燃料电池碳纸扩散层气液传输特性的孔隙尺度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着清洁替代能源研究的发展,质子交换膜燃料电池已经成为氢能源利用的理想能源转换装置。在质子交换膜燃料电池所发生的各种传递现象中,燃料组分的输运和水管理始终是关系着电池性能和及其可靠性的关键问题,然而,以前的宏观数值模拟因其局限性,不能精确的描述这些传输现象。本研究论文主要针对这些问题,在孔隙尺度上对气体扩散层及气体微通道内的单相和两相传输现象进行了研究。
     本研究论文以揭示与碳纸扩散层多孔介质有关的流动和传输机理为目标,以介观尺度的格子Boltzmann模型为理论研究方法,辅以必要的实验测量,探讨气体扩散层的微观结构以及润湿特性及其分布对气液传输的影响,以弥补宏观模型和实验观测在微观定量研究上的不足和缺陷。主要的研究内容包括了碳纸气体扩散层内的单相流动、碳纸扩散层内液体水的动态传输特性以及相对渗透系数和毛细压力-饱和度关系、气体微通道中液体水在扩散层表面上的动态传输特性。具体的研究内容和结论如下:
     1.碳纸扩散层各向异性渗透系数研究。数值构建了碳纸多孔材料的三维孔隙结构,并采用单相多松弛格子Boltzmann方法获得了压缩以及PTFE处理后的碳纸扩散层在孔隙尺度上的详细流动信息,结果表明:碳纸扩散层的渗透系数和弯曲度表现出明显的各向异性特性,其中in-plane方向的渗透系数大于through-plane方向渗透系数,而弯曲度正好相反;压缩引起的碳纸扩散层渗透系数的变化依然能用Kozeny-Carman半经验关联式和∧-base理论公式进行合理的预测,但是由于PTFE处理后的碳纸不具有单一的纤维结构,导致这些公式在这种情况下不再适用;Bruggeman方程计算的碳纸弯曲度正好处于in-plane和through-plane弯曲度之间,表明此方程仅仅考虑了多孔介质弯曲度的各向同性的宏观平均效果;分形理论模型预测得到的碳纸扩散层的through-plane渗透系数与Kozeny-Carman半经验关联式接近,但却不适用于in-plane方向和PTFE处理后的碳纸渗透系数的预测。
     2.碳纸扩散层内气液两相传输特性研究。采用多相自由能格子Boltzmann方法,对碳纸扩散层中液体水的传输机理以及扩散层孔隙结构和润湿特性对水传输的影响进行了研究;从孔隙模拟的角度,获得了碳纸扩散层内两相传输的相对渗透系数和毛细压力与水饱和度的关系曲线,并将所获得孔隙模拟结果与经验公式以及实验测量进行了比较。研究结果表明了碳纸扩散层的润湿特性在液体水的动态传输过程中所扮演着重要角色。在均匀润湿的情况下,碳纸扩散层的疏水性越强,水的传输越明显的表现为毛细指进的特征;而在疏水性不强时,水的传输表现为稳态驱替的特征,这种情况容易发生扩散层的水淹。在非均匀润湿的情况下,液体水选择亲水的路径进行传输,保留疏水孔用于气相传输,这种布置能更加有效的排出催化层的生成水,从而最大程度的利用更多的有效孔隙传输气体反应物,降低燃料电池的质量传输损失。此外,本文通过孔隙模拟获得的PTFE疏水处理的碳纸扩散层的Drainage和Imbibition毛细压力-饱和度关系曲线也较好的吻合了实验测量值,并充分体现了碳纸扩散层所具有的亲水和疏水孔隙共存的特征。根据研究结果拟合的碳纸扩散层毛细压力-饱和度关联式,相对于标准Leverett函数,能更加有效的对碳纸扩散层的毛细压力做出预测。
     3.疏水碳纸扩散层表面上液滴的动态特性研究。研究了液体水通过碳纸扩散层中的微孔隙,在扩散层表面上浮现、生长和最后脱离的动态过程,探讨了微通道中的气体流速以及扩散层表面的疏水程度对液滴脱离方式和液滴断裂大小的影响。研究结果证实了液滴与扩散层内部液体水传输孔隙间连接的表面张力是影响液滴脱离扩散层表面的主要因素,且液滴的脱离方式与通道内的气体流动剪切力有关。此外,本文所提出的基于液滴宏观力平衡的分析模型,对液滴在气体微通道内形成的大小以及断裂后的液滴在疏水扩散层表面上的运动速度也都给出了合理的预测结果。
     本文的研究在微观孔隙尺度上揭示流体在质子交换膜燃料电池气体扩散层内以及扩散层和气体通道界面上的流动和传质机理,为优化质子交换膜燃料电池的水管理和燃料组分传输策略提供帮助,同时也为质子交换膜燃料电池系统模型的开发提供重要的理论依据。
With rapid progress of the researches on alternative and clean energy sources, proton exchange membrane fuel cells (PEMFCs) have become a promising energy conversion device for hydrogen applications. Among various and complicated transport phenomena occur in PEMFCs, reactant gas diffusion and water management are two very important issues which are greatly related to the performance and durability of the PEMFCs in order to become a commercial reality. Macroscopic models, however, are deficient to study these transport phenomena in PEMFCs. In this thesis, the single and two phase transport in the gas diffusion layer (GDL) and gas flow channel of PEMFCs are investigated using pore-scale simulations, thus providing more fundamental understandings of these transport problems.
