旋转叶片刚柔耦合系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对旋转叶片刚柔耦合系统的动力学问题,基于广义Hamilton原理,以混合坐标法建立了由中心刚性圆盘及柔性叶片组成的旋转刚柔耦合系统动力学模型,研究了旋转叶片大范围转动对柔性叶片变形运动的影响。同时,研究了柔性叶片沿长度方向预扭角的变化、截面尺寸的变化对自身变形运动的影响。在大范围运动的柔性叶片变形场的描述中,不仅考虑了旋转平面内及垂直于旋转平面方向上的由弯曲引起的横向变形,还考虑了这两个方向上由剪切引起的横向变形,并计及了叶片大范围转动产生的离心力在横向弯曲变形引起的轴向缩短量上的离心力势能。
     基于Hamilton变分原理导出了大范围运动时旋转叶片系统刚柔耦合连续动力学方程,该方程是一组非线性偏微分积分方程组,并采用有限元法对连续动力学方程进行离散,推导了带有预扭角、变截面,考虑剪切变形、截面转角及离心刚化效应的旋转叶片系统非线性、时变、耦合的有限维离散动力学方程,基于有限维离散动力学方程,研究了旋转叶片在加速过程中预扭角变化、叶片长度变化、刚性圆盘半径变化、截面尺寸变化、转速变化等物理因素对叶片动力学性态的影响。研究了旋转叶片在稳速过程中受冲击作用时,预扭角的变化对叶片动力学性态的影响。首次将恒定转速下叶片受到周期性变化的扰动力,引入到本文所推导的旋转叶片系统非线性、时变、耦合的动力学方程中,并编制了兼容性、扩展性强的通用计算程序。基于状态空间法对旋转叶片刚柔耦合系统进行了频率分析和稳定性分析,研究了中心刚体大范围运动对柔性叶片变形运动振动频率的影响,研究了叶片转速对位移响应的稳定性的影响,并给出了数值仿真结果。
     研究结果表明,加速过程中叶片预扭角、截面尺寸参数的改变对叶片端部位移响应影响较小,而叶片在稳速过程中受到冲击作用时,预扭角对叶片端部在垂直于旋转平面方向上的横向位移有很大影响。并且,一个微小的低频周期性扰动力,就会使得带有预扭角的叶片在垂直于旋转平面方向上产生较大的横向位移,甚至发散。这种垂直于旋转平面方向上的横向位移会造成叶片在运行中碰擦侧壁,易发生断裂事故。同时,研究结果也表明,材料质量密度较大的叶片,其动频率随转速增加而增加,表现为动力刚化效应;材料质量密度较小的叶片,其一阶频率在某一转速范围内随转速增加而减小,出现了动力柔化现象。叶片截面尺寸沿长度方向变小,其模态频率降低,动力柔化效应提前。这种情况同样会引起叶片振动幅值增大而碰擦侧壁。
     本文建立了考虑多种物理因素影响的以中心刚性圆盘及柔性叶片组成的刚柔耦合系统动力学模型及方程,该模型及方程可以用于解决非惯性系下大范围运动旋转柔性叶片刚柔耦合系统动力学问题,本文的研究方法具有一定的理论意义及工程应用价值,本文的研究结果对工程中叶片的理论分析及设计计算具有一定的参考价值。
Based on the Hamilton principle, the dynamic problem of a rotating flexible blade is studied in this paper. A dynamic model of rigid-flexible coupling system consists of a flexible blade fixed on the edge of a rigid disc is built using a Hybrid set of Coordinates. Effects of rotation of the flexible blade on its deformation displacement are discussed. And variations of pre-twisted angle and dimensions of cross-sections along the axis of blade are studied. Both trasversal deformations resulted from bending and shearing in the rotating plane and its perpendicular plane are considered in the description of deformation displacement of the flexible blade. And centrifugal force potential energy resulted from the rotation of blade is considered.
