流场的格子Boltzmann模拟及其GPU-CUDA并行计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格子Boltzmann方法(Lattice Boltzmann Method,LBM)是一种有效的模拟复杂流体流动的数值计算方法,已经成功的应用到研究多相流,多孔介质流和湍流等工作中。与传统的数值求解宏观方程(Euler方程和Navier-Stokes方程)方法相比,LBM是从介观动理论的角度,将流体抽象成大量的介观粒子,这些粒子在简单的网格上进行迁移和碰撞,通过对反映粒子分布的统计函数进行时空演化获得流体的宏观变量。因此,LBM具有边界条件易于处理、代码短小、编程简单与适合并行计算等优点。随着近年来科研工作者们对LBM越来越多的关注以及对LBM不断的发展和应用,LBM已经逐渐发展成为计算流体动力学中的一个重要研究热点。
     为了求解高雷诺数不可压流场,本文将Smagorinsky涡粘性模型拓展到LBM中的二维9速度(D2Q9)和三维19速度(D3Q19)多松弛时间(Multiple Relaxation Time, MRT)格子Boltzmann模型中,针对LBM数值模拟高雷诺数三维流场计算效率低的问题和其非常适合并行的优点以及基于中央处理器(Central Processor Unit,CPU)并行计算的限制,采用基于图形处理器(Graphic Processor Unit,GPU)的计算统一设备架构(Computing Unified Device Architecture,CUDA)并行编程模型对已建立模型进行并行加速,并利用建立的并行模型对方腔流和风生流进行了数值模拟研究。本文的主要工作如下:
     第一,介绍了LBM的发展历史,基本原理和模型,边界条件,单位转换以及数值实现过程。为了模拟高雷诺数的不可压流场,本文利用传递矩阵把粒子分布函数的二阶矩从速度空间传递到矩空间计算涡粘性系数的方法,将Smagorinsky涡粘性模型拓展到D2Q9和D3Q19MRT格子Boltzmann模型中,建立了D2Q9和D3Q19MRT-SMAG模型。
     第二,针对LBM数值模拟高雷诺数三维流场计算效率低的问题和其非常适合并行的优点以及基于CPU并行计算的诸多限制,本文采用基于GPU的CUDA并行编程模型对拓展的MRT-SMAG模型实现了并行加速。该部分介绍了GPU-CUDA并行编程模型,提出了基于GPU-CUDA并行计算在MRT-SMAG模型中的具体实现过程。通过对基于GPU并行程序性能的具体分析,可以通过合理分配线程块内线程数量,减少内核函数内的if判断语句,尽可能多的运用片上高速的共享内存等,以提高GPU上并行程序的计算效率。为了验证已建立并行程序的准确性,本文完成了长宽高比为1:3:1,Re=10000的三维单边驱动方腔流的数值实验,在该算例中基于GPU并行程序的计算效率与只用单个CPU进行计算的串行程序相比提高达145倍,由于在GPU和CPU上都采用双精度计算,而两者的计算精度没有差别。
     第三,为了进一步验证基于GPU并行模型的准确性和评估该模型求解湍流的能力以及分析多边驱动方腔内的流场特性,本文针对方腔流研究中存在的问题应用已建立的基于GPU-CUDA的D2Q9和D3Q19MRT-SMAG模型对二维和三维单边驱动方腔流以及多边驱动方腔流进行了数值模拟研究。对于二维方腔流,分析了腔内流场由层流向湍流状态转变的转捩雷诺数,讨论了格子网格系统,Smagorinsky常数,初始发展阶段和时间平均阶段对高雷诺数二维方腔流(雷诺数从5×104到107)时间平均量的影响;对于三维单边驱动方腔流,计算了三维方腔层流初始阶段流场,分析了边墙摩擦对三维方腔内湍流场的影响,讨论了表征其湍流脉动强度的二阶统计量;对于三维四边驱动方腔流,分析了宽高比对腔内流场特性的影响,计算了多个稳定层流解(流体分岔),讨论了宽高比对多个层流稳定解的影响,另外还评估了基于GPU并行程序对各算例的计算效率。
     第四,采用建立的基于GPU并行模型对三维风生流进行初步的数值研究,分析了中心对称断面的不同位置处的时间平均水平速度曲线以及表面和底部近壁区内的速度分布,给出了中心对称断面的时间平均流线和速度矢量,并将数值结果与已知的实验结果进行对比验证,结果表明MRT-SMAG模型可以求解三维风生流,和利用CUDA并行编程模型在GPU上可以极大的提高该模型的计算效率,约为178倍。
Lattice Boltzmann Method (LBM) has been proved to be an efficient numerical method for simulating many complex fluid flows, such as multiphase flows, porous media, turbulent flows, etc. In contrast to the conventional numerical solution of macroscopic equation, i.e., Euler equation and Navier-Stokes equation, the LBM abstracts the fluid as many mesoscopic particles which will collide and stream in the simple lattice system in term of the mesoscopic kinetic theory, and the macroscopic variables of fluid flow will be computed by the time-space evolution of the statistical function which represents the particle distribution. Thus, the main advantages of using LBM include easy implementation of boundary conditions, short codes, simple programming and natural parallelism.
