling[J].Journal of Computational Physics.2007(2):1176-1188
    [102]朱荣生,付强,李维斌等.基于混合模型的离心泵叶轮内汽蚀两相流的CFD分析[J].中国农村水利水电.2006(8):51-53
    [103]Jose A.Caridad,Frank Kenyery.Slip Factor for Centrifugal Impellers Under Single and Two-Phase Flow Conditions[J].Journal of Fluids Engineering.2005(2):317-321
    [104]Donata M.Fries,Severin Waelchli,Philipp Rudolf von Rohr.Gas-liquid two-phase flow in meandering microchannels[J].Chemical Engineering Journal.2008(1):37-39
    [105]V.Stephane.Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows[J].Proceedings of the ASME/JSME Joint Fluids Engineering Conference.2003:1299-1305
    [106]Mirko Salewski,Dragan Stankovic,Laszlo Fuchs.A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations[J].Journal of Engineering for Gas Turbines and Power.2007(1 ):61-68
    [107]Ivanov Vladimir A,Sarasola Francisco J,Vasquez Sergio A.Multi-phase mixture model applied to cyclone separators and bubble columns[J].Pressure Vessels and Piping Division.397(1):317-3241,1999
    [108]J.M.Masella,Q.H.Tran,D.Ferre,C.Pauehon.Transient Simulation of Two-Phase Flows in Pipes Int.J.Multiphase Flow,1998,24:739-755
    [109]Lopez M,Bertodano D,Lahey J R,Jones O C.Phase Distribution in Bubbly Two-Phase Flow inVertiealDuets,Int.J.Multiphase Flow,1994,20:805-818
    [110]Ohem T J,Gore R A.Experimental techniques in multiphase flows.ASME,1991,125(3):379-411
    [111]Baehalo W D.Experimental methods in multiphase flows.Int.J.Multiphase Flow,1994,20:261-295
    [112]Reese J,Fan L S.Transient flow structure in the entrance region of a bubble column using particle imagevelocimetry,Chem.Engng.Sci.,1994,49(24B):5624-5636
    [113]Keane R D,Adrian R J.Optimization of particle image velocimeters,Part 1:Double pulsed system,Meas.Sci.Technology,1990,11:1202-1215
    [114]FanJ.R.,MaY.L.,ZhaX.D.,Cen K.F.Predietion of DenseTurbulentParticle Laden Riser Flow with A Eulerian and Lagrange Combined Model.Chem.Eng.Comm.,Vol.179,201-218,2000
    [115]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社.1991
    [116]陈桂明.应用Matlab建模与仿真[M].北京:科学出版社.2001
    [117]王沫然.Simulink4建模及动态仿真[M].北京:电子工业出版社.2002
    [118]张滨刚,姜正根.汽车制动过程的理论分析与试验[J].兵工学报.1998(4):1-4
    [119]余志生.汽车理论[M].北京:清华大学出版社.2000
    [120]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术.1996,(7):1-7
    [121]刘惟信.汽车制动系的结构分析与设计计算[M].北京:清华大学出版社.2004
    [122]赵迎生.辅助制动和汽车主制动装置联合控制理论和方法的研究[D].镇江:江苏大学博士学位论文.2008
    [123]秦启华.排气制动系统的基本原理(上).汽车运输,1989(2)
    [124]秦启华.排气制动系统的基本原理(下).汽车运输,1989(3)
    [125]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社.2004
    [126]童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术出版社.1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700