高可靠磁悬浮轴承系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动磁悬浮轴承正逐渐走出实验室,应用到实际的工业设备上。主动磁悬浮轴承由于没有机械磨损,工作寿命可以很长,具有比较高的可靠性。但是当把主动磁悬浮轴承用于某些对可靠性要求比较高的设备时,如磁悬浮多电发动机和采用主动磁悬浮轴承的核能发电设备,其可靠性仍然无法满足要求。因此如何进一步提高主动磁悬浮轴承的可靠性是目前国内外研究的热点。文中对高可靠磁悬浮轴承系统关键技术进行了研究。
     文中针对采用差动方式测量转子位移的主动磁悬浮轴承提出了两种故障位移传感器识别算法。文中研究了位移传感器探头故障与位移传感器输出及控制器输出之间的关系,分析了当不同探头发生故障时位移传感器输出和控制器输出的特征,在此基础上提出了基于自适应滤波和基于离散傅里叶变换两种探头故障检测及识别算法。文中对算法进行了仿真研究,并在一个五自由度主动磁悬浮轴承试验台上进行了试验研究,研究结果表明:无论转子在静态悬浮还是高速旋转时采用这两种算法均可以准确地检测到位移传感器故障并识别出故障位移传感器。
     文中在基于电流分配矩阵重构的基础上提出了基于坐标变换的执行器容错控制算法,并针对一个六极磁路耦合的径向磁悬浮轴承的五种故障模式进行了研究。文中分析并导出了每种故障模式相应的坐标变换矩阵和线圈重映射矩阵,对每种故障模式下转子的起浮特性和故障切换特性进行了仿真研究,并在一个两自由度磁悬浮轴承试验台上进行了试验研究。
     文中把基于坐标变换的位移传感器容错控制算法和基于坐标变换的执行器容错控制算法相结合提出了基于坐标变换的位移传感器和执行器容错控制算法,该容错控制算法能够容许位移传感器和执行器线圈同时出现故障而保证转子的稳定悬浮。文中采用MATLAB对该算法进行了仿真并在一个两自由度磁悬浮轴承试验台进行了试验研究,研究结果表明:采用该容错控制算法可以最多在一个位移传感器和三个执行器线圈同时故障情况下实现转子的稳定悬浮。
     文中针对安装三个位移传感器的径向磁悬浮轴承研究了基于坐标变换的位移传感器容错控制算法,采用MATLAB对该算法进行了仿真研究,并在一个两自由度磁悬浮轴承试验台上进行了试验研究。研究结果表明:采用该容错控制算法可以在任一位移传感器发生故障时实现转子的稳定悬浮。
     文中针对一个六极磁路耦合的径向磁悬浮轴承研究了基于电流分配矩阵重构的执行器容错控制算法,导出了该磁悬浮轴承在非故障状态和两种故障状态下的电流分配矩阵,对转子在三种状态下的起浮特性和故障切换特性进行了仿真研究,并在一个两自由度磁悬浮轴承试验台进行了试验研究,研究结果表明:采用该算法可以实现转子在故障状态下的稳定悬浮。
     文中研究了机械加工误差对主动磁悬浮轴承性能的影响。文中针对一种典型的五自由度主动磁悬浮轴承介绍了常见的机械误差形式,详细地分析了每种误差形式对主动磁悬浮轴承工作状态的影响机理及特征,建立了误差和主动磁悬浮轴承工作状态之间的定量关系,并将该研究成果用于检测主动磁悬浮轴承机械部分在加工和装配中存在的问题,以提高主动磁悬浮轴承机械部分的装配精度,提高主动磁悬浮轴承的性能。
Active Magnetic Bearing (AMB) has gradually been applied to actual industrial area from laboratory. Nonexistent friction makes AMB own longer work life and high reliability compared to conventional bearings. However, the reliability still can not satisfy the requirements of some special equipment, such as more-electric gas turbine engines and nuclear generator equipped with AMB. Therefore, methods to enhance the reliability of AMB have recently been the research hotspots at home and abroad. Key technologies of AMB with high reliability are studied in the paper.
     Two displacement sensor failure diagnosis methods are presented according to the active magnetic bearing adopting differential method to measure the displacement of rotor. The relationship between the output signal of controller, the output of displacement sensors and the disturbed signal applied to displacement sensor probes is analyzed. Characteristics of displacement sensor’s output and controller’s output of the failed sensor are analyzed when different displacement sensor probe failed. Based on the principle, fault diagnosis methods for the displacement sensor probes based on adaptive filtering method and discrete Fourier transform are presented. The methods are firstly studied by simulation using MATLAB tool and then the experiments are made on a five degree of freedom active magnetic bearing test rig. The result shows that both of the methods can identify the fault of the displacement sensors when the rotor rotates at high speed and stays stationary.