     In this study, the Smagorinsky eddy viscosity model is extended to the LBM for solving the incompressible flow field with high Reynolds number. Due to low computing efficiency of LBM for three-dimensional (3-D) problems with high Reynolds number, and the natural parallelism of LBM, and the limitations of the parallel computing based on CPU, the parallel programming model of Computing Unified Device Architecture (CUDA) based on the Graphic Processor Unit (GPU) is adopted to accelerate the parallel computing of LBM, and then the cavity flows and wind driven currents were numerically computed by the established parallel model. The main work of this study are follows:
     First, we introduce the history development, basic theory and model, boundary condition, unit conversion and the numerical implementation process on the LBM. For the simulations of incompressible flow field with high Reynolds number, the Smagorinsky eddy viscosity model is extended to the two-dimensional with nine velocities (D2Q9) and three-dimensional with nineteen velocities (D3Q19) Multiple Relaxation Time (MRT) lattice Boltzmann model based on the previous work, and then the D2Q9and D3Q19MRT-SMAG model are provided.
     Second, due to low computing efficiency of LBM for3-D problems with high Reynolds number, and the natural parallelism of LBM,, and the limitations of the parallel computing based on CPU,, the extended MRT-SMAG model was concurrently accelerated by the CUDA parallel programming model on GPU. In this part, we introduce the GPU-CUDA massive parallel programming model firstly, and then the implementation details of LBM with GPU-CUDA. By the analysis on the performance of the GPU-based parallel program, it can be concluded that the computational efficiency of the code could be improved by reasonable distribution of the number of thread in thread block, reducing the if judgment statements in the kernel function, using the high speed shared memory on chip as much as possible. To validate the code, the numerical experiment of Re=100003-D one-sided lid driven cavity flow which has the ratio of length, width and height is1:3:1was performed, the speedup is up to145times than CPU-only codes. Since the use of the same double precision in the GPU and the CPU codes, there is no accuracy mismatch problem.
     Third, due to the existed problem on the cavity flows, the numerical simulations of high Reynolds number two-dimensional (2-D) and3-D one-sided lid driven cavity flow, and3-D four-sided lid driven flow are researched by the established GPU-CUDA D2Q9and D3Q19MRT-SMAG model for further validating the established parallel model, assessing the capability of these models simulations of turbulent flows, and analyzing the flow field features in the multi-sided lid driven cavity. For2-D cavity flow, the transition Reynolds number which stands for the changing from laminar flow to turbulent flow in the cavity is analyzed, and the effects of the lattice grid system, Smagorinsky constant, initial running and time-averaged period on the mean macroscopic variables for high Reynolds number2-D cavity flow are discussed. For3-D one-sided lid driven cavity flow, it is proved that the MRT-SMAG model has the ability to solve the initial stage of3-D flow field, and the frictional effects of side wall on the flow pattern in the cavity are analyzed, and the two order statistics for the turbulent intensity are also discussed. For3-D four-sided lid driven cavity flow, the effects of transverse aspect ratio on the flow field features are discussed, and the multiple steady solutions (flow bifurcation) are computed. Also, the effects of various transverse aspect ratio on the multiple steady solutions which are produced when the flow is unstable are reported. In additional, the computational efficiency of the GPU-based parallel program for these examples is investigated.
     Fourth, a preliminary study of wind driven current is considered by the GPU-based parallel model. The time-averaged horizontal velocity profiles at different location on the symmetry plane are analyzed, and the velocity distributions on the inner-law coordinates relative to the shearing surface and bottom are presented. Then, the time averaged streamline contours and velocity vector on the symmetry plane are given. Also, the numerical results are validated by the laboratory experimental data. It is shown that the MRT-SMAG model has the ability to simulate the3-D wind driven current, and its the computing efficiency could be greatly improved by the CUDA parallel programming model on GPU, about178times.
引文
[1]ALDER B J, WAINWRIGHT T E. Phase transition for a hard sphere system [J]. Journal of Chemical Physics,1957,27:1208-1209.
    [2]ROTHMAN D H, ZALESKI S. Lattice-Gas Cellular Automata:Simple Models of Complex Hydrodynamics [M]. Cambridge University Press, Cambridge,1997.
    [3]SUCCI S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond [M]. Oxford University Press, Oxford,2001.
    [4]CHEN S, CHEN H, MARTINEZ D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics [J]. Physical Review Letters,1991,67(27):3776-3780.
    [5]QIAN Y H, D'HUMIERES, LALLEMAND P. Lattice BGK model for Navier-Stokes equation [J]. Europhysics Letters,1992,17(6):479-484.
