柴油机可调二级涡轮增压系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高柴油机的增压压力以实现高平均有效压力是降低燃油消耗率及C02温室气体排放的一个有效手段。另一方面,面对越来越严格的有害物排放法规,较高的增压压力也为废气再循环、米勒循环和均质燃烧等技术措施提供了足够新鲜充量的保障。因此,柴油机的增压压力有必要进一步的提高,宽转速运行范围的柴油机与高增压系统的优化匹配成为亟须解决的问题。可调二级涡轮增压系统集合了二级增压和可调增压技术的优点,能够兼顾高压比和宽流量范围,是极具潜力的一种的涡轮增压技术,为此本文对其开展了相关研究。
     首先应用等效增压器的概念对柴油机可调二级涡轮增压系统进行了理论研究,建立了可调二级涡轮增压系统的等效增压器模型,得到了基于旁通流量比的等效涡轮流通面积表达式和基于旁通流量比与涡轮焓降比的等效增压器效率的表达式。等效增压器效率表达式从经济性角度指明了排气能量分配与效率的相适应可以实现增压系统效率的最大化。调节等效涡轮流通面积可以使增压系统适应更宽的发动机转速范围,基于调节能力的要求提出并研究了可调二级涡轮增压系统的匹配方法,揭示了可调二级涡轮增压系统总压比、压比分配、低高压级涡轮流通面积比以及系统调节能力等关键参数间的相互关系。
     设计了涡轮旁通阀和压气机旁通阀等关键部件,建立了可调二级涡轮增压柴油机以及试验台架。进行了匹配方法的验证性试验,证明了基于调节能力的匹配方法的适用性。对可调二级涡轮增压柴油机进行了全工况稳态试验,分析了高压级压气机旁通阀的开启时刻特性,以及高压级涡轮旁通阀对增压系统的调节特性和对发动机油耗性能和烟度排放的影响规律。在此基础上,提出了济性和动力性两种调节规律。结合进一步的瞬态试验对两种调节规律进行了综合评价:稳态性能方面,经济性调节规律优于动力性调节规律;瞬态特性方面,直接开环应用调节规律时,在模拟起步过程的加速加载加载工况和中低转速范围内(900 r/min和1100r/min)的定转速加载工况时,动力性调节规律会取得较快的响应和较低的瞬态烟度排放,而在中高转速范围内的1400r/min转速线上的加载工况试验则表明,由于存在高压级增压器的旁通过程使得动力性调节规律的优势不再明显。
     对增压压力闭环控制策略进行了计算研究。应用仿真模型对涡轮旁通阀开度命令到增压压力的动态过程进行了系统辨识,基于区域线性化的方法,设计了参数可变PI反馈控制器结合前馈模块的控制系统。对1400r/min的加载工况进行计算分析表明,动力性型调节规律结合PI反馈控制器的闭环控制系统实现了最快的响应过程,而且即使是经济性调节规律结合PI反馈控制器的闭环控制系统也比直接应用动力性调节规律的开环控制响应要快,证明闭环控制可以实现经济性和动力性的兼顾。
Increasing the break mean effective pressure of diesel engine through improving the boost pressure is one of the effective ways of reducing fuel consumption (aka. carbon emission reducing). Meanwhile, the higher boost pressure guarantees enough fresh charge for the techniques of Exhaust Gas Recirculation (EGR), Miller Cycle and Homogeneous Charge Compression Ignition (HCCI) which are valid to fulfil the increasing strict regulation of harmful emission. Thus the boost pressure of diesel engine need to be improved further, however the problem of matching the wide speed range diesel engine and the high pressure turbocharging system has to be resolved firstly. The regulating two stage (R2S) turbocharging system, that combines the advantages of two stage turbocharging and regulating turbocharging, can provide high boost pressure level over a wide range of engine speed. For the purpose of knowing a potential turbocharging technology, a comprehensive study will be carried out on regulating two stage turbocharging system in this thesis.
     First, theoretical study on the regulated two stage turbocharging system is conducted based on the equivalent turbocharger concept. Expressions for the equivalent turbine flow area and the equivalent turbocharger efficiency of the R2S system were derived. The equivalent turbocharger efficiency expression gives a criterion for matching of the R2S system based on the economy principle which is making more exhaust energy conversion at the stage with higher turbocharger efficiency. The equivalent turbine flow area can be used to analyze the regulating ability of the R2S system. Based on the regulating ability requirement, a new method for match of R2S system and diesel engine has been developed which clearly reveals the correlation between the total pressure ratio, the distribution of pressure ratio between the two stages, the turbine flow area ratio of low pressure stage to high pressure stage and the system regulating ability.
