复杂内冷透平动叶中流动与换热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进的燃气轮机叶片冷却技术可以使叶片承受更高的透平进口燃气温度,增加冷却叶片的安全性和持久性,提高燃气轮机性能。本文对某重型燃气轮机透平中综合采用的带肋蛇形通道、涡流矩阵通道和叶尖孔等冷却结构进行了流动与换热特性研究。分别采用数值模拟和基于热色液晶瞬态测温技术的实验方法对单独的带肋直通道和涡流矩阵通道进行了研究,并在验证了数值模拟方法可靠性的基础上对旋转蛇行通道进行了数值研究,最后采用数值模拟方法对具有带肋蛇形通道、涡流矩阵通道和叶尖孔的动叶片进行了气—热耦合研究。
     带肋直通道中扰流肋片具有强化换热作用。在原始带有单一尺寸肋片通道中的适当位置加入小肋片,通道换热性能得到提高的同时,流动阻力系数也可能会下降,数值模拟与实验结果显示交替大小肋片通道具有较好的综合强化换热能力。
     在旋转非对称两流程蛇形通道中,从带肋壁面的换热系数和通道内的流动规律着手,对比相同尺寸模型的光滑蛇形通道与静止带肋蛇形通道的数值模拟结果,发现进口段中的单侧肋片对其中的流动与换热起主导作用;在出口段中,科氏力的作用逐渐显现,使通道中涡的形状发生变化,在局部地方使当地的涡系结构发生变化;在强化换热方面,旋转因素使出口段的前缘面和后缘面的换热能力都得到加强,科氏力使后缘面的加强幅度更大。
     影响涡流矩阵通道中流动与换热性能的主要几何参数有三个:肋宽-肋高比b/h、肋宽-肋间距比b/p和肋片倾斜角β。通过对七个模型的实验研究和数值模拟发现,通道的流动阻力系数随b/h值的增大而减小,随b/p值的增大而增大,随β的增大而增大,而换热能力随这三个参数的变化不呈单调变化趋势。
     某重型燃气轮机第一级透平动叶综合使用了上述带肋蛇形通道、涡流矩阵通道等冷却结构,并带有叶尖孔。通过改变模型中涡流矩阵通道的肋片尺寸、叶尖孔、叶尖内部间隙以及叶顶间隙等,考察各结构对冷却和流动带来的影响与作用。采用气—热耦合方法得到的结果显示各部分既分别展现自身特性,还相互产生影响。内冷结构对出口处的气流角、总温分布有一定的影响,对叶片负荷的影响不大。随着肋片宽度和间距的减小,对应区域叶片温度场趋于均匀。在考虑叶顶间隙的情况下,从叶尖孔喷出的冷气能对叶尖前缘和叶尖中部区域进行有效的冷却。叶尖内部间隙结构能促进涡流矩阵通道中靠吸力面一侧的子通道内的流动,改善对吸力面的冷却,在考虑叶顶间隙的情况下,从叶尖内部间隙流过的冷气能对叶尖尾缘进行十分必要和有效的冷却。
Su Sheng (Engineering Thermophysics)Supervised by Professor Liu Jian-Jun
     The application of effective cooling technology can allow turbine blade to undergohigh gas temperature and can increase the blade security and durability,and also the gasturbine efficiency.In this dissertation,the fluid flow and heat transfer in typical internalcooling configurations of a gas turbine rotor blade,including rib-roughened duct orserpentine passage,and matrix cooling,were studied.Both numerical simulations andexperiments based on transient heat transfer technology with thermochromic liquid crystalwere carried out.The numerical method used for the simulations was validated byexperimental results.Conjugate heat transfer method was used to study the fluid flow andheat transfer in the turbine rotor blade.
     In the rib-roughened duct,ribs induce secondary flow and break up the flow boundarylayer,result in enhanced heat transfer on the ribbed walls.When a smaller rib is planted ina proper location between each two original ribs,better heat transfer can be obtained andthe fluid flow resistance may also be decreased.Both numerical and experimental resultsshow that the integrated heat transfer ability,considering both the heat transferenhancement and the pressure loss,can be improved.