    [6]D'HUMIERES D. Generalized lattice Boltzmann equations [C]. Progress in Aeronautics and Astronautics,1992,159:450-458.
    [7]LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method:Dispersion, dissipation, isotropy, Galilean invariance, and stability [J]. Physical Review E,2000,61(6): 6546-6562.
    [8]D'HUMIERES D, BOUZIDI M, LALLEMAND P. Thirteen-velocity three-dimensional lattice Boltzmann model [J]. Physical Review E,2001,63:066702.
    [9]D'HUMIERES D, GINZBURG I, KRAFCZYK M, et al. Multiple-relaxation-time lattice Boltzmann models in three dimensions [J]. Philosophical Transactions of the Royal Society A,2002,360:437-451.
    [10]KRAFCZYK M, TOLKE J, LUO L. Large-eddy simulations with a multiple-relaxation-time LBE model [J]. International Journal of Modern Physics B,2003,17:33-39.
    [11]LIU H, LI M, SHU A. Large eddy simulation of turbulent shallow water flows using multi-relaxation-time lattice Boltzmann model [J]. International Journal for Numerical Methods in Fluids,2012,70:1573-1589.
    [12]POPE S B. Turbulent flows [M]. Cambridge University Press, Cambridge,2000.
    [13]HOU S, STERLING S, CHEN S, et al. A lattice Boltzmann subgrid model for high Reynolds number flows [J]. arXiv:comp-gas/9401004.
    [14]SMAGORINSKY J. General circulation experiments with the primitive equations [J]. Monthly Weather Review,1963,91:99-164.
    [15]KANG S K, HASSAN Y A. The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows [J]. Journal of Computational Physics, 2013,232:100-117.
    [16]YU H, LUO L, GIRIMAJI S S. LES of turbulent square jet flow using an MRT lattice Boltzmann model [J]. Computers & Fluids,2006,35:957-965.
    [17]PREMNATH K N, PATTISON M J, Banerjee S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows [J]. Physical Review E, 2009,79:026703.
    [18]KIRK D B, HWU W W. Programming massively parallel processors:a hands-on approach. Morgan Kaufmann, San Francisco,2010.
    [19]CHOPARD B, DROZ M. Cellular Automata Modeling of Physical Systems [M]. Cambridge University Press, Cambridge,1997.
    [20]WOLF-GLADROW D A. Lattice-Gas Cellular Automata and Lattice Boltzmann Models:An Introduction [M]. Springer,2005.
    [21]HARDY J, POMEAU Y, DE PAZZIS O. Time evolution of a two-dimensional model system I: Invarient states and time correlation functions [J]. Journal of Mathematical Physics, 1973,14:1746-1759.
    [22]FRISCH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the Navier-Stokes equation [J]. Physical Review Letters,1986,56:1505-1508.
    [23]D'HUMIERES D, LALLEMAND P, FRISCH U. Lattice gas model for 3D hydrodynamics [J]. Europhysics Letters,1986,2(4):291-297.
    [24]ROTHMAN D H, KELLER J M. Immiscible cellular-automation fluids [J]. Journal of Statistical Physics,1988,52:1119-1127.
    [25]CHEN S, DIEMER K, DOOLEN G D, et al. Lattice gas automata for flow through porous media [J]. Physica D:Nonlinear Phenomena,1991,47:72-84.
    [26]MCNAMARA G R, ZANETTI G. Use of the Boltzmann equation to simulate lattice-gas automata [J]. Physical Review Letters,1988,61(20):2332-2335.
    [27]HIGUERA F J, JIMENEZ J. Boltzmann approach to lattice gas simulations [J]. Europhysics Letters,1989,9 (7):663-668.
    [28]HIGUERA F J, SUCCI S, BENZI R. Lattice gas dynamics with enhanced collisions [J]. Europhysics Letters,1989,9(4):345-349.
    [29]BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases [J]. Physical Review,1954,94:511-525.
    [30]SUKOP M C, THORNE D T. Lattice Boltzmann modeling:An Introduction for Geoscientists and Engineers [M]. Springer,2006.
    [31]郭照立,郑楚光.格子Boltzmann方法的原理和应用[M].北京:科学出版社,2008.
    [32]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2009.
    [33]BENZI R, SUCCI S. Two-dimensional turbulence with the lattice Boltzmann equation [J]. Journal of Physics A:Mathematical and General,1990,23:L1-L5.
    [34]CHEN H, CHEN S, MATTHAEUS W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method [J]. Physical Review A,1992,45(8):R5339-R5342.
    [35]CHEN S, WANG Z, SHAN X, et al. Lattice Boltzmann computational fluid dynamics in three dimensions [J]. Journal of Statistical Physics,1992,68:379-400.
    [36]MARTINEZ D O, MATTHAEUS W H, CHEN S. Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics [J]. Physics of Fluids,1994,6(3): 1285-1298.
    [37]BENZI R, STRUGLIZ M V, TRIPICCIONE R. Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence [J]. Physical Review E,1996,53(6): R5565-R5568.