     The coordinate transformation-based actuator fault-tolerant control algorithm on the basis of current distribution matrix reconstruction is presented. Aiming at the five failure modes of a six-core radial AMB with coupled magnetic path, the corresponding coordinate transformation matrix as well as the coil re-mapping matrix for each mode are derived. Suspending and failover characteristics of the rotor in each failure mode are simulated, and then the relative experiments are taken out on a two degree of freedom active magnetic bearing text rig.
     The displace sensors and actor fault-tolerant control method based on coordinate transformation is presented,which can ensure the stability of the rotor suspension in the condition that the sensors and the excitation coils fail at the same time. This algorithm is simulated using MATLAB and studied on a two degree of freedom active magnetic bearing text rig. The result shows that the fault-tolerant control algorithm can achieve the stability of the rotor suspension in the state that one displacement sensor and three excitation coils at most failed synchronously.
     The fault-tolerant control algorithm based on coordinate transformation of the radial magnetic bearing installed with three displacement sensors is studied and simulated using MATLAB. The experiment is also made on a two degree of freedom active magnetic bearing text rig. The result shows that the fault-tolerant control algorithm can achieve the stability of the rotor suspension in the state that any displacement sensor failed.
     The fault-tolerant control method based on current distribution matrix reconstruction is studied according to a six-core radial AMB with coupled magnetic path and distribution matrixes of normal state and two fault states are derived. Suspending and failover characteristics of the rotor in the three kinds of states are simulated, and then the relative experiments are carried out on a two degree of freedom active magnetic bearing text rig. The result shows that this fault-tolerant control method can achieve stable suspension in fault condition and can switch to normal station stably when the failure occurs.
     In the end, the influence of mechanical error on the performance of AMB is studied. Common mechanical errors of a classic 5-DOF AMB are introduced. The influence mechanism of each mechanical error on the working state of AMB is analyzed in detail. The relationship between machining errors and the working parameters of AMB is quantitatively analyzed. The results are used to identify the problems caused by cutting and assembling so that the assembly accuracy of mechanical part and the workability can be improved.
引文
[1]Schweitzer G,Bleuler H,Traxler A.Active Magnetic Bearings.Zürich:Vdf Hochschulverlag AG an der ETH,1994.
    [2]虞烈.可控磁悬浮转子系统.北京:科学出版社,2003.
    [3]刘贤兴,孙宇新,朱熀秋,等.无轴承永磁同步电机的发展、应用和前景.中国机械工程,2004,17(15):1594-1597.
    [4]徐龙祥,朱晓春.片状无轴承磁电机的研究.中国电机工程学报,2006,26(6):141-145.
    [5]刘晓军,刘小英,胡业发,等.人工心脏泵磁悬浮转子非线性特性及控制方法研究.中国机械工程,2006,20(17):2091-2094.
    [6]王晓光,胡业发,江征风.磁悬浮硬盘驱动器及其静电防护设计.机械设计与制造,2005,(3):43-45.
    [7]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型.中国电机工程学报,2005,25(9):139-146.
    [8]Meeks C,McMullen P,Hibner D,et al.Lightweight Magnetic Bearing System for Aircraft Gas Turbing Engines.Proceeding of The Fourth International Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:429-434.
    [9]Canders W R,Ueffing N,Uwe S H,et al.MTG400:A Magnetically Levitated 400kW Turbo Generator System for Natural Gas Expansion.Proceeding of The Fourth International Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:435-440.
    [10]Schmied J L,Pradetto J C.Rotor Dynamic Behaviour of A High-speed Oil-free Motor Compressor with A Rigid Coupling Supported on Four Radial Magnetic Bearings.Proceeding of The Fourth International Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:441-447.
    [11]Shen J Y,Fabien B C.Optimal Control of A Flywheel Energy Storage System with A Radial Flux Hybrid Magnetic Bearing.Journal of the Franklin Institute,2002,339(2):189-210.
    [12]Ahrens M,Sturgess K.Oil-Free Compressor System for Gas Pipelines:Is Now The Time?.Proceeding of The Seventh International Symposium on Magnetic Bearings,Zürich: International Center of Magnetic Bearings,2000:7-8.
    [13]Kawashima H,Nagaya S,Minami M,et al.Study on 1kWh CFRP Flywheel for High Temperature Superconducting Magnetic Bearing for Energy Storage System.Proceedings of the Ninth International Symposium on Superconductivity,Berlin:Springer-Verlag,1997:1353-1356.