     Based on Hamilton variation principle, continuous dynamic equations of the rigid-flexible coupling system of rotating blade are derived. The equations are a set of non-linear, partial differential and integral equations. The equations are discreted by finite element method. A set of discreted dynamic equations are given considering factors of pre-twisted angle, variable cross-section, shearing deformation, rotation of cross-section, and centrifugal stiffening effect. Effects of variations of pre-twisted angle, length of blade, radius of disc, dimensions of cross-section and rotating speed on dynamic behavior of blade are studied in the process of acceleration. Effects of variations of pre-twisted angle on dynamic behavior of blade subjected to impacting action are studied in the process of constant rotating speed. Periodical exciting force acting on blade at a constant rotating speed is introduced in the non-linear, time-varying and coupling dynamic equations. A general and compatible computational procedure is programmed. Based on state-space method, frequency and stability analysis of the rigid-flexible coupling system are carried out. Effects of rotation of the flexible blade on its deformation displacement frequency are studied. Effects of rotating speed on displacement response stability of blade are studied. And numerical results are given in the paper.
     Results show that variation of pre-twisted angle and cross-section have little influences on the displacement response of blade tip in the process of acceleration. When the blade is rotating at a constant speed and subjected to an impacting action, the variation of pre-twisted angle has great influences on transversal displacement of blade tip on the plane perpendicular to the rotating plane. And a tiny low frequency periodical exciting force will cause great transversal displacement or divergence on the plane perpendicular to the rotating plane for pre-twisted blade. The tansversal displacement on the plane perpendicular to the rotating plane will make the blade touch inside surface and result in fracture failure in the operation. Results also show that frequencies increase with increasing rotating speed for blade with high mass density, which case is called dynamic stiffening. Meanwhile, the first order frequencies decrease with increasing rotating speed for blade with low mass density, which case is called dynamic softening. Frequencies decrease with the dimension recucing of cross-section along the axis of blade and the effect of dynamic softening occurs earlier, which case will also make vibration amplitude of the blade increase and may touch inside surface.
     Considering the effects of many factors of an rotating blade, dynamic model and equations of a rigid-flexible coupling system are given in this paper. The model and equations can be used to solve dynamic problems of a rigid-flexible coupling system of a rotating blade in the noninertial system. Methods presented in the paper have certain theoretical significance and engineering application value. Results in the paper have some referrence value for theoretical analysis and design of blade in the engineering.
引文
[1]休斯顿.多体动力学-模拟和分析方法.力学进展,1992,22(3).
    [2]陆佑方.多柔体系统动力学研究的若干进展.一般力学(动力学、振动与控制)最新进展,1994.
    [3]杨辉.刚柔耦合动力学系统的建模理论与试验研究.上海交通大学博士学位论文,2002.
    [4]李智斌.带柔性伸缩附件航天器几何非线性振动稳定性.宇航学报,第25卷第2期,2004年3月.
    [5]荣莉莉.机器人弹性手臂的模型与控制.机器人,1992.
    [6]夏长高.刚柔耦合多体车辆操纵稳定性研究.汽车工,2004年(第26卷)第5期.
    [7]张蕾.基于刚柔耦合模型的工程车辆转向机构设计研究.中国制造业信息化,2008年3月第37卷第5期
    [8]刘延柱.多刚体系统动力学的研究现状和展望.上海力学,第10卷第3期,1989年3月
    [9]朱志远.一类刚柔耦合多体系统动力学建模与仿真.南京理工大学硕士学位论文,2004.
    [10]Meirovitch L& Nelson D A. On the High-Speed Motion of Satelite Containing Elastic Parts. AIAA Journal of Space Craft& Rockets,1966.3(11):1597-1602.
    [11]Likins P W. Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis. Journal of Solids& Structures,1972.8:709-731.
    [12]潘振宽.柔性多体系统动力学建模理论与数值仿真方法研究.上海交通大学博士学位论文,1992.
    [13]潘振宽,洪嘉振.刚柔耦合对柔性多体系统动力学响应的影响.应用力学学报,1994,11:41-46.
    [14]林宝玖,谢传峰.挠性多体系统的动力学.力学学报,1989,21(4):469-478.
    [15]范子杰.机器人柔性手臂的动力学分析及其粘弹性大阻尼控制的研究.西安交通大学博士学位论文,1989.
