液滴撞击固体壁面的实验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
撞击液滴同固体壁面相互作用机制与内燃机燃烧、喷淋冷却、农药喷洒及喷墨打印等众多物理及化学过程有关,并且影响液滴撞击过程的固液间作用机制及撞击的初始条件(主要包括Weber、Reynolds、Capillary及Ohnesorge数)决定了以上过程的实施效果。液滴撞击过程中包含的自由界面的流体流动、作为边界条件的动态接触角表达及三相线处不可积分的应力奇异点问题成为研究者持续关注的焦点。本论文利用高速摄像仪实验研究了液滴撞击不同性质的固体壁面后的特殊动态行为,并针对撞击过程的特殊行为及结果进行了相关的理论解释。本文相关的理论结果能够对液滴撞击过程中的撞击行为进行合理的预测。
     制备了三种不同润湿性表面,它们分别为疏水表面(镜面抛光后的黄铜表面)、亲水表面(亲水SiO2涂层表面)、超疏水表面(氟化处理后的具有微纳米复合结构的氧化铜表面)。通过研究不同润湿性固体表面上在热量传递影响下的液滴撞击行为,揭示了抛光铜表面上液滴收缩高度随壁面温度变化规律。壁面温度升高导致了最大液滴收缩高度增加,该现象可归因于表面张力梯度作用下的液体附加流动,并将该流动简化为具有温度梯度的倾斜平板上的受热液体流动,该状态下的液体流动可以借助润滑近似方程进行求解,相应的理论分析揭示了液滴收缩最大高度与壁温和接触时间的关系,理论结果与实验值相吻合。亲水表面上较小的接触角及后退角致使撞击液滴收缩过程中的三相线处于滞止状态,因此这也抑制了附加流动对液滴收缩高度的影响。此外,超疏水表面上液滴撞击的实验结果也明超疏水表面上的液滴收缩高度同样不受壁面温度变化的影响。考虑到超疏水状态下固液接触状态为复合润湿状态,此时撞击液滴与超疏水表面间捕获的大量空气(液体与气体间接触分率为97%)有效抑制了固液间热量传递,因此超疏水表面上撞击液滴的收缩行为也不受壁面温度变化的影响。
     论文还通过控制有机蒸汽扩散的方法在洁净的玻璃表面上制备了具有轴对称及径向润湿性梯度分布的表面,并研究了该表面上的液滴撞击过程。实验结果表明撞击液滴铺展过程不受表面润湿性影响,但固体表面的润湿性变化决定了液滴的收缩行为。即使是同一表面上的液滴撞击过程,由于其不同方向上的润湿性差异也会导致液滴在不同方向上的收缩速度差异,最终表面润湿性决定了收缩后液滴的形态。论文利用惯性去湿理论解释了上述不同润湿性梯度分布表面上的液滴收缩运动变化规律。
     利用光刻与干法刻蚀方法制备了具有正方形排布的微柱体结构表面,微柱体的直径及其间距由预先设计的光掩模控制,微柱体高度(高度为40μm)可以通过控制刻蚀时间获得。结构表面疏水化处理后呈现疏水或超疏水状态。疏水化的结构表面上液滴撞击实验发现液滴收缩过程中在微柱体表面上留下一层液膜,该液膜的存在影响了超疏水表面上的后退角及接触角滞后。液膜出现机理可以理解为液滴收缩过程中的滞后力(单位长度上的滞后力为F=σLG(cosθτ-cosθY))与气液界面不稳定性共同作用下的两相邻微柱体间的液束断裂所致。根据液束断裂导致液膜出现的假定进一步探讨了不同超疏水表面上的撞击液滴与结构表间的接触时间差别。最后对结构超疏水或疏水表面上的撞击液滴最大铺展直径进行了理论预测。考虑了结构表面内流体流动导致的粘性耗散及固液接触分率影响下的理论方程能够很好地反映实验结果。理论预测值与实验结果吻合较好。
     同样的方法制备出类似结构表面,但微柱体高度控制在20μm,对表面进行疏水化处理后呈现疏水状态。实验研究了这些表面上不同的润湿性特征,并根据变形后的Wenzel方程(结构表面上的粗糙度以接触线长度分率表示)对这些表面上的各向异性润湿特性进行了解释。另外,结构表面的各向润湿性同样反映在液滴撞击实验中。最后对以上结构表面撞击液滴最大铺展直径进行了理论预测,考虑了结构表面内流体流动导致的粘性耗散及粗糙度的影响下的理论方程预测结果与实验相吻合。
The interaction between solid surface and impacting droplet is involved in many practical processes such as internal combustion, spray cooling, deposition of pesticide and ink-jet printing, and the impinging results are directly related to the wettability of solid surface and dimensional parameters (Weber, Reynolds, Capillary and Ohnesorge numbers). Also, because of its fundamental points in free surface flow, the expression for dynamic contact angle as a boundary condition as well as non-integrated shear force singularity in the vicinity of triple line, of particular interest is the study on droplet impact on various surfaces. In this paper, the experimental and theoretical study on droplet impact was carried out on different solid surfaces which were fabricated referring to the public literature.