    [38]EGGELS J G M. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme [J]. International Journal of Heat and Fluid Flow,1996,17: 307-323.
    [39]AMATI G, SUCCI S, PIVA R. Massively parallel lattice-Boltzmann simulation of turbulent channel flow [J]. International Journal of Modern Physics C,1997,8(4):869-877.
    [40]AMATI G, SUCCI S, PIVA R. Preliminary analysis of the scaling exponents in channel flow turbulence [J]. Fluid Dynamics Research,1999,24:201-209.
    [41]COSGROVE J A, BUICK J M, TONGE S J. Evolution of turbulence in an oscillatory flow in a smooth-walled channel:A viscous secondary instability mechanism [J]. Physical Review E,2003,68:026302.
    [42]BESPALKO D, POLLARD A, UDDIN M. Direct numerical simulation of fully-developed turbulent channel flow using the lattice Boltzmann method and analysis of OpenMP scalability [J]. High Performance Computing Systems and Applications Lecture Notes in Computer Science,2010,5976:1-19.
    [43]LUO L S, QI D W, WANG L P. Applications of the lattice Boltzmann method to complex and turbulent flows [J]. High Performance Scientific And Engineering Computing Lecture Notes in Computational Science and Engineering,2002,21:123-130.
    [44]YU H, GIRIMAJI S, LUO L. Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence [J]. Physical Review E,2005,71:016708.
    [45]XU H, TAO W, ZHANG Y. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence [J]. Physics Letter A,2009,373:1368-1373.
    [46]DJENIDI L. Lattice-Boltzmann simulation of grid-generated turbulence [J]. Journal of Fluid Mechanics,2006,552:13-35.
    [47]YU D, GIRIMAJI S S. DNS of homogenous shear turbulence revisited with the lattice Boltzmann method [J]. Journal of Turbulence,2005,6(6):1-17.
    [48]YU D, GIRIMAJI S S. Direct numerical simulations of homogeneous turbulence subject to periodic shear [J]. Journal of Fluid Mechanics,2006,566:117-151.
    [49]CHIKATAMARLA S S, FROUZAKIS C E, KARLIN I V, et al. Lattice Boltzmann method for direct numerical simulation of turbulent flows [J]. Journal of Fluid Mechanics,2010,656: 298-308.
    [50]MENON S, S00 J-H. Simulation of vortex dynamics in three-dimensional synthetic and free jets using the large-eddy lattice Boltzmann method [J]. Journal of Turbulence,2004, 5:1-26.
    [51]YU H, GIRIMAJI S S, Luo L. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method [J]. Journal of Computational Physics, 2005,209:599-616.
    [52]MAYER G, HAZI G. Direct numerical and large eddy simulation of longitudinal flow along triangular array of rods using the lattice Boltzmann method [J]. Mathematics and Computers in Simulation,2006,72:173-178.
    [53]DONG Y H, SAGAUT P. A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence [J]. Physics of Fluids,2008,20:035105.
    [54]MEYERS J, SAGAUT P. On the model coefficients for the standard and the variational multi-scale Smagorinsky model [J]. Journal of Fluid Mechanics,2006,569:287-291.
    [55]FERNANDINO M, BERONOV K, YTREHUS T. Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach [J]. Mathematics and Computers in Simulation,2009, 79:1520-1526.
    [56]PREMNATH K N, PATTISON M J, BANERJEE S. Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method [J]. Physica A,2009,388:2640-2658.
    [57]WEICKERT M, TEIKE G, SCHMIDT 0, et al. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework [J]. Computers and Mathematics with Applications, 2010,59:2200-2214.
    [58]JAFARI S, RAHNAMA M. Shear-improved Smagorinsky modeling of turbulent channel flow using generalized lattice Boltzmann equation [J]. International Journal for Numerical Methods in Fluids,2011,67:700-712.
    [59]VAHALA G, KEATING B, YEPEZ J, et al. Entropic, LES and boundary conditions in lattice Boltzmann simulations of turbulence [J]. The European Physical Journal Special Topics, 2009,171:167-171.
    [60]GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al. Lattice Boltzmann model of immiscible fluids [J]. Physical Review A,1991,41(8):4320-4327.
    [61]ROTHMAN D H, KELLER J M. Immiscible cellular automaton fluids [J]. Journal of Statistical Physics,1988,52:1119-1127.
    [62]GRUNAU D, CHEN S, EGGERT K. A lattice Boltzmann model for multiphase fluid flows [J]. Physics of Fluids,1993,5:2557-2562.
    [63]LISHCHUK S V, CARE C M, HALLIDAY I. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents [J]. Physical Review E,2003,67:036701.
    [64]LATVA-KOKKO M, ROTHMAN D H. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids [J]. Physical Review E,2005,71:056702.