    [14]Noh M D,Cho Seong-Rak,Kyung Jin-Ho,et al.Design and Implementation of A Fault-tolerant Magnetic Bearing System for Turbo-molecular Vacuum Pump.IEEE/ASME Transactions on Mechatronics,2005,10(6):626-631.
    [15]Park Junyoung,Palazzolo A,Beach R.MIMO Active Vibration Control of Magnetically Suspended Flywheels for Satellite IPAC Service.Journal of Dynamic Systems(Measurement and Control),2008,130(4):041005-1-041005-22.
    [16]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报,2003,23(3):108-111.
    [17]白金刚,张小章,张剀,等.磁悬浮储能飞轮系统中的磁轴承参数辨识.清华大学学报,2008,48(3):382-385.
    [18]吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究.宇航学报,2005,26(3):385-390.
    [19]MTU AERO ENGINES GMBH.Magnetic Bearings for Smart Aero-engines(MAGFLY). http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq112242005919ndDOCeq1300ndTBLeqEN_PROJ.htm,[2009-3-17].
    [20]Imperial College,Technische Univ. Darmstadt,Eidgen?ssische Technische Hochschule Zürich,et al.AMBIT-Active Magnetic Bearings in Aircraft Turbomachinery.http://www.aramis.admin.ch/ Default.aspx?page=Texte&projectid=6553.[2009-3-17].
    [21]徐龙祥,周波.磁浮多电航空发动机的研究现状及关键技术.航空动力学报,2003,18(1):51-59.
    [22]Li Hongwei,Zhao Lei,Shi Lei,et al. Study on Active Magnetic Bearing Controller for HTR-10 Helium Turbine Roto.Nuclear Power Engineering,2008,9(4):100-103.
    [23]Hirochika Ueyama.Helium Cold Compressor with Active Magnetic Bearings.Proceeding of The Seventh International Symposium on Magnetic Bearings,Zürich:International Center of Magnetic Bearings,2000:1-6.
    [24]Pham H.Handbook of Reliability Engineering.Berlin,German:Soringer-Verlag,2003.
    [25]International Standardization Organization.ISO14839:2002 Mechanical Vibration-vibration of Rotating Machinery Equipped with Active Magnetic Bearings-part1:vocabulary,2002.
    [26]Kanki Hiroshi,Kawanishi Michihiro,Takami Tomoak.Advanced Control for Active Magnetic Bearing.Proceeding of the Eighth International Symposium on Magnetic Bearings,Mito,Japan:Dynamics and Control Lab,Dept.of Mechanical Eng,Ibaraki University,2002:439-450.
    [27]Xu Youzhi,Kenzo N.A Fuzzy Modeling of Active Magnetic Bearing System and Sliding Mode Control with Robust Hyperplane Usingμ-synthesis Theory.Proceeding of the Eighth International Symposium on Magnetic Bearings,Mito,Japan:Dynamics and Control Lab,Dept.of Mechanical Eng,Ibaraki University,2002:451-457.
    [28]Li Guoxin,Allaire P E,Lin Zongli,et al.Dynamic Transfer of Robust Amb Controllers. Proceeding of the Eighth International Symposium on Magnetic Bearings,Mito,Japan:Dynamics and Control Lab,Dept.of Mechanical Eng,Ibaraki University,2002:471-476.
    [29]Hirata M,Nonami K.Robust Control of A Magnetic Bearing System Using Constantly Scaled H∞Control.Proceeding of The Sixth International Symposium on Magnetic Bearings,USA:The University of Virginia,The Massachusetts Institute of Technology,1998:713-722.
    [30]Namerikawa T,Fujita M.Wide Area Stabilization of A Magnetic Bearing Using Exact Linearization.Proceeding of The Sixth International Symposium on Magnetic Bearings,USA:The university of Virginia,the Massachusetts institute of technology.1998:733-742.
    [31]Nezamabadi R,Poshtan J,Jahed-Motlagh M R.Robust Control Design to Imbalance Compensation and Automatic Balancing of Magnetic Bearings.Proceedings of the IEEE International Conference on Industrial Technology,USA:IEEE,2006:1093-1098.
    [32]Yan Yingxin,Duan Guangren.Robust Control of Magnetic Bearing with Gyroscopic Effects Using Output Feedback Controller.First International Symposium on Systems and Control in Aerospace and Astronautics,USA:IEEE,2006:778-782.
