芳纶1313织物及其增强硅橡胶复合材料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶是一种高弹性的高分子化合物,也称做弹性体。由于橡胶的弹性大,弹性模量较低,在外力的作用下极易产生变形。因此,很多橡胶制品都是以复合材料的形态存在的。作为高温环境下使用的橡胶制品,不仅要求其具有优异的力学性能,同时要有优异的热学性能。复合材料的性能既与基布性能相关,也与热压工艺相关。
     (1)论文对增强橡胶复合材料常用涤纶和芳纶1313平纹机织基布的性能进行实验研究,二种织物的组织相同,经纬线密度和密度略有差异,面密度分别为120.45g/m2和115.41 g/m2。芳纶1313回潮率比涤纶回潮率大,涤纶纱线强度大、伸长小,但干热收缩率较大;芳纶1313基布比涤纶基布强度小,伸长大,但其耐热性能和尺寸稳定性能显著优于涤纶基布。因此,研究芳纶1313机织基布力学性能有助于合理、经济开发高温环境中使用的橡胶复合材料。
     (2)芳纶1313平纹机织基布热学性能优越,但强力较低,价格高。论文对两组线密度不同的纱线进行基布的优化设计,探讨纱线强力、织物经纬密度与织物拉伸强力、撕裂强力的关系。①织物在拉伸外力作用下的强力预测y = 3 .66x1 +73.34x2?574.32,根据织物的强力要求和已知纱线强度,获得织物设计的最低的经纬密度,以节约成本。②增强橡胶复合材料芳纶1313机织基布一般为稀密织物,在撕裂过程中存在纱线滑移、聚集等现象。
     (3)增强橡胶复合材料的热压工艺主要包括温度、压力和时间三个因素。论文通过单因子试验找出对芳纶1313织物/硅橡胶复合材料拉伸性能影响最大的3个水平,温度为140、145、150℃;压力为10、12.5、15Mpa;时间为15、20、25min。然后,通过正交试验探讨热压工艺对1313织物/硅橡胶复合材料拉伸、撕裂和剥离等力学性能的影响。①温度、时间、压力对复合材料拉伸强力在显著水平0.05下有高度的显著性,而且温度的影响最大,时间的影响次之,压力的影响最小;热压工艺对复合材料撕裂性能在显著水平0.05下有高度的显著性,压力的影响最大,时间的影响次之,温度的影响最小;热压工艺对复合材料剥离强力的影响不显著。②优化工艺为热压压力10Mpa,热压温度150℃,热压时间15min。优化工艺下制得的芳纶1313织物/硅橡胶复合材料的拉伸强度为19.92 Mpa、撕裂强力为80.71N/5cm、剥离强度为33.52N/5cm。
Rubber is elastomer of high molecular compound with high elasticity. Rubber is easy to deform under the action of forces due to its high elaseicity and low elastic module. Accordingly, many rubber products exist in composite form. The rubber composite material, which is used in high temperature environment, not only requiers its excellent mechanical properties, but also has excellent thermal properties. The properties of this composite material are associated with the property of skeleton material such as fabrics and the compound technology such as the hot-forming.
     (1) The properties of polyester and aramid 1313 plain woven fabric which are usually used for skeleton material of rubber composite are researched by experiment, the area density of this two kinds of fabrics which have the same organization, similar linear density and fabric density are 115.41g/m2 and 120.45g/m2. The moisture regain of aramid 1313 is much larger than polyester yarn, and the polyester yarn has high strength, low elongation and major dry heat shrinkage. The aramid 1313 fabric has lower strength and larger elongation than polyester, but its heat resistance and dimensional stability are significantly better than polyester fabric. Therefore, the research about mechanical property of aramid 1313 fabric is useful for the development of rubber composite reasonable and economic.
     (2) Aramid 1313 plain-woven fabric has superior thermal porperties, but low strength and high price. The optimal design of fabrics, which have different linear density, were studied to research the relationship between the strength of yarn, fabric density and fabric tensile strength, tear strength.①Fabric tensile strength can be predicted, according to this formule, y = 3 .66x1 +73.34x2?574.32.②The aramid 1313 fabric, which is used for foundtion of rubber composite is usually thin density fabric, there is yarn slipped, gathered and so on between the tearing.