    [65]REIS T, PHILLIPS T N. Lattice Boltzmann model for simulating immiscible two-phase flows [J]. Journal of Physics A:Mathematical and Theoretical,2007,40:4033-4053.
    [66]HE X, CHEN S, ZHANG R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability [J]. Journal of Computational Physics,1999,152:642-663.
    [67]GINZBURG I, STEINER K. Lattice Boltzmann model for free-surface flow and its application to filling process in casting [J]. Journal of Computational Physics,2003,185:61-99.
    [68]KANG Q, ZHANG D, CHEN S, et al. Lattice Boltzmann simulation of chemical dissolution in porous media [J]. Physical Review E,2002,65:036318.
    [69]SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Physical Review E,1993,47(3):1815-1820.
    [70]SHAN X, CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation [J]. Physical Review E,1994,49(4):2941-2948.
    [71]CHIN J, BOEK E S, COVENEY P V. Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model [J]. Philosophical Transactions of the Royal Society A,2002,360: 547-558.
    [72]KANG Q, ZHANG D, CHEN S. Displacement of a two-dimensional immiscible droplet in a channel [J]. Physics of Fluids,2002,14(9):3203-3214.
    [73]KANG Q, ZHANG D, CHEN S. Immiscible displacement in a channel:simulations of fingering in two dimensions [J]. Advances in Water Resources,2004,27:13-22.
    [74]QIN R S. Mesoscopic interparticle potentials in the lattice Boltzmann equation for multiphase fluids [J]. Physical Review E,2006,73:066703.
    [75]YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model [J]. Physics of Fluids,2006,18:042101.
    [76]SBRAGAGLIZ M, BENZI R, BIFERALE L, et al. Generalized lattice Boltzmann method with multirange pseudopotential [J]. Physical Review E,2007,75:026702.
    [77]FALCUCCI G, BELLA G, CHIATTI G, et al. Lattice Boltzmann models with midrange interactions [J]. Communications in Computational Physics,2006,1(1):1-13.
    [78]CHIBBARO S, FALCUCCI G, CHIATTI G, et al. Lattice Boltzmann models for nonideal fluids with arrested phase-separation [J]. Physical Review E,2008,77:036705.
    [79]SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems [J]. Physical Review E,1996,54(5):5041-5052.
    [80]HOLDYCH D J, ROVAS D, GEORGIADIS J G, et al. An improved hydrodynamics formulation for multiphase flow lattice Boltzmann models [J]. International Journal of Modern Physics C,1998,9(8):1393-1404.
    [81]INAMURO T, KONISHI N, OGINO F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach [J]. Computer Physics Communications,2000,129:32-45.
    [82]KALARAKIS A N, BURGANOS V N, PAYATAKES A C. Galilean-invariant lattice Boltzmann simulation of liquid-vapor interface dynamics [J]. Physical Review E,2002,65:056702.
    [83]INAMURO T, OGATA T, TAJIMA S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational Physics, 2004,198:628-644.
    [84]ZHENG H W, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio [J]. Journal of Computational Physics,2006,218:353-371.
    [85]THPMMES G, BECKER J, JUNK M, et al. A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method [J]. Journal of Computational Physics,2009, 228:1139-1156.
    [86]ZHANG J F, ZHANG Q H. Hydrodynamics of fractal flocs during setting [J]. Journal of Hydrodynamics,2009,21(3):347-351.
    [87]ZHANG J F, ZHANG Q H. Lattice Boltzmann simulation of the flocculation process of cohesive sediment due to differential settling [J]. Continental Shelf Research,2011, 31:S94-S105.
    [88]DUPUIS A, CHOPARD B. Lattice gas modeling of scour formation under submarine pipelines [J]. Journal of Computational Physics,2002,178:161-174.
    [89]ZHOU J G. A lattice Boltzmann model for the shallow water equations [J]. Computer methods in applied mechanics and engineering,2002,191:3527-3539.
    [90]ZHOU J G. A lattice Boltzmann model for the shallow water equations with turbulence modeling [J]. International Journal of Modern Physics C,2002,13(8):1135-1150.
    [91]ZHOU J G. Lattice Boltzmann methods for shallow water flows [M]. Springer-Verlag, Berlin, 2004.
    [92]BUICK J M, GREATED C A. Lattice Boltzmann modeling of interfacial gravity waves [J]. Physics of Fluids,1998,10(6):1490-1511.
    [93]COSGROVE J A, BUICK J M, TONGE S J, et al. Application of the lattice Boltzmann method to transition in oscillatory channel flow [J]. Journal of Physics A:Mathematical and General,2003,36:2609-2620.
    [94]孙亚斌,张庆河,张金凤.振荡层流边界层运动的格子Boltzmann模拟[J].水动力学研究与进展,2006,21:347-353.
    [95]JANSSEN C, KRAFCZYK M. A lattice Boltzmann approach for free surface flow simulations on non-uniform block-structured grids [J]. Computers and Mathematics with Applications, 2010,59:2215-2235.