     Three kinds of surfaces were fabricated, which are polished Cu surface, hydrophilic SiO2 coatings surface and superhydrophobic surface, respectively. Dynamic behavior was examined by the collision of water droplet on the polished copper surface with a wider range of wettability and heated at different temperatures. The experimental results showed the maximum height of the retracting droplet increased with the surface temperature increasing. Moreover, the differences in maximum heights of recoiling droplet were ascribed to surface tension gradient and analysed in the context of lubrication approximation. However, the same law is not ubiquitously accessible for all solid surfaces. In the case of water droplet impinging on hydrophilic surface, the pinned triple line considerably suppressed the additional flow resulting from surface tension gradient and the maximum height of receding droplet is free of heat transfer. For impacting events on superhydrophobic surface, the entrapped air between rigid surface and water droplet effectively prevented heat transfer from the heated surface to the impacting droplet. As a consequence, the maximum receding height of impacting droplet on superhydrophobic surface is also independent of the surface temperature.
     We fabricated a series of surfaces with wettability gradient in radial/axisymmetric direction by controlling vapor phase diffusion of n-Octyltrichlorosilane (OTS) on common glass slides. The interaction between wettability gradient surfaces and water droplet released at a given height was investigated. Experimental results revealed the maximum spreading diameter was independent of surface wettability. However, surface wettability had important bearings on the receding motion of triple line. In this regard, the receding velocity of triple line responded to wettability gradient distribution. As a consequence, the wettability distribution was responsible for the eventual profile of water droplet after impingement. The dynamic of receding triple line conforms to inertial dewetting.
     By combination of photolithographic and dry etching, we have fabricated a series of textured silicon surfaces decorated by square arrays of pillars whose radius and pitch can be adjusted independently. The height of the pillars was set at 40μm by controlling etching time. These surfaces displayed a hydrophobic/superhydrophobic property after silanization reaction. The dynamic behavior of water droplet impacting on these structured surfaces was examined using a high-speed camera. Experimental results illustrated that a remaining liquid film on the pillars top gave rise to a wet surface instead of a dry surface as water droplet began to recede off textured surfaces. The remaining liquid film can account for the receding contact angle and contact angle hystersis. The synergistic effect of hysteresis force per unit length (F=σLG (cosθr-cosθY) and the gas-liquid interface instability can be responsible for the occurrence of liquid film. Also, experimental results demonstrated the difference in contact time was ascribed to the solid fraction defined as the ratio of the actual area contacting with liquid to its projected area on textured surface. Since the mechanism by which residual liquid film emerges on the pillars top is essentially ascribed to the pinch-off of the liquid threads, we further addressed the changes in contact time in terms of characteristic time of pinch-off of an imaginary liquid cylinder whose radius is related to solid fraction and the maximum contact area. The agreement of the theoretical analysis and the experimental results substantiates the assumption that the pinch-off of liquid thread should be responsible for the difference in contact time.