    [33] Duan Guangren,Wu Zhanyuan,Bingham C M,et al.Robust Active Magnetic Bbearing Control Using Stabilizing Dynamical Compensators . Proceedings of Electric Machines and Drives Conference,USA:IEEE,1999:493-495.
    [34]Fujita M,Hatake K,Matsumura F.Loop Shaping Based Robust Control of A Magnetic Bearing.IEEE Control Systems Magazine,1993,13(4):57-65.
    [35]Xu Y,Nonami K.A Fuzzy Modeling of Active Magnetic Bearing System and Sliding Mode Control with Robust Hyperplane Usingμ-synthesis Theory.JSME International Journal,Series C(Mechanical Systems,Machine Elements and Manufacturing),2003,46(2):409-415.
    [36]Lu Shengang , Jiang Shuyun .μSynthesis Robust Control Study of Active Magnetic Bearing.Chinese Journal of Mechanical Engineering,2007,43(1):133-138.
    [37]Jiménez-Lizárraga Manuel,Alcorta A.Multi-model Robust LQ Control of An Active Magnetic Bearing.Proceedings of The American Control Conference,USA:IEEE,2007:5977-5982.
    [38]Cole M O T,Keogh P S,Burrows C R.Fault-tolerant Control of Rotor/Magnetic Bearing Systems Using Reconfigurable Control with Built-in Fault Detection.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,214(c12):1445-1465.
    [39]Sahinkaya M N,Cole M O T,Burrows C R.Fault Detection and Tolerance in Synchronous Vibration Control of Rotor-Magnetic Bearing Systems.Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2001,215(12):1401-1416.
    [40]徐龙祥,张金淼,余同正.H_∞控制理论在磁悬浮轴承系统中的应用研究.中国机械工程,2006,19(10):1060-1064.
    [41]叶建民,徐龙祥.基于LQR理论的电磁轴承控制系统鲁棒稳定性分析.机械工程与自动化,2005(3):18-21.
    [42]Lyons J P,Preston M A,Gurumorthy R,et al.Design and Control of A Fault Tolerant Active Magnetic Bearing System for Aircraft Engines.Proceeding of The Fourth International Symposium on Magnetic Bearings,Zürich:Vdf Hochschulverlag AG an der ETH,1994:449-454.
    [43]Maslen E H,Sortore C K,Gillies G T.Fault Tolerant Magnetic Bearings.Transactions of the ASME,Journal of Engineering for Gas Turbines and Power,1999,121(3):504-508.
    [44]余同正,徐龙祥.基于双DSP的磁轴承数字控制器容错控制.自动化与仪器仪表,2005(1):27-29.
    [45]唐文斌.高可靠磁悬浮轴承数字控制器研制,[硕士学位论文].南京:南京航空航天大学,2008.
    [46]纪历.高可靠磁悬浮轴承数字控制器的研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [47]Montie D,Maslen E.Self-sensing in Fault Tolerant Magnetic Bearing.Transactions of the ASME,2001,123(4):864-870.
    [48]Kim Seung-Jong,Lee Chong-Won.Diagnosis of Sensor Faults in Active Magnetic Bearing System Equipped With Built-In Force Transducers.IEEE/ASME Transactions on mechatronics,1999,4(2):180-186.
    [49]Loesch F.Detection and Correction of Actuator and Sensor Faults in Active Magnetic Bearing Systems.Proceeding of the Eighth International Symposium on Magnetic Bearings,Mito,Japan:Dynamics and Control Lab,Dept.of Mechanical Eng,Ibaraki University,2002:113-118.
    [50]Noh M D,Cho Seong-Rak,Kyung Jin-Ho,et al.Design and Implementation of a Fault-Tolerant Magnetic Bearing System for Turbo-Molecular Vacuum Pump.IEEE/ASME Transactions on Mechatronics,2005,10(6):626-631.
    [51]Schroder P,Chipperfield A J,Fleming P J,et al.Fault Tolerant Control of Active Magnetic Bearings.IEEE International Symposium on Industrial Electronics,1998,(2):573-578.
    [52]Maslen E H,Meeker D C.Fault Tolerance of Magnetic Bearings by Generalized Bias Current Linearization.IEEE Transactions on Magnetics,1995,31(3):2304-2314.
    [53]Na U J,Kenny A,Palazzolo A B.Bidirectional Magnetic Bearing with Fault-tolerant Capability.Proceedings of the 37th Intersociety Energy Conversion Engineering Conference,USA:IEEE,2004:222.
    [54]Na U J,Palazzolo A.Optimized Realization of Fault-Tolerant Heteropolar Magnetic Bearings. Transactions of the ASME,Journal of Vibration and Acoustics,2000,122(3):209-221.