    [16]毕士华等.柔性机械臂逆动力学的轨迹追踪方法.工程力学,1991,8(4).
    [17]王照林.关于柔性结构动力学的稳定性与控制.中国科学(A辑),1992,22(11):1219-1227.
    [18]费从宇.有限柔度多柔体系统刚柔耦合运动分析.振动工程学报,第8卷第3期,1995,9:212-218
    [19]王琪等.带约束平面多刚体系统动力学方程的隐式算法.应用力学学报,第14卷第3期,1997年3月
    [20]蒋丽忠,洪嘉振.带柔性部件卫星耦合动力学建模理论及仿真,宇航学报,第21卷第3期2000年7月.
    [21]蒋丽忠,洪嘉振.作大范围平动弹性梁的动力学性质.振动与冲击,第21卷第2期,2002.
    [22]杨辉.刚柔耦合建模理论的实验验证.力学学报,第35卷第2期,2003年3月.
    [23]杨辉,洪嘉振,余征跃.一类刚柔耦合系统的模态特性与实验研究.宇航学报,第33卷第2期,2002年3月.
    [24]蒋建平,李东旭.航天器挠性附件刚柔耦合动力学建模与仿真.宇航学报,第26卷第3期,2005年5月.
    [25]章定国,朱志远.一类刚柔耦合系统的动力刚化分析.南京理工大学学报,第30卷第1期2006年2月.
    [26]盛国刚,李传习,赵冰.支承运动情况下旋转梁的刚一柔耦合振动分析,振动与冲击,第25卷第6期,2006.
    [27]黄永安,邓子辰.中心刚体-楔形梁-质点刚柔耦合系统动力学分析.计算力学学报,第24卷第1期,2007.2
    [28]陈先龙,何锃.旋转柔性机械臂的动力学建模.机械强度,2008,30(2):293—296
    [29]陈滨.柔性多体系统(FMS)动力学研究的若干问题.一般力学(动力学、振动与控制)最新进展.1994.
    [30]Sunada W& Dubowsky S. The Applications of Finite Element Methods to the Dynamic Analysis of Flexible Spatial and Co-planar Linkage Systems. ASME Journal of Mechanical Design.1971,103:643-651
    [31]Sunada W& Dubowsky S. On the Dynamic Analysis and Behaviour of Indutrial Robotic Manipulators with Elastic Members. ASME Journal of Mechanisms, Transmissions& Automation in Design,1983,105:42-51.
    [32]Erdman A.G.& Sandor G.N. Kineto-Elastodynamics-A Review of the State of the Art and Trends. Mechanism and Machine Theory,1972,7:19-33.
    [33]Erdman A.G.& Sandor G.N. A Gegeral Method for Kineto-Elastodynamics Analysis of Mechanisms. ASME Journal of Engineering for Industry,1974,94:1193-1205.
    [34]洪嘉振.复杂多体系统计算动力学.一般力学(动力学、振动与控制)最新进展.1994.
    [35]Shabana A.A.& Chang C.W. Connection Forces in Deformable Multibody Dynamics. Computers& Structures,1989,33(1):307-318.
    [36]Berzeri.M.& Shabana A.A. Development of Simple Models for the Elastic Forces in the Absolute nodal Co-ordinate Formulation. Journal of Sound and Vibration, 2000,235(4):833-851. J. C. Simo& L. VU-QUOC. On the dynamics of flexible beams under large overall motions-the plane case:part I and part Ⅱ. Journal of Applied Mechanics 1986,53:849-863.
    [37]Simo J.C. Computional Mathematics Applied Mechanics Engineering,1985,49:55.
    [38]Erigen A.C. On the non-linear vibration of elastic bars. Q.Appled Mathematics. 1952,9:361-369.
    [39]Woodall S.R. On the large amplitude oscillations of a thin elastic beam. Journal of Non-Linear Mechanics.1966,1:217-238.
    [40]Anderson G.L. On the extensional and flexual vibrations of rotating bars. Journal of Non-Linear Mechanics.1975,10:223-236.