     Likewise, the textured surfaces were fabricated with square arrays of microposts whose height was set at 20μm. After silanization reaction, these textured surfaces displayed hydrophobic state and tended to undergo a wetting transition from Cassie regime to Wenzel regime. The axisymmetric wetting behavior was analysed according to the modified Wenzel equation taking account of the surface roughness in terms of line fraction instead of contact area. Furthermore, the dynamic behavior of droplet impacting on these textured surfaces was also examined. The theoretical analysis, taking consideration of the viscous dissipation and surface roughness, is in a good agreement with experimental results.
引文
[1]Thoroddsen S T, Etoh T G, Takehara K. High-Speed Imaging of Drops and Bubbles [J]. Annual Review of Fluid Mechanics,2008,40:257-85.
    [2]Yarin A L. Drop impact dynamics:Splashing, Spreading, Receding, Bouncing...[J]. Annual Review of Fluid Mechanics,2006,38:159-192.
    [3]Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces [J]. Experiments in Fluids,2002,33:112-124.
    [4]Xu L. Liquid drop splashing on smooth, rough, and textured surfaces [J]. Physical Review E,2007,75: 056316.
    [5]Xu L, Zhang W W, Nagel S R. Drop Splashing on a Dry Smooth Surface [J]. Physical Review Letters, 2005,94.184505.
    [6]Rein M. Phenomena of liquid drop impact on solid and liquid surfaces [J]. Fluid Dynamics Research, 1993,12:61-93.
    [7]Rioboo R, Bauthier C, Conti J, M, et al. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids,2003,35:648-652.
    [8]Sikalo S, Ganic E N. Phenomena of droplet-surface interactions [J]. Experimental Thermal and Fluid Science,2006,31:97-110.
    [9]Cossali G E, Marengo M, Santini M. Secondary atomisation produced by single drop vertical impacts onto heated surfaces [J]. Experimental Thermal and Fluid Science,2005,29:937-946.
    [10]Moita A S, Moreira A L N. Drop impacts onto cold and heated rigid surfaces:Morphological comparisons, disintegration limits and secondary atomization [J]. International Journal of Heat and Fluid Flow,2007,28:735-752.
    [11]Leong K C, Yang C. Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces [J]. Experiments in Fluids,2002,33:728-731.
    [12]Borisov V T, Cherepanov A N, Predtechenskii M R, et al. Effect of wettability on the behavior of a liquid drop after its collision with a solid substrate [J]. Journal of Applied Mechanics and Technical Physics,2003,44:803-808.
    [13]Fukai J, Shliba Y, Miyatakek O. Theoretical study of droplet impingement on a solid surface below the Leidenfrost temperature [J]. International Journal of Heat Mass Transfer,1997,40:249-2492.
    [14]Biance A L, Clanet C, Quere D. Leidenfrost drops [J]. Physics of Fluids,2003,15:1632-1637.
    [15]Bertola V. An experimental study of bouncing Leidenfrost drops:Comparison between Newtonian and viscoelastic liquids [J]. International Journal of Heat and Mass Transfer,2009,52:1786-1793.
    [16]Ge Y, Fan L S. Three-dimensional simulation of impingement of a liquid droplet on a flat surface in the Leidenfrost regime [J]. Physics of Fluids,2005,17:027104.
    [17]Deegan R D, Brunet P, J Eggers. Complexities of splashing [J]. Nonlinearity,2008,21:C1-C11.
    [18]Eggers J, Villermaux E. Physics of liquid jets [J]. Reports on Progress in Physics,2008,71:036601.
    [19]Wachters L H J, Westerling N A J. The heat transfer from a hot wall to impinging water drops in the spheroidal state [J]. Chemical Engineering Science,1966; 21:1047-1056.
    [20]Richard D, Quere D. Bouncing water drops [J]. Europhysics Letters,2000; 50:769-775.