    [96]JANBEN C, KRAFCZYK M. Free surface flow simulations on GPGPUs using the LBM [J]. Computers and Mathematics with Applications,2011,61:3549-3563.
    [97]JAN β EN C F, GRILLI S T, KRAFCZYK M. Efficient simulations of long wave propagation and runup using a LBM approach on GPGPU hardware [C]. Proceedings of the twenty-second international offshore and polar engineering conference, Greece,2012:17-22.
    [98]WANG S, XU C, YUAN P, et al. Hydrodynamic optimization of channeling device for hydro turbine based on lattice Boltzmann method [J]. Computers and Mathematics with Applications,2011,61:3722-3729.
    [99]CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics,1998,30:329-360.
    [100]NOURGALIEV R R, DINH T N, THEOFANOUS T G, et al. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications [J]. International Journal of Multiphase Flow,2003,29:117-169.
    [101]POMEAU Y.20 years of lattice dynamics:a personal view [J]. International Journal of Modern Physics C,2007,18(4):437-446.
    [102]AIDUN C K, CLAUSEN J R. Lattice Boltzmann method for complex flows [J]. Annual Review of Fluid Mechanics,2010,42:439-472.
    [103]QUINN M J. Parallel programming in C with MPI and OpenMP [M]. 清华大学出版社:北京,2005.
    [104]SUNDERAM V. PVM:A framework for parallel distributed computing[J]. Concurrency practice and experience,1990,2:315-339.
    [105]GROPP W, LUSK E, DOSS N, et al. A high-performance, portable implementation of the MPI message passing interface standard [J]. Parallel computing,1996,22:789-828.
    [106]DAGUM L, MENON R. OpenMP:an industry standard API for shared-memory programming [J]. Computational Science & Engineering, IEEE,1998,5:46-55.
    [107]NVIDIA. NVIDIA Computing Unified Device Architecture Programming Guide [EB],2010.
    [108]HE X Y, LUO L S. A priori derivation of the lattice Boltzmann equation [J]. Physical Review E,1997,55(6):R6333-R336.
    [109]LIBOFF R L. Kinetic Theory:Classical, Quantum, and Relativistic Descriptions [M]. Springer-Verlag, New York,2003.
    [110]HARRIS S. An introduction to the theory of the Boltzmann equation [M]. Dover Publications,1971.
    [111]HE X Y, LUO L S. Lattice Boltzmann model for the incompressible Navier-Stokes equation [J]. Journal of Statistical Physics,88:927-944.
    [112]HE X Y, LUO L S. Theory of the lattice Boltzmann method:From the Boltzmann equation to the lattice Boltzmann equation [J]. Physical Review E,1997,56(6):6811-6817.
    [113]KOELMAN J M V A. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow [J]. Europhysics Letters,1991,15(6):603-607.
    [114]HE X, ZOU Q, LUO L, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model [J]. Journal of Statistical Physics,1997,87:115-136.
    [115]HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases [J]. Physical Review E,1998,57:R13-R16.
    [116]LUO L. Unified theory of lattice Boltzmann models for nonideal gases [J]. Physical Review Letters,1998,81(8):1618-1621.
    [117]GUO Z L, ZHENG C G, SHI B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method [J]. Physical Review E,2002,65:046308.
    [118]LADD A J C, VERBERG R. Lattice Boltzmann simulations of particle fluid suspensions [J]. Journal of Statistical Physics,2001,104:1191-1251.
    [119]GUO Z L, ZHENG C G. Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation times, boundary conditions and the Knudsen layer [J]. International Journal of Computational Fluid Dynamics,2008,22(7):465-473.
    [120]LI C G, MAA J P Y, KANG H G. Solving generalized lattice Boltzmann model for 3-D cavity flows using CUDA-GPU [J]. Science China Physics, Mechanics & Astronomy,2012,55(10): 1894-1904.
    [121]CHEN S Y, MARTINEZ D, MEI R W. On boundary conditions in lattice Boltzmann methods [J]. Physics of Fluids,1996,8(9):2527-2536.
    [122]ZIEGLER D. Boundary conditions for lattice Boltzmann simulations [J]. Journal of Statistical Physics,1993,71:1171-1177.
    [123]NOBLE D R, CHEN S Y, GEORGLADLS J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method [J]. Physics of Fluids,1995,7(1):203-209.
    [124]NOBLE D R, GEORGIADIS J G, BUCKIUS R 0. Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows [J]. Journal of Statistical Physics,1995,81:17-33.
    [125]ZOU Q, HE X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model [J]. Physics of Fluids,1997,9(6):1591-1598.
    [126]INAMURO T, YOSHINO M, OGINO F. A non-slip boundary condition for lattice Boltzmann simulations [J]. Physics of Fluids,1995,7(12),2928-2930.
    [127]GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J]. Chinese Physics,2002, 11(4):366-374.