     The heat transfer and fluid flow in a rotating unsymmetrical two-pass serpentinepassage were numerically studied.Compared to the results in smooth serpentine passageand stationary rib-roughened serpentine passage,ribs planted only on one wall as in theinlet passage play a dominant role on the fluid flow and heat transfer.The effects ofCoriolis force come out gradually in the outlet passage.Coriolis force changes the vortexshape in the outlet passage,even changes the vortex configuration in some places.Rotatingenhances the heat transfer on both the front edge and back edge in the outlet passage.Due to the effect of Coriolis force,the enhancement of heat transfer on the back edge is higherthan that on the front edge.
     Three geometrical parameters have significant impacts on fluid flow and heat transferin matrix cooling.The parameters are rib width to height ratio b/h,rib width to pitch ratiob/p and the rib incline angleβ.The numerical and experimental results of seven differentmodels show that smaller b/h,or bigger b/p or biggerβleads to higher flow resistance.However,the heat transfer ability on the rib-roughened walls does not increase or decreasein a monotone way.
     The fluid flow and heat transfer studies for the turbine rotor blade were carried out bychanging the rib scale of matrix cooling,including or excluding tip film cooling,tip innerclearance and tip clearance.Numerical results obtained by using conjugate heat transfermethod show that each configuration has its own characteristics and interactions amongconfigurations are also found.Internal cooling has some effects on the flow angle and totaltemperature distribution at blade outlet,however,has small effect on blade aerodynamicload.Smaller scale of rib width and pitch leads to more unique temperature distributions inthe corresponding blade area.When tip clearance is considered,cooling air ejected fromthe tip holes can cool the leading edge and middle part of the blade tip.Inner clearancenear the blade tip can improve the fluid flow in the matrix sub-channels lying on the bladesuction side,consequently the suction side can be better cooled.In addition,cooling airflowing through the inner clearance near the blade tip can cool the trailing edge at the tipnecessarily and effectively.
引文
[1]沈邱农.重型燃气轮机产业的发展与自主化.发电设备,2007,21(2):93-97
    [2]曹玉璋.航空发动机传热学.北京:北京航空航天大学出版社,2005
    [3]Han J C.Gas Turbine Heat Transfer and Cooling Technology,Ananheim,CA,United States,Proceedings of the National Heat Transfer Conference,2001,Vol.2,pp.1943-1946
    [4]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德[著],程代京,谢永惠[译].燃气轮机传热和冷却技术.西安:西安交通大学出版社,2005
    [5]张和善.复合材料与未来航空发动机.航空制造工程,1995,9:6-11
    [6]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望.航空制造技术,2003,12:19-25
    [7]桂忠楼,张鑫华.高效冷却单晶涡轮叶片制造技术的发展.航空制造工程,1998,2:11-13
    [8]葛绍岩 刘登瀛,徐靖中,李静.气膜冷却.北京:科学出版社,1985
    [9]Suo M.Air Force Aero Propulsion Laboratory,Ohio,Wright-Paterson Air Force Base
    [10]Iacovides H,Launder B E.Internal blade cooling:the Cinderella of computational and experimental fluid dynamics research in gas turbines.Journal of Power and Energy,2007,221(3):265-290