    [21]Okumura K, Chevy F, Richard D, et al. Water spring:a model for bouncing drops [J]. Europhysics Letters,2003; 62:237-243.
    [22]Richard D, Clanet C, Quere D. Contact time of a bouncing drop [J]. Nature,2002,417:811.
    [23]Chandra S, Avedisian C T. On the Collision of a Droplet with a Solid Surface [J]. Proceedings: Mathematical and Physical Sciences,1991; 432:13-41.
    [24]Moita A S, Moreira A L N. Drop impacts onto cold and heated rigid surfaces:Morphological comparisons, disintegration limits and secondary atomization [J]. International Journal of Heat and Fluid Flow,2007; 28:735-752.
    [25]Roisman I V, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface:model for spreading and receding [J]. Proceedings Royal Society London A,2002; 458:1411-1430.
    [26]Roisman I V. Dynamics of inertia dominated binary drop collisions [J]. Physics of Fluids,2004,16: 3438.
    [27]Pan K L, Roisman I V. Note on "Dynamics of inertia dominated binary drop collisions" [J]. Physics of Fluids,2009,21:022101.
    [28]Yarin A L, Weiss D A. Impact of drops on solid surfaces:selfsimilar capillary waves, and splashing as a new type of kinematic discontinuity [J]. Journal of Fluid Mechanics,1995,283:141-173.
    [29]Clanet C, Beguin C, Richard D, Quere D. Maximal deformation of an impacting drop [J]. Journal of Fluid Mechanics,2004,517:199-208.
    [30]Bennett T, Poulikakos, D. Splat-quench solidification:estimating the maximum spreading of a droplet impacting a solid surface [J]. Journal of Materials Science,1993,28:963-970.
    [31]Pasandideh-Fard M, Qiao, Y M, Chandra S, Mostaghimi J. Capillary effects during droplet impact on a solid surface [J]. Phys of Fluids,1996,8:650-659.
    [32]Mao T, Kuhn, C S D, Tran H. Spread and rebound of liquid droplets uponimpact on flat surfaces [J]. AIChE Journal,1997,43:2169-2179.
    [33]Fukai J, Tanaka M, Miyatake O. Maximum spreading of liquid droplets colliding with flat surfaces [J]. Journal of Chemical Engineering of Japan,1998,31:456-461.
    [34]Park H, Carr W W, Zhu J Y, Morris J F. Single drop impaction on a solid Surface [J]. AIChE Journal, 2003,49:2461-2471.
    [35]Ukiwe C, Kwok D Y. On the Maximum Spreading Diameter of Impacting droplets on well-prepared solid surfaces [J]. Langmuir,2005; 21:666-673.
    [36]Son Y, Kim C, Yang D H, Ahn D J. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers [J]. Langmuir,2008; 24:2900-2907.
    [37]Merlen A, Brunet P. Impact of Drops on Non-wetting Biomimetic Surfaces [J]. Journal of Bionic Engineering,2009,6:330-334.
    [38]Madejski J. Solidification of droplets on a cold surface [J]. International Journal of Heat Mass Transfer,1976,19:1009-1013.
    [39]Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta,1997,202:1-8.
    [40]Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Annals of Botany,1997,79:667-677.
    [41]Blossey R. Self-cleaning surfaces-virtual realities [J]. Nature materials,2003,2:301-306.
    [42]Furstner R, Barthlott W, Neinhuis C. Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces [J]. Langmuir,2005,21:956-961.
    [43]Cottin-Bizonne C, Barrat J L, Bocquet L, et al. Low-friction flows of liquid at nanopatterned interfaces [J]. Nature materials,2003,2:237-240.
    [44]Ou J, Perot B, Rothstein JP. Laminar drag reduction in microchannels using ultrahydrophobic surfaces [J]. Physics of Fluids,2004,16:4635-4643.
    [45]Ou J, Rothstein J P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces [J]. Physics of Fluids,2005,17:103606.