    [128]FILIPPOVA O, HANEL D. Grid refinement for lattice BGK models [J]. Journal of Computational Physics,1998,147:219-228.
    [129]MEI R W, LUO L S, SHYY W. An accurate curved boundary treatment in the lattice Boltzmann method [J]. Journal of Computational Physics,1999,156(2):307-330.
    [130]BOUZIDI M, FIRDAOUSS M, LALLEMAND P. Momentum transfer of a Boltzmann lattice fluid with boundaries [J]. Physics of Fluids,2001,13(11):3452-3459.
    [131]LALLEMAND P, LUO L S. Lattice Boltzmann method for moving boundaries [J]. Journal of Computational Physics,2003,184:406-421.
    [132]GUO Z L, ZHENG C G, SHI B C. An extrapolation method for boundary conditions in lattice Boltzmann method [J]. Physics of Fluids,2002,14(6):2007-2010.
    [133]林建忠,阮晓东,陈邦国等.流体力学[M].北京:清华大学出版社,2005.
    [134]LATT J. Hydrodynamic limit of lattice Boltzmann equation [D]. Switzerland:University of Geneva,2007.
    [135]LI W, WEI X, KAUFMAN A. Implementing lattice Boltzmann computation on graphics hardware. Visual Computer,2003,19:444-456.
    [136]FAN Z, QIU F, KAUFMAN A, et al. GPU cluster for high performance computing. ACM/IEEE Supercomputing Conference, Pittsburgh, PA, IEEE Computer Society,2004.
    [137]TOLKE J. Implementation of lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA. Computing and Visualization in Science,2009,13: 29-39.
    [138]TOLKE J, KRAFCZYK M. TeraFLOP computing on a desktop PC with GPUs for 3D CFD. International Journal of Computational Fluid Dynamics,2008,22:443-456.
    [139]KUZNIK F, OBRECHT C, RUSAOUEN G, et al. LBM based flow simulation using GPU computing processor. Computer & Mathematics with Applications,2010,59:2380-2392.
    [140]CHIANG T P, SHU W H, HWANG R R. Effect of Reynolds number on the eddy structure in a lid-driven cavity. International Journal of Numerical Methods in Fluids,1998,26: 557-579.
    [141]HOU S L, CHEN S Y, DOOLEN G D, et al. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics,1995,118:329-347.
    [142]CHOW V T. Open-Channel Hydraulics. New York:McGraw-Hill,1959.
    [143]KOSEFF J R, STREET R L. The lid-driven cavity flow:a synthesis of qualitative and quantitative observations. ASME Journal of Fluids Engineering,1984,106:390-398.
    [144]GHIA U, GHIA K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics,1982, 48:387-411.
    [145]PRASAD A K, KOSEFF J R. Reynolds number and end-wall effects on a lid driven cavity flow. Physics of Fluids A,1989,1:208-218.
    [146]LERICHE E, GAVRILAKIS S. Direct numerical simulation of the flow in a lid-driven cubical cavity. Physics of Fluids,2000,12:1363-1376.
    [147]BOUFFANAIS R, DEVILLE M 0. Large-eddy simulation of the flow in a lid-driven cubical cavity. Physics of Fluids,2007,19:055108.
    [148]CAO Z, ESMAIL M N. Numerical simulation of short-dwell coaters:steady state flow patterns and pressure distributions [J]. The Canadian Journal of Chemical Engineering, 1992,70(4):654-659.
    [149]PREMNATH K, PATTISON M J, BANERJEE S. Large eddy simulation of self-sustained flow instabilities in cavities using the lattice Boltzmann method [J]. AIAA Journal,2009, 47(1):229-243.
    [150]SHANKAR P N, DESHPANDE M D. Fluid mechanics in the driven cavity [J]. Annual Review of Fluid Mechanics,2000,32:93-136.
    [151]ERTURK E, CORKE T C, GOKCOL C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers [J]. International Journal for Numerical Methods in Fluids,2005,48:747-774.
    [152]ERTURK E. Discussions on driven cavity flow [J]. International Journal for Numerical Methods in Fluids,2009,60:275-294.
    [153]ABOUHAMZA A, PIERRE R. A neutral stability curve for incompressible flows in a rectangular driven cavity [J]. Mathematical and Computer Modeling,2003,38:141-157.
    [154]SAHIN M, OWENS R G. A novel fully-implicit finite volume method applied to the lid driven cavity problem. Part Ⅱ. Linear stability analysis [J]. International Journal for Numerical Methods in Fluids,2003,42:79-88.
    [155]AUTERI F, PAROLINI N, QUARTAPELLE L.Numerical investigation on the stability of singular driven cavity flow [J]. Journal of Computational Physics,2002,183:1-25.
    [156]PENG Y F, SHIAU Y H, HWANG R R. Transition in a 2-D lid-driven cavity flow [J]. Computers & Fluids,2003,32:337-352.