     For Further Study, key components of the R2S system are designed, furthermore the prototype engine and test bench are established. Firstly, a proof experiment is conducted to verify the new match method of R2S system, which turns out that the method is appropriate. After that, comprehensive testes focus on the steady performance are executed within the whole operation range of the engine, and the open time of the compressor bypass valve which is parallel located with the high pressure stage compressor and the regulating characteristics of the turbine bypass valve which is parallel located with the high pressure stage turbine are analyzed. On the basis of the above analysis, two regulating MAP of R2S system whose objective is maximum of economy or dynamic respectively are proposed. Combined with the further load transit and starting tests, conclusions can be made that the regulating MAP of economy is superior to the regulating MAP of dynamic with regard to the steady performance in open loop control mode. However concerning the transit performance, the regulating MAP of dynamic can achieve more rapid respond and lower smoke than the regulating MAP of economy during the load transit test of 900 r/min and 1100r/min which are both in the low-middle engine speed range. But the result from the load transit test of 1400 r/min which is in the middle-high engine speed range reveal that superiority of the regulating MAP of dynamic isn’t obvious any more because of the bypass process of the high pressure turbocharger.
     To make up the shortage of using regulating MAP in open loop mode directly, close loop boost pressure control strategy is studied numerically on a mean value model at the last chapter. System identification from turbine bypass open command to boost pressure is conducted under different operation points, based on which a control system consist of a gain-scheduling PI feedback controller and a feedforward module is designed. Simulation results from load transit process at 1400 r/min reveal that, control system consist of PI feedback controller and the regulating MAP of dynamic achieve the fastest respond process, even the control system consist of PI feedback controller and the regulating MAP of economy is faster than open loop using of the regulating MAP of dynamic, which means that the close loop boost pressure control strategy can realize the economy and dynamic simultaneously.
引文
[1] Meier E,Part-load operation of very high turbocharged four-stroke marine diesel engines,CIMAC, Proceedings of the 15th International Congress on Combustion Engines,Paris, FR:1983
    [2] Magnet J L,Brisson R,Running at partial loads of the very high specific power engines,CIMAC, Proceedings of the 15th International Congress on Combustion Engines, Diesel Engines,Paris, FR:1983
    [3] Watson N,Janota M S,Turbocharging the internal combustion engine,London:MacMillan,1982(418-435)
    [4]顾宏中,邬静川,柴油机增压及其性能优化,上海:上海交通大学出版社,1989(154-174)
    [5] Norbert Z,增压压力可调的涡轮增压器,车用发动机,1984(03),47-53
    [6]叶飞帆,邬静川,顾宏中,带放气阀的增压系统性能研究,宁波大学学报(理工版),1991,4(01):105-111
    [7] Backhouse R J,Franklin P C,Winterbone D E,Stability of feedback control of boost in variable geometry turbocharged automotive diesels,Proceedings of the Institution of Mechanical Engineers. Part A. Power and process engineering,1989,203(3),163-170