    [46]Joseph P, Cottin-Bizonne C, Benoit J-M, C. et al. Slippage of water past superhydrophobic carbon nanotube forests in microchannels [J]. Physical Review Letters,2006,97:156104.
    [47]Ybert C, Barentin C, Cottin-Bizonne C, et al. Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries [J]. Physics of Fluid,2007,19:123601.
    [48]Truesdell R, Mammoli A, Vorobieff P, et al. Drag reduction on a patterned superhydrophobic surface [J]. Physical Review Letters,2006,97:044504.
    [49]Shirtcliffe N J, McHale G, Newton M I, et al. Plastron properties of a superhydrophobic surface [J]. Applied Physics Letters,2006,89:104106.
    [50]Flynm M R, Bush J W M. Underwater breathing:the mechanics of plastron respiration [J]. Journal of Fluid Mechanics,2008,608:275-296.
    [51]Gao X F, Jiang L. Water-repellent legs of water striders [J]. Nature,2004,432:36.
    [52]Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion [J]. Nature,2003,424: 663-666.
    [53]Jung Y C. Bhushan B. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces [J]. Langmuir,2008,24:6262-6269.
    [54]Bartolo D, Bouamrirene F, Verneuil E, et al. Bouncing or sticky droplets:Impalement transitions on superhydrophobic micropatterned surfaces [J]. Europhysics Letters,2006,74:299-305.
    [55]Reyssat M, Pepin A, Marty F, et al. Bouncing transitions on microtextured materials [J]. Europhysics Letters,2006,74:306-312.
    [56]Reyssat M, Yeomans J M, Quere D. Impalement of fakir drops [J]. Europhysics Letters,2008,81: 26006.
    [57]Tao Deng, Kripa K, Varanasi, et al. Nonwetting of impinging droplets on textured surfaces [J]. Applied Physics Letters,2009,94:133109.
    [58]Nosonovsky M, Bhushan B. Patterned Nonadhesive Surfaces:Superhydrophobicity and Wetting Regime Transitions [J]. Langmuir,2008,24:1525-1533.
    [59]Rioboo R, Voue M, Vaillant A, et al. Drop Impact on Porous Superhydrophobic Polymer Surfaces [J]. Langmuir,2008,24:14074-14077.
    [60]Nosonovsky M, Bhushan B. Energy transitions in superhydrophobicity:low adhesion, easy flow and bouncing [J]. Journal of Physics:Condensed Matter,2008,20:395005.
    [61]Bormashenko E, Pogreb R, Tamir S, et al. Characterization of rough surfaces with vibrated drops [J]. Physical Chemistry Chemical Physics,2008,10:4056-4061.
    [62]Brunet P, Lapierre F, Thorny V, et al. Extreme Resistance of Superhydrophobic Surfaces to Impalement:Reversible Electrowetting Related to the Impacting/Bouncing Drop Test [J]. Langmuir, 2008,24:11203-11208.
    [63]Kusumaatmaja H, Blow M L, Dupuis A, et al. The collapse transition on superhydrophobic surfaces [J]. Europhysics Letters,2008,81:36003.
    [64]Moulinet S, Bartolo D. Life and death of a fakir droplet:Impalement transitions on superhydrophobic surfaces [J]. European Physical Jounal E,2007,24:251-260.
    [65]Deng T, Varanasi K K, Hsu Ming, et al. Nonwetting of impinging droplets on textured surfaces [J]. Applied Physics Letters,2009,94:133109.
    [66]Merlen A, Brunet P. Impact of Drops on Non-wetting Biomimetic Surfaces [J]. Journal of Bionic Engineering,2009,6:330-334.
    [67]Tsai P, Pacheco S, Pirat C, et al. Drop Impact upon Micro-and Nanostructured Superhydrophobic Surfaces [J]. Langmuir,2009,25:12293-12298.
    [68]Gao X F, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography [J]. Advanced Materials,2007,19:2213-2217.