    [41]Hodges D.H. On the extensional vibrations of rotating bars. Journal of Non-Linear Mechanics.1977,12:293-296.
    [42]Ansari K.A. Non-linear vibrations of a rotating pretwisted blade. Computers& Structures, 1975,5:101-108.
    [43]Stafford R.O.& Giurgiutiu V. Semi-analytic methods of rotating Timoshenko beams. Journal of Mechanics& Science.1975,17:719-727.
    [44]Roa J.S.& Carnegie W. Non-linear vibrations of rotating cantilever beams. Aeronautical Journal.1976,74:161-165.
    [45]Hoa S.V. Vibration of rotating beam with tip mass. Journal of Sound and Vibration. 1979,67(3):119-140.
    [46]K.E.Rouch& J.S.Kao. A tapered beam finite element for rotor dynamics analysis. Journal of Sound and Vibration, Volume 66, Issue 1,8 September 1979, Pages 119-140.
    [47]Hodges D.H.& Rutkowski M.J. Free vibration analysis of roating beams by variable order finite element method. AIAA Journal.1981,19:1459-1466.
    [48]G. Subramanian& T.S. Balasubramanian. A higher order element for stepped rotating beam vibration. Journal of Sound and Vibration, Volume 110, Issue 1,8 October 1986, Pages 167-171.
    [49]Wauer J. On the stability of rotating axially loaded homogeneous shafts. Journal of Solids and Structures.1982,18(6):459-466.
    [50]Bhat R.B. Transverse vibrations of a rotating uniform beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. Journal of Sound and Vibration. 1986,105(2):199-210.
    [51]Liu W.H.& Yeh F.H. Vibrations of non-uniform rotating beams. Journal of Sound and Vibration.1987,119(2):379-384.
    [52]Subrahmanyam K.B. Non-linear extensional vibrations of rotating bars treated by the Galerkin's and finite difference methods. Journal of Sound and Vibration. 1987,112(3):559-563.
    [53]Yigit A.S.& Scott R.A.& Galip Uisoy A. Flexural motion of a radially rotating beam attached to a rigid body. Journal of Sound and Vibration.1988,121(2):201-210.
    [54]Bauer H.F.& Eidel W. Vibration of a rotating uniform beam, Part Ⅱ:orentation perpendicular to the axis of rotation. Journal of Sound and Vibration. 1988,122(2):357-375.
    [55]Stephen N.G.& Wang P.J. Stretching and bending of rotating beam. ASME Journal of Applied Mechanics.1986,53:869-872.
    [56]T. Yokoyama. Free vibration characteristics of rotating Timoshenko beams. International Journal of Mechanical Sciences, Volume 30, Issue 10,1988, Pages 743-755.
    [57]C.P.Filipich& M.B.Rosales. Free flexural-torsional vibrations of a uniform spinning beam. Journal of Sound and Vibration, Volume 141, Issue 3,22 September 1990, Pages 375-387.
    [58]A.Bazoune& Y.A.Khulief. A finite beam element for vibration analysis of rotating tapered timoshenko beams. Journal of Sound and Vibration, Volume 156, Issue 1,8 July 1992, Pages 141-164.
    [59]H.H.Yoo& R.R.Ryan& R.A.Scott. Dynamics of flexible beams undergoing overall motions. Journal of Sound and Vibration 1995,181 (2):261-278.
    [60]M.M. Bhat, V. Ramamurti& C. Sujatha, Studies on the determination of natural frequencies of industrial turbine blades, Journal of Sound and Vibration (1996)196(5), 681-703
    [61]H.H.Yoo& S. H. Shin, Vibration analysis of rotationg cantilever beams, Journal of Sound and Vibration (1998)212(5):807-828.
    [62]H.H.Yoo. Dynamic modeling of flexible bodies in multibody systems. Ph.D. Dissertation, The University of Michigan at Ann Arbor.1989.
    [63]H.H.YOO,DYNAMICS OF FLEXIBLE BEAMS UNDERGOING OVERALL MOTIONS, Computer methods in applied mechanics and engineering 169(1999), 177-190.