    [11]Barua S N.Secondary Flow in a Rotating Straight Pipe.Roc Roy Soc A,1954-1955,Vol.227,pp.133-139
    [12]Han J C.Turbine Blade Cooling Studies at Texas A and M University:1980-2004.Journal of Thermophysics and Heat Transfer,2006,20(2):161-187
    [13]Han J C,Glicksman L R,Rohsenow W M.An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces.International Journal of Heat and Mass Transfer,1978,21:1143-1156
    [14]Han J C.Heat Transfer and Friction in Channels with Two Opposite Rib-Roughened Walls.Journal of Heat Transfer,Transactions of the ASME,1984,106(4):774-781
    [15]Han J C,Park J S,Lei C K.Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators,International Journal of Heat and Mass Transfer,1989,32(9):1619-1630
    [16]Han J C,Park J S.Developing Heat Transfer in Rectangular Channels with Rib Turbulators.International Heat and Mass Transfer,1988,31(1):183-195
    [17]Han J C,Park J S,Lei C K.Heat Transfer Enhancement in Channels with Turbulence Promoters.Journal of Engineering for Gas Turbines and Power,Transactions of the ASME,1985,107(3):628-635
    [18]Han J C,Chandra P R,Lau S C.Local Heat/Mass Transfer Distribution around Sharp 180 degree Turns in Two-Pass Smooth and Rib-Roughened Channels,Journal of Heat Transfer,Transactions of the ASME,1988,Vol.110,pp.91-98
    [19]Chandra P R,Han J C,Lau S C.Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel.Journal of Turbomachinery,1988,110(2):233-241
    [20]Han J C,Zhang Y M.High performance heat transfer ducts with parallel broken and V-shaped broken ribs.International Journal of Heat and Mass Transfer,1992,35(2):513-523
    [21]Han J C,Zhang Y M,Lee C P,Augmented Heat Transfer in Square Channels with Parallel,Crossed,and V-Shaped Angled ribs,ASME Journal of Heat Transfer,1991,Vol.113,pp.590-596
    [22]Zhang Y M,Gu W Z,Han J C.Augmented heat transfer in triangular ducts with full and partial ribbed walls.Journal of Thermophysics and Heat Transfer,1994,8(3):574-579
    [23]Zhang Y M,Gu W Z,Han J C.Heat transfer and friction in rectangular channels with ribbed or ribbed-grooved walls.Journal of Heat Transfer,Transactions of the ASME,1994,116(1):58-65
    [24]Dutta S,Han J C,Lee C P.Experimental heat transfer in a rotating triangular duct:Effect of model orientation.Journal of Heat Transfer,Transactions of the ASM E,1995,117(4):1058-1061
    [25]Han J C,Zhang P.Effect of rib-angle orientation on local mass transfer distribution in a three-pass rib-roughened channel.Journal of Turbomachinery,1991,113(1):123-130
    [26]Magi A,Adami P,Montomoli,et al.Experimental and numerical investigation of stationary ribbed ducts,ASME Paper GT2004-53180
    [27]Hwang J J.Measurements of heat transfer and pressure drop in a rectangular channel with repeated perforated ribs of various widths,ASME Paper 97-GT-476
    [28]lacovides H,Raisee M.Turbulent flow and heat transfer in stationary and rotating cooling passages with inclined ribs on opposite walls,ASME Paper GT2004-53245
    [29]Webb R L,Eckert E R,Goldstein R J.Heat transfer and friction in tubes with repeated-rib roughness.International Journal of Heat and Mass Transfer,1971,14(4):601-617