    [69]de Gennes P G. Wetting:statics and dynamics [J]. Review Modern Physics,1985,57:827-863.
    [70]Lafuma A, Quere D. Suprehydrophobic state [J]. Nature Material,2003,2:457-460.
    [71]Callies M, Quere, D. On water repellency [J]. Soft Matter,2005,1:55-61.
    [72]Quere D. Non-sticking drops [J]. Reports on Progress in Physics,2005,68:2495-2532.
    [73]Quere D. Wetting and roughness [J]. Annual Review Materials Research,2008,38:71-99.
    [74]Quere D, Reyssat M. Non-adhesive lotus and other hydrophobic materials [J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2008,366: 1539-1556.
    [75]Bush, J W M, Hu D L, Prakash M. The integument of water-walking arthropods:Form and Function [J]. Advances in Insect Physiology:Insect Mechanics and Control,2008,34:117-192.
    [76]Bhushan, B. Biomimetics:lessons from nature-an overview [J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2009,367:1445-1486.
    [77]Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces [J]. Soft matter,2008,4:1943-1963.
    [78]Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials [J]. Advanced Materials,2008,20: 2842-2858.
    [79]Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces:from structural control to functional application [J]. Journal of Materical Chemistry,2008,18:621-633.
    [80]Nosonovsky M, Bhushan B. Roughness-induced superhydrophobicity:a way to design non-adhesive surfaces [J]. Journal of Physics-Condensed Matter,2008,20:225009.
    [81]Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Industrial Engineering Chemistry, 1936,28:988-994.
    [82]Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society,1944, 40:546-551.
    [83]Ishino C, Reyssat M. Reyssat E, et al. Wicking within forests of micropillars [J]. Europhysics Letters, 2007,79:56005.
    [84]Reyssat M, Laurent, Courbin C, Reyssat E, Stone H A. Imbibition in geometries with axial variations [J]. Journal of Fluid Mechanics,2008,615:335-344.
    [85]Courbin L, Denieul E, Dressaire E. Imbibition by polygonal spreading on microdecorated surfaces [J]. 2007, Nature materials,6:661-664.
    [86]Courbin L, Bird J C, Reyssat M. Dynamics of wetting:from inertial spreading to viscous imbibition [J]. Journal of Physics-Condensed Matter,2009,21:464127.
    [87]Oh J, Imai H, Hirashima H. Direct deposition of silica films using silicon alkoxide solution [J]. Journal of Non-Crystalline Solids,1998,241:91-97.
    [88]Qian B T, Shen Z Q. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates [J]. Langmuir,2005,21:9007-9009.
    [89]Bartolo D, Josserand C, Bonn D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces [J]. Journal of Fluid Mechanics,2005,545:329-338.
    [90]Renardy Y, Popinet S, Duchemin L. Pyramidal and toroidal water drops after impact on a solid surface [J]. Journal of Fluid Mechanics,2003,484:69-83.
    [91]Bayer I S, Megaridis C M. Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics [J]. Journal of Fluid Mechanics,2006,558:415-449.
    [92]Zhang F, Zhang Z B, Geng J. Study on Shrinkage Characteristics of Heated Falling Liquid Films [J]. AIChE Journal,2005,51:2899-2907.
    [93]Alexeev A, Gambaryan-Roisman T, Stephan P. Marangoni convection and heat transfer in thin liquid films on heated walls with topography:Experiments and numerical study [J]. Physics of Fluids,2005, 17:062106.
    [94]Pasandideh-Fard M, Aziz S D, Chandra S, et al. Cooling effectiveness of a water drop impinging on a hot surface [J]. International Journal of Heat and Fluid Flow,2001,22:201-210.
    [95]Oron A, Davis SH, Bankoff S G. Long-scale evolution of thin liquid films [J]. Reviews of Modern Physics,1997; 69:931-980.
    [96]Kataoka D E, Troian S M. A Theoretical Study of Instabilities at the Advancing Front of Thermally Driven Coating Films [J]. Journal of Colloid and Interface Science,1997; 192:350-362.