    [8] Ogawa H,Hayashi M,Yashiro M,Development of a continuous and feedback controlled variable nozzle turbine turbocharger system for heavy-duty trucks,CIMAC, Proceedings of the 19th International Congress on Combustion Engines,Florence, IT:1991
    [9] Capobianco M,Gambarotta A,Variable Geometry and Waste-Gated Automotive Turbochargers: Measurements and Comparison of Turbine Performance,Journal of Engineering for Gas Turbines and Power,1992,114(3),553-560
    [10] Brace C J,Cox A,Hawley J G, et al,Transient investigation of two variable geometry turbochargers for passenger vehicle diesel engines,SAE paper 1999-01-1241,1999
    [11]郭林福,VGT电控增压系统的开发及其与柴油机优化匹配的研究[博士论文],北京:北京理工大学,2003
    [12] Borila Y G,A sequential turbocharging method for highly-rated truck diesel engines,SAE paper 860074,1986
    [13] Ren Z,Campbell T,Yang J,Investigation on a computer-controlled sequential turbocharging system for medium-speed diesel engines,SAE paper 981480,1998
    [14] Galindo J,Luján J M,Climent H, et al,Turbocharging system design of a sequentially turbocharged diesel engine by means of a wave action model,SAE Paper 2007-01-1564,2007
    [15] Zhang Z,Deng K,Wang Z, et al,Experimental Study on the Three-phase Sequential Turbocharging System with Two Unequal Size Turbochargers,SAE paper 2008-01-1698 ,2008
    [16]王希波,大小涡轮三阶段相继增压系统匹配与切换过程研究[博士论文],上海:上海交通大学,2009
    [17]张哲,钱跃华,刘博,等,车用柴油机大小涡轮相继增压系统固定转速切换的试验研究,内燃机工程,2010,31(01):51-55
    [18]张扬军,张树勇,徐建中,内燃机流动热力学与涡轮增压技术研究,内燃机学报,2008,26(S1):90-95
    [19] Saulnier S,Guilain S,Computational Study of Diesel Engine Downsizing Using Two-Stage Turbocharging,SAE paper 2004-01-0929,2004
    [20]中华人民共和国环境保护部,关于国家机动车排放标准第四阶段限制实施日期的复函,2010
    [21]蒋德明,达到欧洲Ⅵ排放法规的新一代车用重载柴油机,车用发动机,2009(04):1-6, 15
    [22] Winkler N,Angstrom H,Simulations and Measurements of a Two-Stage Turbocharged Heavy-Duty Diesel Engine including EGR in Transient Operation,SAE paper 2008-01-0539,2008
    [23] Serrano J,Arnau F,Dolz V, et al,Analysis of the capabilities of a two-stage turbocharging system to fulfil the US2007 anti-pollution directive for heavy duty diesel engines,International Journal of Automotive Technology,2008,9(3),277-288
    [24] Kesgin U,Efficiency improvement and NOx emission reduction potentials of two-stage turbocharged Miller cycle for stationary natural gas engines,International Journal of Energy Research,2005,29(3),189-216
    [25] Olsson J,Tunest?l P,Johansson B,Boosting for High Load HCCI,SAE paper 2004-01-0940 ,2004
    [26] Tinschmann G,Holand P,Benetschik H, et al,Potential of Two-Stage Turbocharging on MAN Diesel's 32 44 CR,MTZ worldwide Edition,2008,69(10),14-21
    [27] Millo F,Mallamo F,Mego G G,The Potential of Dual Stage Turbocharging and Miller Cycle for HD Diesel engine,SAE paper 2005-01-0221,2005
    [28] Knecht W,Diesel engine development in view of reduced emission standards,Energy,2008,33(2),264-271
    [29] Johnson T V,Review of diesel emissions and control,International Journal of Engine Research,2009,10(5),275-285
    [30]下田正敏,细谷满,竹中嘉英,等,2010年商用车柴油机低排放技术的预测,国外内燃机,2008,40(2):7-10
    [31]居钰生,金兴才,满足未来车用柴油机要求的燃油系统与增压系统的匹配,现代车用动力,2008(04)
    [32]霍尼韦尔涡轮增压技术,未来乘用柴油车技术趋势,内燃机可持续发展论坛暨第二届中国汽车动力系统国际论坛,北京:2006
    [33] Uchida H , Transient Performance Prediction for Turbocharging Systems Incorporating Variable-geometry Turbochargers,R&D Review of Toyota CRDL,2006,41(3),22-28