    [157]CHAI Z H, SHI B C, ZHENG L. Simulating high Reynolds number flow in two-dimensional lid driven cavity by multi-relaxation-time lattice Boltzmann method [J]. Chinese Physics,2006,15(8):1855-1863.
    [158]DU R, SHI B C, CHEN X W. Multi-relaxation-time lattice Boltzmann model for incompressible flow [J]. Physics Letters A,2006,359:564-572.
    [159]BURGGRAF 0 R. Analytical and numerical studies of the structure of steady separated flows [J]. Journal of Fluid Mechanics,1966,24:113-151.
    [160]PAN F, ACRIVOS A. Steady flows in rectangular cavities [J]. Journal of Fluid Mechanics, 1967,28(4):643-655.
    [161]KOSEFF J R, STREET R L. Visualization studies of a shear driven three-dimensional recirculating flow [J]. ASME Journal of Fluids Engineering,1984,106:21-27.
    [162]KOSEFF J R, STREET R L. On end wall effects in a lid driven cavity flow [J]. ASME Journal of Fluids Engineering,1984,106:385-389.
    [163]SHANKAR P N, DESHPANDE M D. Fluid mechanics in the driven cavity [J]. Annual Review of Fluid Mechanics,2000,32:93-136.
    [164]GUERMOND J L, MIGEON C, PINEAU G, et al. Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re=1000 [J]. Journal of Fluid Mechanics,2002,450:169-199.
    [165]DE S, NAGENDRA K, LAKSHMISHA K N. Simulation of laminar flow in a three dimensional lid driven cavity by lattice Boltzmann method [J]. International Journal of Numerical Methods for Heat & Fluid Flow,2009,19(6):790-815.
    [166]KUHLMANN HC, WANSCHURA M, RATH H J. Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures [J]. Journal of Fluid Mechanics, 1997,336:267-299.
    [167]ALBENSOEDER S, KUHLMANN H C, RATH H J. Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities [J]. Theoretical and Computational Fluid Dynamics, 2001,14:223-241.
    [168]BLOHM CH, KUHLMANN H C. The two-sided lid-driven cavity:experiments on stationary and time-dependent flows [J]. Journal of Fluid Mechanics,2002,450:67-95.
    [169]ALLEBORN N, RASZILLIER H, DURST F. Lid-driven cavity with heat and mass transport [J]. International Journal of Heat and Mass Transfer,1999,42:833-853.
    [170]LUO W J, YANG R J. Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity [J]. International Journal of Heat and Mass Transfer,2007,50:2394
    [171]WAHBA E M. Multiplicity of states for two-sided and four-sided lid driven cavity flows [J]. Computers & Fluids,2009,38:247-253.
    [172]PERUMAL D A, DASS A K. Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by Lattice Boltzmann Method [J]. Computers and Mathematics with Applications,2011,61:3711-3721.
    [173]CADOU J M, GUEVEL Y, GIRAULT G. Numerical tools for the stability analysis of 2D flows: application to the two-and four-sided lid-driven cavity [J]. Fluid Dynamics Research, 2012,44:031403,
    [174]BEYA B B, LILI T. Three-dimensional incompressible flow in two-sided non-facing lid-driven cubical cavity [J]. Comptes Rendus Mecanique,2008,336:863-872.
    [175]OUESLATI F, BEYA B B, LILI T. Aspect ratio effects on three-dimensional incompressible flow in a two-sided non-facing lid-driven parallelepiped cavity [J]. Comptes Rendus Mecanique,2011,339:655-665.
    [176]BAINES W D, KNAPP D J. Wind driven water currents [J]. Journal of the Hydraulics Division ASCE,1965,91:205-221.
    [177]TSANIS I K, LEUTHEUSSER H J. The structure of turbulent shear-induced countercurrent flow [J]. Journal of Fluid Mechanics,1988,189:531-552.
    [178]WU J, TSANIS I K. Numerical study of wind-induced water currents [J]. Journal of Hydraulic Engineering ASCE,1995,121(5):388-395.
    [179]CIOFFI F, GALLERANO F, NAPOLI E. Three-dimensional numerical simulation of wind-driven flows in closed channels and basins [J]. Journal of Hydraulic Research,2005,43(3): 290-301.
    [180]TANG H S, ZHANG L Z, MAA J P Y, et al. Fluid driven by tangential velocity and shear stress:mathematical analysis, numerical experiment, and implication to surface flow [J]. Mathematical Problems in Engineering,2013,2013:1-12
    [181]TSANIS I K. Simulation of wind-induced water currents [J]. Journal of Hydraulic Engineering ASCE,1989,115(8):1113-1134.
    [182]MORI K, SHIKASHOS, HIRAMATSU K. Wind-induced flow in a closed-water area with discrete wind shear [J]. Fisheries Engineering,2001,37(3):195-201.
    [183]HUEY L J, WILLIAMSON J W. Plane turbulent Couette flow with zero net-flow [J]. Journal of Applied Mechanics,1974,41(4):885-890

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700