    [97]Kataoka D E, Troian S M. Stabilizing the Advancing Front of Thermally Driven Climbing Films [J]. Journal of Colloid and Interface Science,1998; 203:335-344.
    [98]Brochard F. Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients [J]. Langmuir,1989,5:432-438.
    [99]Chaudhury M K, Whitesides G M. How to Make Water Run Uphill [J]. Science,1992; 256: 1539-1541.
    [100]Daniel S, Chaudhury M K, Chen J C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface [J]. Science,2001,291:633-636.
    [101]Welin-Klintstrom S, Lestelius M, Liedberg B, et al. Comparison between wettability gradients made on gold and on Si/SiO2 substrates [J]. Colloids and Surfaces B:Biointerfaces,1999,15:81-87.
    [102]Lee S J, Khang G, Lee Y M, et al. The effect of surface wettability on induction and growth of neuritis from the PC-12 cell on a polymer surface [J]. Journal of Colloid and Interface Science,2003, 259,228-235.
    [103]lonov L, Houbenov N, Sidorenko A, Stamm M, Minko S. Smart Microfluidic Channels [J]. Advanced Functional Materials,2006,16:1153-1160.
    [104]Daniel S, Sircar S, Gliem J, et al. Ratcheting Motion of Liquid Drops on Gradient Surfaces [J]. Langmuir,2004,20:4085-4092.
    [105]Daniel S, Chaudhury M K. Rectified Motion of Liquid Drops on Gradient Surfaces Induced by Vibration [J]. Langmuir,2002,18:3404-3407.
    [106]Brochard F. Motions of droplet on solid substrates induced by chemical or thermal gradients [J]. Langmuir,1989,5:432-438.
    [107]Subramanian R S, Moumen N, McLaughlin J B. Motion of a Drop on a Solid Surface Due to a Wettability Gradient [J]. Langmuir,2005,21:11844-11849.
    [108]Moumen N, Subramanian R S, McLaughlin J B. Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a Wettability Gradient [J]. Langmuir,2006,22:2682-2690
    [109]Yang J T, Yang Z H, Chen C Y, Yao D J. Conversion of Surface Energy and Manipulation of a Single Droplet across Micropatterned Surfaces [J]. Langmuir,2008,24,9889-9897.
    [110]Dong L, Chaudhury A, Chaudhury M K. Lateral vibration of a water drop and its motion on a vibrating surface. European Physical Journal E,2006,2:231-242.
    [111]Perez M, Brechet Y, Salvo L, et al. Oscillation of liquid drops under gravity:Influence of shape on the resonance frequency [J]. Europhysics Letters,1999,47:189-195.
    [112]Noblina X, Buguin A, Brochard-Wyart F. Vibrated sessile drops:Transition between pinned and mobile contact line oscillations [J]. European Physical Journal E,2004,14:395-404.
    [113]Brunet P, Eggers J, Deegan R D. Motion of a drop driven by substrate vibrations [J]. European Physical Jounal-Special Topics,2009,166:11-14.
    [114]Patankar N A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces [J]. Langmuir, 2003,19:1249-1253.
    [115]He B, Lee J H, Patankar N A. Contact angle hysteresis on rough hydrophobic surfaces [J]. Colloids and Surfaces A:Physicochemical Engineering Aspects,2004,248:101-104.
    [116]Roura P, Fort J. Comment on "Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces" [J]. Langmuir,2002,18:566-569.
    [117]Miwa M, Nakajima A, Fujishima A, et al. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces [J]. Langmuir,2000,16:5754-5760.
    [118]Dorrer C, Ruhe J. Advancing and Receding Motion of Droplets on Ultrahydrophobic Post Surfaces [J]. Langmuir,2006,22:7652-7657.
    [119]Gao L, McCarthy T J. A Commercially Available Perfectly Hydrophobic Material (?) [J]. Langmuir,2007,23,9125-9127.