     The hot-forming technology of composite material is associated with temperature, pressure and time. Three levels which are the greatest impacts of tensile property of aramid 1313 fabric/silastic rubber, were found by single factor test. The values as follows: Temperature are 140, 145, 150℃; Pressure are 10, 12.5, 15Mpa; Time are 15, 20, 25 min. Then, orthogonal test is used to explore the hot-forming technology influence mechanical property of aramid 1313 fabric/silastic rubber composite material.①Temperature, time, pressure have remarkable influence on the tensile strength of aramid 1313 fabric/rubber composite material. The greatest impact is temperature, time is the second, the least is pressure; Temperature, time, pressure has remarkable influence on the tearing strength of aramid 1313 fabric/rubber composite material. The greatest impact is pressure, time is the second, the least is temperature; the influence between hot-forming process and peel strength of aramid 1313 fabric/rubber composite material is not obvious.②The optimized technological parameter of hot-forming are pressure of 10Mpa, temperature of 150℃, time of 15min. The tensile strength of aramid 1313 fabric/silastic rubber composite material made by optimized hot-forming technological parameter is 19.92 Mpa, tear strength of that is 80.71N/5cm, peel strength of that is 33.52N/5cm.
引文
[1]赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东化工学院出版社,1991: 1-4.
    [2]郝元恺,肖加余.高性能复合材料学[M].化学工业出版社,北京,2004
    [3]崔贵德.玻璃纤维蓬盖类柔性复合材料产品的开发[J].东华大学硕士学位论文,2005
    [4]尹洪峰,任耘,罗发.复合材料及其应用[M].陕西科学技术出版社,2003
    [5]冯小明,张崇才.复合材料[M].重庆大学出版社,2007.9
    [6]张之兵.对位芳纶短纤维/浆粕橡胶基复合材料的研究[J].天津大学优秀硕士论文,2007.6
    [7]纪奎江.实用橡胶制品生产技术[M].化学工业出版社.北京,2000.3
    [8]樊萍.玻纤/CPE橡胶复合材料的阻尼性能研究[J].东华大学硕士学位论文,2009.1
    [9]君轩.短纤维补强橡胶材料[J].世界橡胶工业.第32 (9):55-57
    [10]程永悦.木质纤维素短纤维的性能及其在轮胎中的应用[J].橡胶工业,2004, 24:18-20
    [11]任玉柱等.对位芳纶短纤维/氢化丁睛橡胶复合材料的制备及其结构性能[J].合成橡胶工业,2006,29(2):117-121
    [12]窦强等.用硅烷偶联剂预处理短纤维补强硅橡胶[J].合成橡胶工业,1997, 20(3):159-161
    [13]段先健等.橡胶用短纤维预处理的新研究[J].弹性体,1999,9(l):46-47
    [14]曾海泉等.环状短纤维对橡胶增强效果的初步研究[J].橡胶工业,1998,45(5): 273-276.
    [15]杨霜等.混杂纤维复合材料阻尼性能的研究[J].纤维复合材料,2002.1-7.
    [16] Galiotic C,Young R J.Batchelder D N[J].Journal of Materials and Science,1984,19:36-40.
    [17] Rabinson I M.et al.Journal of Materials and Science[J].1987,22:36-42.
    [18] Guild F J,et al.Composites Science Technology[J],1994,50(3):319.
    [19] B.Wielageetal.JournalofMaterialsProcessingTeehnology139(2003):140-146.
    [20] vanderpolJF.Shortparaaramidfiberreinforeement[J] , RubberWorld , 1994 ,210(3):32-37
    [21]李杨.帘线/橡胶复合材料界面力学性能研究[J].哈尔滨工业大学硕士研究生毕业论文.2009.6
    [22] Clark S K.A Review of cord-rubber elastic characteristics[J].Rubber Chemistry and Technology.1964,37(5):365-389
    [23] Gought V E.Stiffness of cord-rubber characterization[J].Rubber Chemistry and Technology.1968,41(4):988-1021
    [24] Ko Honyim.Three-dimensional mechanical characterization of anisotropic composites[J].Journal of Composite Materials.1974,8(4):178-190
    [25] Patel H P.Radial tire cord-rubber composites[J].Rubber Chemistry and Technology.1979,49(4):1095-1100
    [26] Walter J D,Patel H P.Approximate expression for the elasticconstants of cord-rubber[J].Rubber Chemistry and Technology.1979,52(4):710-724
    [27] Cembrola R J,Dudek T J.Cord/rubber material properties[J].Rubber Chemistry and Technology.1985,58(4):830-856
    [28] Parhizgar S.Determination of stiffness properties of multi-ply cord-rubber composites[J].Tire Science and Technology.1989,17(3):201-216
    [29] Clark S K,Dodge R N.Nonlinear cord-rubber composites[J].Tire Science and Technology.1990,18(3):191-200
    [30]许叔亮,俞淇,曹剑贞.轮胎(帘线/橡胶)复合材料力学性能测定的研究[J].橡胶工业.1987,33(8):27-33
    [31]马浩.人造丝增强橡胶非线弹性粘弹性本构特性研究[J].哈尔滨工业大学硕士论文.1992.