    [34]张哲,邓康耀,钱跃华,等,柴油机大小涡轮相继增压系统瞬态切换策略,内燃机学报,2010,28(02):141-146
    [35] Pflüger F,Regulated Two-Stage Turbocharging - 3K-Warner's New Charging System for Commercial Diesel Engines,IMechE: The Sixth International Conference on Turbocharging and Air Management Systems,London, UK:1998
    [36] Borgwarner , BMW presents first ever passenger car diesel engine with regulated 2-stage turbocharging ,Turbonews,2004(02)
    [37] Christmann R,Schmalzl H,Schmitt F, et al,Regulated 2-Stage Turbocharging for Passenger Carand Commercial Vehicle Engines,MTZ worldwide Edition,2005,66(1)
    [38] Borgwarner,Most Powerful MAN Marine Engine with R2S Celebrates World Premiere at Boot 2002,Turbonews,2002(01),14-15
    [39] Sturm W L,Kruithof J,Development and testing of a HD diesel engine with two-stage turbocharging,The 9th Aachener Kolloquium "Fahrzeug- und Motorentechnik",Aachen:2000
    [40] Ricardo Josef Bo?ek Research Center,2-Stage Turbocharger Matching for a Light Duty Diesel Engine,. http://vladimir.fsik.cvut.cz/bozekdb/filestore/2-Stage_turbo_match.pdf
    [41] Ricardo Josef Bo?ek Research Center,2-Stage Turbocharged Engine EGR System Development,. http://vladimir.fsik.cvut.cz/bozekdb/filestore/2-Stage_turbo_EGR.pdf
    [42] Steinparzer F,Stütz W,Kratochwill H, et al,BMW's New Six-Cylinder Diesel Engine with Two-Stage Turbocharging,MTZ worldwide Edition,2005,66(05),2-5
    [43] Langen P,Hall W,Nefischer P, et al,The New Two-stage Turbocharged Six-cylinder Diesel Engine of the BMW 740d,ATZ autotechnology ,2010,10(2),44-51
    [44] Choi H,Kwon S,Cho S,Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger,SAE paper 2006-01-0021,Detroit, Michigan:2006
    [45] Buchwald R,Lautrich G,Maiwald O, et al,Boost and EGR System for the Highly Premixed Diesel Combustion,SAE paper 2006-01-0204,2006
    [46] Wik C,Hallb?ck B,Utilisation of 2-stage turbo charging as an emission reduction mean on a Wartsila 4-stroke medium-speed diesel engine,25th CIMAC World Congress,Vienna:2007
    [47] Wik C,Hallb?ck B,Reducing emissions using 2-stage turbo charging,W?RTSIL? TECHNICAL JOURNAL,2008(01),35-41
    [48] Gautier P,Albrecht A,Moulin P, et al,A New Simulation Step Towards Virtual Bench Through the Challenging Case of Two-Stage Turbocharger Diesel Engine Control Design,SAE paper 2008-01-0355,2008
    [49] Chasse A,Moulin P,Gautier P, et al,Double Stage Turbocharger Control Strategies Development,SAE paper 2008-01-0988,2008
    [50] Gautier P,Albrecht A,Chasse A, et al,A Simulation Study of the Impact of LP EGR on a Two-Stage Turbocharged Diesel Engine,Oil & Gas Science and Technology - Rev.IFP,2009,64(3),361-379
    [51] Albrecht A,Grondin O,Schmitt J C, et al,Simulation Support for Control Issues in the Context of Modern Diesel Air Path Systems,Oil & Gas Science and Technology– Rev. IFP,2009,64(3),381-405
    [52] Watel E,Pagot A,Pacaud P, et al,Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine,SAE paper 2010-01-1229,2010
    [53]魏名山,尹子明,马朝臣,高速柴油机二级可调增压系统的设计计算方法,内燃机工程,2006,27(06):11-14
    [54]何义团,马朝臣,魏名山,等,二级增压系统压比分配试验研究,车辆与动力技术,2007(02):1-3
    [55]何义团,马朝臣,吕伟,等,径流式二级增压系统的喘振分析与试验研究,车用发动机,2007(04):78-80, 85
    [56]何义团,马朝臣,魏名山,等,二级增压系统压气机性能试验研究,北京理工大学学报,2007,27(06):496-500
    [57]魏名山,何永玲,马朝臣,可调二级增压系统涡轮级热力学分析,内燃机工程,2008,29(01):43-47