    [120]Extrand C W. Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces [J]. Langmuir,2002,18:7991-7999.
    [121]Extrand C W. Contact Angles and Hysteresis on Surfaces with Chemically Heterogeneous Islands [J]. Langmuir,2003,19:3793-3796.
    [122]Gao L, McCarthy T J. How Wenzel and Cassie Were Wrong. Langmuir,2007,23:3762-3765.
    [123]Gao L, McCarthy T J. An Attempt to Correct the Faulty Intuition Perpetuated by the Wenzel and Cassie "Laws" [J]. Langmuir,2009,25:7249-7255.
    [124]Bormashenko E, Pogreb R, Whyman G, et al. Cassie-Wenzel Wetting Transition in Vibrating Drops Deposited on Rough Surfaces:Is the Dynamic Cassie-Wenzel Wetting Transition a 2D or ID Affair? [J]. Langmuir,2007,23:6501-6503.
    [125]Bormashenko E, Pogreb R, Whyman G, et al. Resonance Cassie-Wenzel Wetting Transition for Horizontally Vibrated Drops Deposited on a Rough Surface. Langmuir,2007,23:12217-12221.
    [126]Dorrer C, Ruhe J. Contact Line Shape on Ultrahydrophobic Post Surfaces. Langmuir,2007,23: 3179-3183.
    [127]Kusumaatmaja H, Yeomans J M. Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces [J]. Langmuir,2007,23:6019-6032.
    [128]Anantharaju N, Panchagnula M V, Vedantam S, et al. Effect of Three-Phase Contact Line Topology on Dynamic ContactAngles on Heterogeneous Surfaces [J]. Langmuir,2007,23:11673-11676.
    [129]Redon C, Brochard-Wyart F, Rondelez F. Dynamics of dewetting [J]. Physical Review Letters.1991, 66:715-718.
    [130]Quere D, Lafuma A, Bico J. Slippy and sticky microtextured solids [J]. Nanotechnology,2003,14: 1109-1112.
    [131]Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic Artificial Surfaces Quantitatively Reproduce the Water Repellency of a Lotus Leaf [J]. Advanced Materials,2008,20:4049-4054.
    [132]Dorrer C, Ruhe J. Advancing and Receding Motion of Droplets on Ultrahydrophobic Post Surfaces [J]. Langmuir,2006,22:7652-7657.
    [133]Bico J, Marzolin C, Quere D. Pearl drops [J]. Europhysics Letters,1999,47:220-226.
    [134]Oner D, McCarthy D. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability [J]. Langmuir 2000,16:7777-7782.
    [135]Reyssat M, Quere, D. Contact Angle Hysteresis Generated by Strong Dilute Defects [J]. Journal of Physical Chemistry B,2009,113:3906-3909.
    [136]He B, Patankar N A, Lee J H. Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces [J]. Langmuir,2003,19:4999-5003.
    [137]Ishino C, Okumura K. Nucleation scenarios for wetting transition on textured surfaces:The effect of . contact angle hysteresis [J]. Europhysics Letters,2006,76:464-470.
    [138]Sbragaglia M, Peters A M, Pirat C, et al. Spontaneous Breakdown of Superhydrophobicity [J]. Physical Review Letter.2007,99:156001.
    [139]Pirat C, Sbragaglia M, Peters A M, et al. Multiple time scale dynamics in the breakdown of superhydrophobicity [J]. Europhysics Letters,2008,81:66002.
    [140]Peters A M, Pirat C, Sbragaglia M, et al. Cassie-Baxter to Wenzel state wetting transition:Scaling of the front velocity [J]. European Physical Journal E,2009,29:391-397.
    [141]Cubaud T, Fermigier M. Faceted drops on heterogeneous surfaces [J]. Europhysics Letters,2001,55: 239-245.
    [142]Patankar N A. Mimicking the Lotus Effect:Influence of Double Roughness Structures and Slender Pillars [J]. Langmuir,2004,20:8209-8213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700