    [30]Metzger D E,Vedula R P.Heat Transfer in Trianglar Channels with Angled Roughness Ribs on Two Walls.Experimental Heat Transfer,1987,1(1):31-44
    [31]Metzger D E,Vedula R P,Breen D D.Effect of Rib Angle and Length on Convection Heat Transfer in Rib-Roughened Triangular Ducts,Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference,1987,pp.327-333
    [32]Spence R B,Lau S C.Heat transfer and friction in segmental turbine blade cooling channels.Journal of Thermophysics and Heat Transfer,1997,11(3):486-488
    [33]Dalle Donne M,Meyer L.Turbulent Convection Heat Transfer from Rough Surfaces with Two-Dimensional Rectangular Ribs.International Journal of Heat and Mass Transfer,1977,20(6):583-620
    [34]Han J C.Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators.Journal of Heat Transfer,Transactions of the ASME,1988,110(2):321-328
    [35]茹卡乌斯卡斯AA.[著],马昌文,居滋泉,肖宏才[译].换热器内的对流传热.北京:科学出版社,1986
    [36]Fan C S,Metzger D E.Effects of Channel Aspect Ratio on Heat Transfer in Rectangular passage Sharp 180-Deg Turns,ASME Paper 87-GT-113
    [37]Liou T M,Chen M Y,Wang Y-M.Heat Transfer,Fluid Flow,and Pressure Measurements inside a Rotating Two-Pass Duct with Detached 90 Deg ribs,ASME Paper GT2002-30200
    [38]Liou T M,Hwang Y S,Li Y C.Flowfield and Pressure Measurements in a Rotating Two-Pass Duct with Staggered Rounded Ribs Skewed 45 Deg to the Flow,ASME Paper GT2004-53173
    [39]Liou T M,Chen M Y,Chang K H.Spectrum Analysis of Fluid Flow in a Rotating Two-Pass Duct with Detached 90 Deg Ribs.Experimental Thermal and Fluid Science,2003,27(3):313-321
    [40]Liou T M,Chen M Y,Tsai M H.Fluid flow and heat transfer in a rotating two-pass square duct with in-line 90-deg ribs.Journal of Turbomachinery,2002,124(2):260-268
    [41]Liou T M,Chang S W,Hung J H,et al.High Rotation Number Heat Transfer of a 45 Deg rib-roughened Rectangular Duct with Two Channel Orientations.International Journal of Heat and Mass Transfer,2007,50(19):4063-4078
    [42]Servouze Y,Sturgis J C.Heat Transfer and Flow Field Measurements in a Rib-Roughened Branch of a Rotating Two-Pass Duct,ASME Paper GT2003-38048
    [43]Kim K M,Kim Y Y,Rhee D H,et al.An Investigation of Duct Aspect Ratio Effects on Heat/Mass Transfer in a Rotating Duct with 90 Deg Ribs,ASME Paper GT2004-53533
    [44]Han J C,Zhang P.Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel,Journal of Turbomachinery,1991,113(1):123-130
    [45]顾维藻,神家锐,马重芳,张玉明.强化传热.北京:科学出版社,1990
    [46]顾维藻,胡敦燕,刘长春.几种强化传热表面特性的实验.中国工程热物理学会第七届年会论文集,1990,Ⅲ-13-Ⅲ-8-
    [47]顾维藻,刘晓峰,涂建平等.燃气轮机涡轮叶片冷却通道内的流动与传热研究.中国工程热物理学会传热传质学学术会议论文集,1995(上册):Ⅲ-14-Ⅲ-19
    [48]神家锐,P.T.IRELAND,TV.JONES.收敛通道内气膜孔及其与矩形肋复合的强化传热.中国工程热物理学会传热传质学学术会议论文集,1991(上册):Ⅲ-59-Ⅲ-66
    [49]吴双应,苏芬灿,李友荣等.肋片强化传热的热力学判据.重庆大学学报:自然科学版,2000,23(5):135-138
    [50]沈胜强,李维仲.直肋片最佳肋片厚度的理论关系式.节能,2000,3:6-8
    [51]徐国强,王梦,陶智等.矩形通道中亚尺度肋片的流动换热数值分析.北京航空航天大学学报,2007,33(11):1281-1285
    [52]俞接成,李志信.环形内肋片圆管层流脉冲流动强化对流换热数值分析.清华大学学报:自然科学版,2005,45(8):1091-1094
    [53]张魏,李广超,金文.带45°肋矩形通道换热数值模拟.燃气涡轮试验与研究,2006,19(3):37-39
    [54]张魏,金文.带交错叉排肋的矩形通道流场和壁面换热特性的数值模拟.汽轮机技术,2007,49(5):362-365
    [55]邓宏武,陶智,徐国强等.旋转光滑U形通道内流动和换热的数值模拟.北京航空航天大学学报,2003,29(3):205-209