    [64]M. M. BHAT, V. RAMAMURTI AND C. SUJATHA, flexural vibrations of rotating beams considering rotary inertia, Journal of Sound and Vibration (1996)196(5),681-703.
    [65]J. Y. L. Ho. Direct path method for flexible multibody spacecraft dynamics. Journal of Spacecraft and Rockets.1977,14:102-110.
    [66]W. Hurty& J. Collins& G. Hart. Dynamic analysis of large structures by modal synthesis techniques. Computers and Structures.1971,1:535-563.
    [67]E. R. Christensen& S. W. Lee. Nonlinear Finite element modeling of the dynamics of unrestrained flexible structures. Computers and Structures.1986,23:819-829.
    [68]R. R. Ryan. Flexibility modeling method in multibody dynamics. Ph.D. Dissertation, Stanford University.1986.
    [69]W. J. Haering& R. R. Ryan& R. A. Scott. A new flexible body dynamic formulation for beam structures undergoing large overall motion. AIAA 33rd Structures, Structural Dynamics, and Material Conference, Dallas,Texas.1992,93-1162.
    [70]T. R. Kane& R. R. Ryan& A. K. Banerjee. Journal of Guidance, Control, and Dynamics. Dynamics of a cantilever beam attached to a moving base.1987,10(2):139-151.
    [71]S.C.LIN. Vibration analysis of a rotating timoshenko beam, Journal of Sound and vibration, (2001)240(2),303-322.
    [72]M.M.Hamdan. Non-linear free vibrations of a rotating flexible arm, Journal of Sound and vibration, (2001)245(5),839-853.
    [73]E.H.K.FUNG, vibtation frequencies of rotating flexible arm carrying a moving mass, Journal of.Sound and vibration, (2001)241(5),857-878.
    [74]J.R.Banerjee. Energy expressions for rotating tapered timoshenko beams, Journal of Sound and vibration, (2002)254(4),818-822.
    [75]S.S.Rao, finite element vibration analysis of rotating timoshenko beams, Journal of Sound and vibration, (2001)242(2),103-124
    [76]J.CHUNG, Dynamic analysis of a rotating cantilever beam by using the finit element method, Journal of Sound and vibration, (2002)249(1),147-164.
    [77]J.B.Yang, Dynamic Modelling and Control of a rotating Euler-Bernoulli beam, Journal of Sound and vibration, (2004)274(2),863-875.
    [78]Guo-Ping, CAI. Model study and active control of a rotating flexible cantilever beam, Iternational Journal of Mechanical Sciences,446(2004) 871-889.
    [79]Sunil K. Sinha, Non-linear dynamic reponse of a rotating radio Thimoshenko beam with periodic pulse loading at the free end, International Journal of non-liear Mechanics, 40(2005)113-149.
    [80]Mustafa Sabuncu, Dynamic stability of a rotating asymmetric cross-section Timoshenko beam subjected to an axial periodic force, Finite Elements in Analysis and Design, 41(2005) 1011-1026.
    [81]Hong Hee Yoo, Model analysis and shape optimization of rotating cantilever beams, Journal of Sound and vibration,290(2006),223-241.
    [82]J.R.Banerjee, Free vibration of rotating taped beams using the dynamic stiffness method. Journal of Sound and vibration,298(2006),1034-1054.
    [83]Hong Seok Lim, impact analysis of a rotating beam due to particle mass collision, Journal of Sound and vibration,308(2007),794-804.
    [84]Chia-Hao Yang, the influence of discs flexibility on coupling vibration of shaft-dics-blades system, Journal of Sound and vibration,301(2007),1-17.
    [85]李永强,郭星辉.气轮机叶片振动响应的数值分析.东北大学学报(自然科学版).2005年,第26卷第2期.
    [86]史进渊.汽轮机动叶片的可靠性设计方法.应用力学学报.2007年,第24卷第3期.
    [87]王建军,卿立伟,李其汉.旋转叶片频率转向与振型转换特性.航空动力学报.2007年,第22卷第1期.
    [88]马玉星,李惠彬,王一棣,蔡军.涡轮增压器叶片振动分析.2005年,第25卷第2期.