    [32]张丰发,万志敏,杜星文.纵向拉伸对尼龙帘线/橡胶复合材料横向拉伸力学性能影响的试验研究[J].复合材料学报.2003,20(4):118-121.
    [33]俞淇,丁剑平,顾学甫.轮胎帘线橡胶复合材料弹性常数的测试研究[J].轮胎工业.2001,21(4):195-199.
    [34]柳永杰.橡胶制品基布的选择及分析[J].橡胶科技市场.2009(3):13-15
    [35]赵文建.多轴向经编织物为骨架的柔性复合材料的性能研究[J].东华大学硕士研究生论文.2006.12
    [36]卜佳仙,崔建伟.三维多向结构预制件的织造加工技术[J].产业用纺织品. 1997(10),9-12.
    [37]兰竹.机织层压类柔性复合材料界面粘接性能的研究[J].东华大学硕士学位论文.2009.1
    [38]徐文建.多轴向经编织物为骨架的柔性复合材料的性能研究[J].东华大学硕士学位论文.2006.12
    [39]邹振高,王西亭.芳纶1313纤维技术现状与进展[J].纺织导报,2006, (6):49-52
    [40]丁雪梅,吴雄英.芳纶1313耐高温阻燃纤维/织物研究与开发现状[J].技术纺织品研究.27-28
    [41]邹振高,施楣梧.芳纶1313纤维技术现状与进展[J].纤维技术.2006(6): 49-52
    [42]张家泽.芳纶1313市场分析[J].化学工业.2008(11):25-29
    [43]余艳娥,谭艳君.新型高性能纤维芳纶[J].高科技纤维与应用,2004,10(1)
    [44]曾翠霞.芳纶1313混纺织物的耐高温阻燃性能研究[M].苏州大学硕士论文. 2008
    [45]褚乃清,刘彩明,李丽霞.两种芳纶纤维定性鉴别方法的研究[J].中国纤检,2005,(12):20~22
    [46] Grant T L,Crown E M.Electrostatic properties of thermal protective fabric systems[J].Textile Institute,2001,92(4):403
    [47] Anjana,Jain,Vijayan Kalyani.Thermally induced structural changes in Nomex fibres[J].Bull Mater Sci,2002,25-34
    [48]黄兴山.芳纶的性能应用和生产[J].化工纵横,2002,(12):1-5.
    [49] Korbakov N,Hare1 H,Feldman Y.Dielectric response of aramid fiber reinforced PEEK[J].Macromolecular Chem Phys.2002,203(16):22-67
    [50]童三伏.耐高温阻燃芳纶简介[J ] .上海丝绸,2006 (1) :12-16
    [51] High Perfomance Fibers [J].Asian Textile Business,2001,(64) :11-14
    [52] Industrial Technology Research Institute[J].Process for Preparing Fibers ofSoluble Wholly Aromatic Polyamides.
    [53] Industrial Technology Research Institute(hsinchu.TW) [J].Method for Producing Shaped Articles of Soluble W holly Aromatic Polyamide
    [54]马立,鲁烈峰,白仲安,李硕.芳纶纤维增强复合材料的机械加工[J].制造技术研究,2007,6(28):30-32
    [55] Yamabayashi,Toshiharu,et a1.US Pat,5,759,348.1998
    [56]靳武刚.芳纶纤维复合材料在天线工程中的应用[J].电子机械工程,2003, 19(1): 36-38
    [57]张国槟.芳纶纤维在胶管胶布制品中的应用[J].沈阳化工.1997(1):41-43
    [58]纪奎江.实用橡胶制品生产技术[J].化学工业出版社.北京.2000. 93 [59~60]顾平.织物结构与设计学[M].上海.东华大学出版社.2004.2
    [61]王溪繁.竹原纤维/PLA复合材料性能的研究[M].苏州大学硕士研究生论文. 2009
    [62]陈魁.试验设计与分析[M].北京.清华大学出版社.1996.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700