    [56]邓宏武,张炜.旋转状态下带肋U形通道内换热的实验研究.推进技术,2000,21(1):26-29
    [57]邓宏武,魏喆,陶智等.旋转状态下蛇形通道内流动与换热的机理研究.航空学报,2005,26(4):411-416
    [58]邓宏武,陶智,徐国强等.旋转蛇形通道内换热的非稳态实验.北京航空航天大学学报,2005,31(9):1004-1008
    [59]邓宏武,王彬,刘传凯等.不同密度比下旋转方通道内流场和换热的数值模拟.航空发动机,2007,33(3):32-35
    [60]刘传凯,邓宏武,陶智等.旋转蛇形通道内冷气流动和换热的数值模拟.航空动力学报,2005,20(4):662-667
    [61]刘传凯,陶智,丁水汀等.旋转光滑及带肋U形通道的局部换热特性.航空学报,2006,27(5):751-755
    [62]刘湘云,丁水汀,陶智等.变截面U形通道内肋高对换热特性影响的实验.航空动力学报,2007,22(7):1138-1141
    [63]魏喆,邓宏武,陶智等.带交叉肋变截面回转通道内换热的实验研究.航空动力学报,2004,19(5):645-649
    [64]张利民,刘湘云,丁水汀等.不同流动角对变截面双通道内换热特性实验.航空动力学报,2006,21(1):61-64
    [65]沈胜强,Abudula A,冀春俊等.有扰流片的矩形通道内空气流动和换热过程的数值模拟.热科学与技术,2002,1(1):20-23
    [66]李建华,宋双文,杨卫华等.不同结构肋化通道对流换热特性的试验.航空动力学报,2007,22(10):1663-1666
    [67]Gillespie D R H,Ireland P T,Dailey G M.Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels.ASME Paper 2000-GT-653
    [68]Bunker R S.Latticework(Vortex)Cooling Effectiveness Part 1:Stationary Channel Experiments,ASME Paper GT2004-54157
    [69]Acharya S,Bunker R S,Zhou F,et al.Latticework(Vortex)Cooling Effectiveness Part 2:Rotating Channel Experiments,ASME Paper GT2004-53983
    [70]张勃,吉洪湖,张靖周等.肋的几何参数对网格式肋化通道的传热与总压损失特性的影响.航空动力学报,2004,19(2):206-212
    [71]刘庆东,秦岭.交错肋结构形式对换热和流阻特性的影响试验研究.航空发动机,2007,33(4):36-39,49
    [72]丁水汀,秦岭,邓宏武等.交错肋通道换热和流阻特性的研究.航空动力学报,2007,22(2):205-209
    [73]Tabakoff W,Hosny W,Hamed A.Computation of the Temperature Distribution in Cooled Radial Inflow Turbine Guide Vanes.ASME paper,77-GT-83
    [74]Hamed A,Sheoran Y,Tabkoff W.Cooling Considerations for Design of a Radial Inflow Turbine.ASME paper,77-GT-82
    [75]Mee D J,Baines N C,Oldfield M L G,et al.Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade.Journal of Turbomachinery,1992,114(1):155-162
    [76]Macmartin I P,Norbury J F.Aerodynamics of a Turbine Cascade with Supersonic Discharge and Trailing Edge Blowing.ASME paper,74-GT-120
    [77]Bohn D E,Becker V J,Behnke K D.Experimental and Numerical 3-D Investigations of the Flow Field Behind the Trailing Edge of a Cooled Turbine Guide Vane,Proceedings of the 1996 ASME Turbo Asia Conference,96-TA-27
    [78]曾文演,乔渭阳,李文澜.冷气掺混对涡轮叶栅气动损失影响的试验研究.机械设计与制造, 2006,10:91-92
    [79]石靖,王平洽.考虑冷气掺混的涡轮气动设计计算方法.航空动力学报,1989,4(4):305-309
    [80]黄忠湖,杨锦甫.有冷气掺混的涡轮气动设计计算方法.航空动力学报,1989,4(4):301-304
    [81]杨弘,冯国泰.涡轮冷气掺混数学模型的研究.哈尔滨工业大学学报,1992,24(2):36-40
    [82]赵晓路,李维,罗建桥.带冷气掺混的涡轮级三元流场分析.中国科学院研究生院学报,2003,20(2):155-159
    [83]安柏涛,刘建军,蒋洪德.4级空气冷却透平气动性能三维数值研究.航空发动机,2005,31(4):9-13,16
    [84]李海滨,冯国泰,陈浮.涡轮直、弯叶栅冷气掺混流场结构的分析.推进技术,2003,24(2):125-129
    [85]Metzger D E,Dunn M G,HAH C.Turbine tip and shroud heat transfer.Journal of Turbomachinery,1991,113(3):502-507
    [86]Bindon J P.Pressure Distributions in the Tip Clearance Region of an Unshrouded Axial Turbine as Affecting the Problem of Tip Burnout,ASME Paper 87-GT-230
    [87]BINDON J P Measurement and formation of tip clearance loss.Journal of Turbomachinery,1989,111(3):257-263
    [88]Yamamoto A.Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade with Blade Tip Clearance.Journal of Turbomachinery,1989,111(3):264-275
    [89]杨庆海,黄洪雁,韩万今.有叶顶间隙的涡轮弯叶栅拓扑与旋涡结构(Ⅰ)—试验模型、端壁与叶片表面拓扑结构.应用数学和力学,2002,23(8):843-850
    [90]杨庆海,黄洪雁,韩万今.有叶顶间隙的涡轮弯叶栅拓扑与旋涡结构(Ⅱ)—横截面流场拓扑结构与叶栅旋涡结构.应用数学和力学,2002,23(8):851-854