    [58]魏名山,张志,何永玲,等,带不同类型调节阀的二级增压系统结构与性能对比,内燃机工程,2009,30(01):51-54
    [59]魏名山,张志,方金莉,等,带有放气阀的二级增压系统的设计与试验,内燃机学报,2009,27(2):166-170
    [60]王启峰,4100QBZL柴油机二级可变增压系统的研究[硕士论文],昆明:昆明理工大学,2007
    [61]赵令猛,尧命发,刘潜,等,两级涡轮增压对轻型柴油机性能影响的试验研究,中国内燃机学会燃烧节能净化分会2009年学术年会,潍坊:2009
    [62] Benson R S,Svetnicka F V,Two-Stage Turbocharging of Diesel Engines: a Matching Procedure and An Experimental Investigation,SAE paper 740740,1974
    [63]刘秋颖,柴油机两级涡轮增压系统选型与匹配[硕士论文],上海:上海交通大学,2011
    [64]何义团,马朝臣,朱智富,等,车用二级增压系统匹配方法与模拟计算,车用发动机,2007(03):83-85, 92
    [65] Guzzella L,Amstutz A,Control of diesel engines,IEEE Control Systems Magazine,1998,18(5),53-71
    [66] van Nieuwstadt M J,Kolmanovsky I V,Moraal P E, et al,EGR-VGT control schemes: experimental comparison for a high-speeddiesel engine,IEEE Control Systems Magazine,2000,20(3),63-79
    [67]张哲,邓康耀,钱跃华,大小涡轮三阶段相继增压系统性能试验研究,内燃机学报,2010,28(01):68-73
    [68] Filipi Z,Wang Y,Assanis D N,Effect of Variable Geometry Turbine (Vgt) on Diesel Engine and Vehicle System Transient Response,SAE paper 2001-01-1247,2001
    [69] Wahlstr?m J,Control of EGR and VGT for emission control and pumping work minimization in diesel engines[PhD],Link?ping,Sweden:Link?ping University,2009
    [70] Gissinger G L,Frank P M,Model-Based Electronic Diesel Engine and Turbocharger Control,SAE paper 900595,1990
    [71] Stefanopoulou A G,Kolmanovsky I,Freudenberg J S,Control Of Variable Geometry Turbocharged Diesel Engines For Reduced Emissions , IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2000,8(4),733-745
    [72]张科勋,李进,周明,等,采用真空执行器的柴油机空气系统闭环控制,清华大学学报(自然科学版),2006(08):1458-1461
    [73] Wijetunge R S,Hawley J G,Vaughan N D,An exhaust pressure control strategy for a diesel engine,Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2004,218(4),449-464
    [74] Buratti R,Carlo A,Lanfranco E, et al,Di Diesel Engine with Variable Geometry Turbocharger (VGT): A Model Based Boost Pressure Control Strategy,Meccanica,1997,32(5),409-421
    [75] D?ubler L,Bessai C,Predelli O,Tuning strategies for online-adaptive PI controllers,Oil & Gas Science and Technology– Rev. IFP,2007,62(4),493-500
    [76] Müller M,Estimation and Control of Turbocharged Engines,SAE paper 2008-01-1013,2008
    [77] Schwarzmann D,Nitsche R,Lunze J, et al,Pressure Control of a Two-Stage Turbocharged Diesel Engine Novel nonlinear IMC approach,Proceedings of the 2006 IEEE International Conference on Control Applications,Munich, Germany:2006
    [78] Nitsche R,Schwarzmann D,Hanschke J,Nonlinear internal model control of diesel air systems,Oil & Gas Science and Technology– Rev. IFP,2007,62(4),501-512
    [79] Dauron A,Model-based powertrain control: Many uses, no abuse,Oil & Gas Science and Technology– Rev. IFP,2007,62(4),427-435
    [80] Dambrosio L,Pascazio G,Fortunato B,VGT turbocharger controlled by an adaptive technique,IEEE-ASME TRANSACTIONS ON MECHATRONICS,2003,8(4),492-499
    [81]王长林,顾宏中,金庆骥,等效增压器概念及柴油机各类增压系统的比较,上海交通大学学报,1990,24(02):94-96
    [82]齐纳K. (著),侯玉堂,禹惠生(译),内燃机增压与匹配,北京:国防工业出版社,1982(77)
    [83]顾宏中,涡轮增压柴油机热力过程模拟计算,上海:上海交通大学出版社,1985(9)
    [84]顾宏中,涡轮增压柴油机性能研究,上海:上海交通大学出版社,1998(42-44)
    [85]本森R. S.,怀特豪斯N. D. (著),天津大学内燃机教研室(译),内燃机,北京:中国农业机械出版社,1982(212-214)
    [86]张连方,刘炽棠,顾宏中,柴油机原理,上海:上海交通大学出版社,1987(147-152)
    [87]方显忠,刘忠长,许允,等,车用直喷式柴油机排气微粒与消光式烟度的关系,汽车工程,2003,25(2):136-138
    [88]张哲,柴油机大小涡轮三阶段相继增压系统稳态与瞬态性能研究[博士论文],上海:上海交通大学,2010