    [55]Li Ming-Hsiu , Palazzolo A B , Kenny A , et al . Fault-Tolerant Homopolar Magnetic Bearings.IEEE Transactions on Magnetics,2004,40(5):3308-3318.
    [56]Na U J,Palazzolo A B.Fault Tolerance of Magnetic Bearings with Material Path Reluctances and Fringing Factors.IEEE Transactions on Magnetics,2000,36(6):3939-3946.
    [57]Lyndon Scott Stephens,Anand Ranganathan.Fault Tolerant Control of A LORENTZ Self Bearing Motor Considering Open Coil Faults.Proceeding of The Ninth International Symposium on Magnetic Bearings,Kentucky,USA:University of Kentucky Bearing and Seals Laboratory,2004:1-6.
    [58]吴步洲,孙岩桦,王世琥,等.径向电磁轴承线圈容错控制研究.机械工程学报,2005,41(6):157-162.
    [59]Wassermann J,Schulz A,Schneeberger M.Active Magnetic Bearings of High Reliability.2003 IEEE International Conference on Industrial Technology,USA:IEEE,2003:194-197.
    [60]Schweitzer G.Safety and Reliability Aspects for Active Magnetic Bearing Applications-a Survey.Proceedings of the Institution of Mechanical Engineers,Part I (Journal of Systems and Control Engineering),2005,219(16):383-392.
    [61]楚云凌,汪希平,雷永锋,等.电磁轴承系统中信息存储与接口技术的智能化方法.轴承,2007,(9):4-6.
    [62]张志洲,李晓龙,龙志强.基于状态观测的磁悬浮列车传感器故障容错方法.机车电传动,2008,(4):39-42.
    [63]龙志强,薛松,陈慧星.基于LM I的磁浮列车悬浮系统被动容错控制.计算机仿真,2008,25(2):265-268.
    [64]龙志强,陈慧星,常文森.考虑电磁铁故障的磁浮列车单悬浮模块的容错控制.控制理论与应用,2007,24(6):1033-1037.
    [65]佘龙华,邹东升,李建泉,等.磁悬浮控制器DSP的容错设计.机车电传动,2006,(1):33-35.
    [66]龙志强,张志洲,常文森.考虑传感器故障的磁浮系统容错控制仿真研究.系统仿真学报,19(19):4469-4472.
    [67]谭祖根,汪乐宇.电涡流检测技术.北京:原子能出版社,1986:159-160.
    [68]Larsonneur R,Bühler P.New Radial Sensor for Active Magnetic Bearing.Proceeding of the Ninth International Symposium on Magnetic Bearings,Kentucky,USA:Bearing and Seals Laboratory,University of Kentucky,2004:86-90.
    [69]Xu Long-xiang,Zhang Jin-yu,Gerhard S.High Temperature Displacement Sensor.Chinese Journal of Mechanical Engineering,2005,3(18):449-452.
    [70]Burdet L,Maeder T,Siegwart T,et al.Thick Film Radial Position Sensor for High Temperature Active Magnetic Bearing.Proceeding of the Tenth International Symposium on Magnetic Bearings, Martigny,Switzerland: EPFL Lausanne and Politecnico diTorino,2006:37-41.
    [71]汪希平,崔卫东.电磁轴承用非接触式位移传感器的研究.上海大学学报(自然科学版),1998,4(1):54-60.
    [72]常建华,全书海.自适应陷波器的原理、应用及其算法仿真.武汉汽车工业大学学报,1998,20(3):46-49.
    [73]徐长胜,周兆英,李杰.自适应滤波的原理和应用.北京:中国仪器仪表,1994,(6):8-9.
    [74]胡广书.数字信号处理-理论、算法与实现.北京:清华大学出版社,1997:71-88.
    [75]曹洁.电磁轴承系统位移传感器的分析与研究.仪表技术与传感器,2001,(12):9-11.
    [76]王春兰,张钢,董鲁宁,等.电涡流传感器的有限元仿真研究与分析.传感器与微系统,2006,25(2):41-46.
    [77]王春海,陈明,石望远.车床加工中圆度误差在线检测技术.航空精密制造技术,2004,40(4):41-46.
    [78]Gahler C.Rotor Dynamic Testing and Control with Active Magnetic Bearing.Swiss Federal Institute of Technology,ETH,Zurich,1998:29-34.
    [79]哈尔滨工业大学教研室.理论力学.高等教育出版社,2002.
    [80]林其壬,赵佑民.磁路设计原理.机械工业出版社,1987.
    [81]朱如鹏,郭学陶.机械设计课程设计.航空工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700