    [91]Bunker R S,Bailey J C,Ameri A A.Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine:Part 1-Experimental Results.Journal of Turbomachinery,Transactions of the ASME,2000,122(2):263-271
    [92]才彬.红外测温仪原理及应用.企业标准化,2005,7:38-38
    [93]晏敏,彭楚武,颜永红等.红外测温原理及误差分析.湖南大学学报:自然科学版,2004,31(5):110-112
    [94]方韧,李彬.多斜孔壁气膜冷却绝热温比传热传质类比实验研究.航空动力学报,1998,13(1):65-68
    [95]Klein E J,Liquid Crystals in Aerodynamic Testing,Astronautics and Aeronautics,1968,6(7):70-73
    [96]Mcelderry E D.Boundary Layer Transition at Supersonic Speeds Measured by Liquid Crystals.Air Force Flight Dynamic Lab.1970:FDMG TM70-3
    [97]Cooper T E,Field R J,Meyer J F.Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer.Journal of Heat Transfer,Transactions ASME,1975,Vol.97 Ser C(3):442-450
    [98]Ireland P T,Jones T V.Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals.Journal of Physics E:Scientific Instruments,1987,20(10):1195-1199
    [99]Wang Z,Ireland P T,Jones T V.Technique for Measuring Convective Heat Transfer at Rough Surfaces.Transactions of the Institute of Measurement and Control,1991,13(3):145-154
    [100]Toy N,Savory E,Paskin S.Development of a System for Real-Time,Full-Field,Surface Shear Stress Measurements Using Liquid Crystals.Twelfth Turbulence Symposium,1990,p.B15.1-B 15.8,
    [101]Roberts G T,East R A.Liquid Crystal Thermography for Heat Transfer Measurement in Hypersonic Flows:a Review.Journal of Spacecraft and Rockets,1996,33(6):761-768
    [102]Gillespie D R H,Byerley A R,Ireland P T,et al.Detailed Measurements of Local Heat Transfer Coefficient in the Entrance to Normal and Inclined Film Cooling Holes,ASME Paper 94-GT-1
    [103]杨相皋.液晶显示在气动实验中的应用.流动显示技术及应用学术会议报告.1982
    [104]朱双东.视角不可忽视条件下热敏液晶色/温特性的定量表示.电子学报,1997,25(5):126-127
    [105]张曦,翁文国.液晶测温测速技术在流体实验中的应用.中国科学技术大学学报,2000,30(1):51-55
    [106]韩振兴,刘石,刘建军等.吹风比对燃汽轮机平板气膜冷却特性影响的实验研究.中国电机工程学报,2005,25(18):91-96
    [107]徐国强,田宁,陶智等.液晶测温法对平板气膜冷却的实验研究.航空动力学报,2007,22(5):704-708
    [108]朱惠人,郭涛,张丽等.液晶瞬态技术测量带侧向流扰流柱通道端壁换热.推进技术,2007,28(6):620-623
    [109]Carcasci C,Innocenti L,Surace M.Preliminary evaluation of turbulence level influence in heat transfer measurements,ASME Paper GT2004-53151
    [110]李凌,杨茉等.周期性矩形槽通道内流动与换热的数值分析.中国工程热物理学会传热传质学学术会议论文集,2003(上册):146-149
    [111]LI H.A K A J.Numerical Prediction of Fluid Flow and Heat Transfer in Turbine Blades with Internal Cooling.AIAA Paper 94-2933,1994
    [112]Heselhaus A,Vogel D.T.Numerical Simulation of Turbine Blade Cooling with Respect to Blade Heat Conduction and Inlet Temperature Profiles.AIAA Paper 95-3041,1995
    [113]Sondak D L,Dorney D.J.Simulation of Coupled Unsteady Fluid Dynamics and Conduction Heat Transfer in a Turbine Stage.AIAA Paper 99-2521,1999
    [114]HAN Z X,Dennis B H,Dulikravich G S.Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material.ASME Paper 2003-GT-253
    [115]Thakur S,Wright J.Conjugate Heat Transfer in a Gas Turbine Blade Trailing-Edge Cavity.AIAA Paper 2002-0496,2002
    [116]Heidmann J D,Rigby D L,Ameri A A.Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane.Journal of Turbomachinery,Transactions of the ASME,2000,122(2):348-59