    [89] Westin F,Burenius R,Measurement of Interstage Losses of a Twostage Turbocharger System in a Turbocharger Test Rig,SAE paper 2010-01-1221,2010
    [90] Samulski M J,Jackson C C,Effects of steady-state and transient operation on exhaust emissions from nonroad and highway diesel engines,SAE paper 982044,1998
    [91] Matsura Y,Nakazawa N,Kobayashi Y, et al,Effects of Various Methods for Improving Vehicle Startability and Transient Response of Turbocharged Diesel Trucks,SAE paper 920044,1992
    [92] Watson N,Transient Performance Simulation and Analysis of Turbocharged Diesel Engines,SAE paper 810338,1981
    [93] Benajes J,Luján J M,Serrano J R,Predictive modeling study of the transient load response in a heavy-duty turbocharged diesel engine,SAE paper 2000-01-0583,Detroit, Michigan, USA:2000
    [94] Hagena J R,Filipi Z S,Assanis D N,Transient Diesel Emissions: Analysis of Engine Operation During a Tip-In,SAE paper 2006-01-1151 ,2006
    [95] Galindo J,Serrano J R,Vera F, et al,Relevance of valve overlap for meeting Euro 5 soot emissions requirements during load transient process in heavy duty diesel engines ,International Journal of Vehicle Design,2006,41(1-2),343-367
    [96]王忠恕,边界条件对柴油机瞬态工况下燃烧的影响及数值模拟[博士论文],长春:吉林大学,2006
    [97] Rakopoulos C D,Giakoumis E G,Diesel Engine Transient Operation,London:Springer-Verlag London Limited,2009(7-22)
    [98] Wijetunge R S,Brace C J,Hawley J G, et al,Dynamic Behavior of a High-Speed, Direct-Injection Diesel Engine,SAE paper 1999-01-0829,1999
    [99] Payri F,Reyes E,Serrano J R,A model for load transients of turbocharged diesel engines:SAEInternational Congress and Exposition,Detroit, Michigan, USA:1999
    [100] Zelenka P,Aufinger H,Reczek W, et al,Cooled EGR-A key technology for future efficient HD diesels,SAE paper 980190,1998
    [101] European Commission,DIRECTIVE 1999/96/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL,1999
    [102]曾贤波,金振华,田颖,等,电涡流测功机控制器n/M模式控制算法研究,内燃机工程,2006(3):82-84
    [103] Hendricks E,The Analysis of Mean Value Engine Models,SAE paper 890563,1989
    [104] Jensen J P,Kristensen A F,Sorenson S C, et al,Mean Value Modeling of a Small Turbocharged Diesel Engine,SAE paper 910070,1991
    [105] Rakopoulos C D,Giakoumis E G,Review of Thermodynamic Diesel Engine Simulations under Transient Operating Conditions,SAE paper 2006-01-0884,2006
    [106] Guzzella L,Onder C H,Introduction to modeling and control of internal combustion engine systems,Berlin Heidelberg:Springer-Verlag Berlin Heidelberg,2010(21-137)
    [107]蒋德明,内燃机的涡轮增压,北京:机械工业出版杜,1986(149-151)
    [108] Eriksson L,Modeling and Control of Turbocharged SI and DI Engines ,Oil & Gas Science and Technology - Revue. IFP ,2007,62(4),523-538
    [109]朱大鑫,涡轮增压涡轮增压器,北京:机械工业出版社,1993(193-196)
    [110]莱昂斯J. L.,阀门技术手册,北京:机械工业出版社,1991
    [111]胡志君,奚文群,综合分析调节阀可压缩流体流量系数计算公式,石油化工自动化,1991(03)
    [112]国家技术监督局,工业过程控制阀,GB/T 17213,中国国家标准化管理委员会, 2005
    [113] Johansson T,System analysis of a diesel engine with VGT and EGR[master thesis],Link?ping, Sweden:Link?ping University,2005
    [114]胡寿松,自动控制原理,第五版,北京:科学出版社,2007(192-198)
    [115] Astr?m K J,H?gglund T,PID Controllers: Theory, Design, and Tuning,Research Triangle Park, North Carolina:Instruments Society of America,1995(34-37)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700