    [89]张文明,孟光,张裕中.高速定转子均质机转子叶片振动模态分析振动与冲击.2005年,第24卷第4期.
    [90]魏鹏飞,吴建军,陈启智.液体火箭发动机涡轮叶片结构特性的有限元分析.国防科技大学学报.2005年,第27卷第2期.
    [91]孙强,张忠平,柴桥,汪波,刘所利.航空发动机压气机叶片振动频率与温度的关系.应用力学学报.2004年,第21卷第4期.
    [92]杨建刚,高睿.大型旋转机械叶片一轴弯扭藕合振动问题的研究.动力工程.2003年,第23卷第4期.
    [93]S.Choura, S.Jayasuriya, M.A.Medick On the modeling, and open-loop conteil of a rotating thin flexible beam, Transactions of the Mechanical Engineers Journal of Dynamic Systems, Measuremen, and Control 113(1991),26-33.
    [94]李鸿,商大中,韩广才.非稳转速下叶片系统动力学响应仿真分析.哈尔滨工程大学学报.2003(6),Vol.24.No.3.
    [95]J.T.S.Wang,O.Mahrenholtz and J.Bohm. Extended Galerkin's method for rotating beam vibrations using Legendre polynomials. Solid Mechanics Archives 1,1976 341-365.
    [96]K.B.Subrahmanyam and K.R.V.Kaza. Vibration and buckling of rotating,pretwisted preconed beams including Coriolis effects. ASME Journal of Vibration,Acoustics,Stress,and Reliability in Design.1986 108,140-149.
    [97]T.Yokoyama. Free vibration characteristics of rotation Timoshenko beam. International Journal of Mechanical Sciences.198830,743-755.
    [98]Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base[J] Journal of Guidance,1987,10(2):139-151.
    [99]Valembois R.E, Fisette P, Samin J.C. Comparison of various techniques for modeling flexible beams in multibody dynamics. Nonlinear Dynamics 1997(12):367-397.
    [100]钟万勰.暂态历程的精细计算方法.计算结构力学及其应用,1995,12(1):1-6.
    [101]钟万勰.子域精细积分及偏微分方程数值解.计算结构力学及其应用,1995,12(3):253-260.
    [102]钟万勰.矩阵黎卡提方程的精细积分方法.计算结构力学及其应用,1994,11(2):113-119.
    [103]李德源,叶枝全,黄小华.风力机旋转叶片动力学方程的扭马克级数解法.太阳能学报.2007(4):Vol.28.No.3.
    [104]张书顺,曹成佳.变速运行旋转梁在转动平面上横振动的运动稳定性分析,动力学、振动与控制的研究.第五届全国一般力学学术会议论文集:339-341.
    [105]张书顺,曹成佳.离散状态转移矩阵范数判稳法,动力学、振动与控制的研究.第五届全国一般力学学术会议论文集:362-365.
    [106]曹成佳,张书顺.用“离散状态转移矩阵范数判稳法”分析一类Jeffcott转子系统的运动稳定性.非线性动力学,非线性振动和运动稳定性.中国科学技术出版社:152-154.
    [107]W.Carnegie, Vibration of pre-twisted cantilever blading, Proceedings of the Institution of Mechanical Engineers,1995 (173):343-374.
    [108]B.Yardimoglu, T.Yildirim, Finite element model for vibration analysis of pre-twisted Timoshenko beam, Journal of Sound and Vibration,2004(273):741-754.
    [109]S.M.Lin, W.R.Wang, S.Y.Lee, The dynamic analysis of nonuniformly pre-twisted Timoshenko beams with elastic boundary conditions, International Journal of Mechanical Science,2001(43):2385-2405.
    [110]K.B.Subrahmanyam, S.V.Kulkarni, J.S.Rao, Coupled bending-bending vibration of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method, International Journal of Mechanical Sciences,1981(23):517-530.
    [111]B.Dawson, N.G.Ghosh, W.Carnegie, Effect of slenderness ratio on the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-section, Journal of Mechanical Engineering Science,1971(13):51-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700