    [117]冯国泰,黄家骅,李海滨等.涡轮发动机三维多场耦合数值仿真的数学模型.上海理工大学学报,2001,23(3):189-192
    [118]李海滨,冯国泰,王松涛等.涡轮三维叶栅的气热耦合数值模拟.工程热物理学报,2003,24(5):770-772
    [119]陈凯,黄洪雁,匡云等.涡轮叶栅三维气热耦合数值模拟.节能技术,2006,24(4):321-325
    [120]姜澎,黄洪雁,冯国泰.空气冷却涡轮叶片气热耦合数值计算.哈尔滨工业大学学报,2006,38(12):2036-2038
    [121]刘振侠,张丽芬.采用热-流耦合方法对气冷涡轮叶片换热的计算.西北工业大学学报,2007,25(2):315-319
    [122]董威,黄维娜.某型发动机涡轮冷却叶片的流动换热耦合计算研究.燃气涡轮试验与研究,2006,19(2):14-17
    [123]姚四伟,葛宁,张力先.涡轮导向器内部流场气-热耦合数值计算.航空计算技术,2006,36(5):69-72
    [124]张丽芬,刘振侠,廉筱纯.气冷涡轮叶片三维换热问题计算.航空动力学报,2007,22(8):1268-1272
    [125]王强,董平,姜澎,等.提高气冷涡轮气热耦合计算精度的措施.中国工程热物理学会热机气动热力学学术会议.绍兴;中国工程热物理学会.2007:847-862
    [126]胡捷.燃气轮机透平叶片闭式蒸汽冷却研究.北京;中国科学院研究生院,2008
    [127]Sveningsson A,Davidson L.Computations of Flow Field and Heat Transfer in a Stator Vane Passage Using the v2-f Turbulence Model.Journal of Turbomachinery,2005,127(3):627-34
    [128]Viswanathan A K,Tafti D K,Abdel-wahab S.Large Eddy Simulation of Flow and Heat Transfer in an Internal Cooling Duct with High Blockage Ratio 45 Deg Staggered Ribs,ASME Paper GT2005-68086
    [129]王良御,廖松生.液晶化学.北京:科学出版社,1988
    [130]www.hallcrest.com randt.cfm.Handbook of Thermochromic Liquid Crystal Technology.Hallcrest Inc
    [131]吴继宗,叶关荣.光辐射测量.北京:机械工业出版社,1989
    [132]Ohtta Y,Kanade T,Sakai T.Color Information for Region Segmentation.Computer Graphics and Image Processing.1980,13(3):222-241
    [133]Kender J R.Saturation,Hue and Normalized Color:Calculation,Digitization Effects and Use.Master's Thesis,Department of Computer Science,Carnegie-Mellon University,1976
    [134]Jones M J.Calibration and Image Processing Techniques for Quantitative Digital Analysis of Thermographic Images,PhD Thesis,University of Southampton,U.K.,May,1991
    [135]Schultz D L,Jones T V.Heat Transfer Measurement in Short-Duration Hypersonic Faacilities.AGARD165,1973
    [136]韩振兴.热敏液晶测温技术及其在平板气膜冷却实验中的应用:[博士论文].北京:中国科学院研究生院,2005
    [137]Chan T L,Ashforth-Frost S,Jambunathan K.Calibrating for Viewing Angle Effect during Heat Transfer Measurements on a Curved Surface.International Journal of Heat and Mass Transfer,2001,44(12):2209-2223
    [138]Mizell L.Liquid Crystals:a New Technique for Thermal Mapping of Electronic Components.Microelectrics 4:Fourth International Congress,Munich,1970,pp.450-475
    [139]埃克特,德雷克(著),航青(译).传热与传质分析.北京:科学出版社,1983
    [140]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998
    [141]METZGER D.E.L D E.Use of Melting Point Surface Coating for Local Convection Heat Transfer Measurements in Rectangular Channel Flows with 90-Deg Turns.Journal of Heat Transfer,Transaction of ASME,1986,108(1):48-54
    [142]Roberts G T,East R A.The Use of Thermalchromic Liquid Crystal for Heat Transfer Measurement in Short Duration Hypersonic Wind Tunnel Facilities.AIAA Paper no95-6115,1995
    [143]Matrox Meteor-Ⅱ/Multi Channel:Installation and Hardware Reference,Matrox Electronics Systems Ltd.,2003
    [144]周作元,李荣光.温度与流体参数测量基础.北京:清华大学出版社,1986
    [145]Hay J L,Hollingsworth D K.Calibration of micro-encapsulated liquid crystals using hue angle and a dimensionless temperature.Experimental Thermal and Fluid Science,1998,18(3):251-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700