     Due to the limitations of macroscopic models and existing experimental methods at the present time, the lattice Boltzmann method (LBM), which is based on mesoscale kinetic theory, has been used in present work to perform quantitative investigations of gas and water transport within the very thin carbon paper GDL with actual pore structure and wettability distribution taken into consideration. The major contents in this thesis include the investigations of single and two phase transport processes in carbon paper GDL, relative permeability and capillary pressure-saturation relationship of carbon paper GDL and water droplet dynamics on the surface of carbon paper GDL in a gas channel. The details are described as follows:
     1. Anisotropic permeability of carbon paper GDL. The multiple-relaxation-time (MRT) LBM is used to study the anisotropic permeabilities of carbon paper GDLs. The porous carbon paper is numerically reconstructed using the stochastic method by taking into consideration of various porosities and microstructures to imitate different GDL compression ratios and PTFE contents. The detail flow field of single phase fluid in the GDL microstructure is presented and the resulting permeability and tortuosity are calculated, which show anisotropic characteristics of the reconstructed carbon paper with in-plane permeability higher than through-plane and in-plane tortuosity lower than through-plane. The simulated and measured permeabilities are compared with the Kozeny-Carman and∧-base relations, which predict permeabilities as a function of porosity accurately for GDL with different compression ratios, but inaccurately for GDL with different PTFE contents. The Bruggeman equation is faulty to predict the anisotropic tortuosities. The fitted relations of tortuosity and porosity are obtained from simulation results and are used in a fractal model, which indicates that the fractal model only provides good predictions on through-plane permeabilities of carbon paper GDL.
     2. Two-phase transport in carbon paper GDL. Water transport dynamic behaviors and water distribution in the microstructure of carbon paper GDL is investigated using the multiphase free-energy LBM. The relative permeabilities and capillary pressure-saturation relations of carbon paper with different wettability distributions and PTFE contents are obtained from pore-scale simulations, and are compared with empirical relationships and experimental measurements. The results show that the wettability plays a significant role on water saturation distribution in water transport in GDL. For highly hydrophobicity, the water transport falls in the regime of capillary fingering, while for neutral wettability, water transport exhibits the characteristic of stable displacement, although both processes are capillary force dominated flow with same capillary numbers. In addition, the introduction of hydrophilic paths in the GDL leads the water to flow through the hydrophilic pores preferentially, which would facilitate the removal of liquid water more effectively, thus alleviating flooding in catalyst layer (CL) and GDL. In addition, the pore-scale simulated capillary pressure-saturation relationships of carbon paper with different PTFE contents are in good agreement with experimental results, indicating the coexistence of both hydrophilic and hydrophobic properties in the PTFE treated GDL. The fitted capillary pressure curves in present works could provide more accurate predictions of the effects of two-phase flow in PEMFC models than using the standard Leverett-Udell empirical relationship for sand.
     3. Water droplet dynamic behavior on the hydrophobic GDL surface. The dynamic behaviors of water droplet emergence, growth, detachment and subsequent movement on the GDL surface are presented. The detached mode or detached size of the droplet under the influence of gas flow velocity and GDL surface wettability is investigated. The results confirm that the emerging water droplet holding on the GDL surface is attributed to the surface tension force from the connecting of the water in the GDL pore and the emerged part on the GDL surface. It shows that liquid water removal is facilitated by a high gas flow velocity on a more hydrophobic GDL surface. Furthermore, a simplified analytical model based on force balance is presented to predict the droplet detachment size and moving velocity, and the predicted results are in good agreement with the mesoscopic simulation results.
     The results of the present work provide physical insight for understanding the reactant gas and product water transport in the porous GDL and water droplet dynamics on the interface of GDL and gas flow channel. The results are helpful for design of optimal reactant diffusion and water management strategies for PEMFCs, and also provide theoretical basis for the development of system models of PEMFCs.
引文
[1]衣宝廉,燃料电池——原理·技术·应用,北京,化学工业出版社,2003年.
    [2] James Larminie and Andrew Dicks, Fuel Cell Systems Explained (Second Edition), John Wiley & Sons, Ltd., 2003.
    [3] X. Ren and S. Gottesfeld, Electro-osmotic Drag of Water in Poly (perfluorosulfonic acid) Membranes, J. Electrochem. Soc., 148 (2001), A87-A93.
    [4] K. Kordesch and G. Simader, in Fuel Cells and Their Applications, 1 ed., Wiley-VCH, 1996.
    [5] K. Tuber, D. Pocza and C. Hebling, Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell, J. Power Sources, 124(2003)403-414.
    [6] K. Karan, H. Atiyeh, A. Phoenix and et al., An Experimental Investigation of Water Transport in PEMFCs, Electrochemical and Solid-State Letters, 10(2007) B34-B38.
    [7] G.Q. Lu and C.Y. Wang, Electrochemical and Flow Characterization of a Direct Methanol Fuel Cell, J. Power Sources, 134 (2004) 33-40.
    [8] C.Y. Wang, in Handbook of Fuel Cells: Fundamentals, Technology and Applications, W. Lietsich, A. Lamm, and H.A. Gasteiger, Editors, Vol. 3, Part 3. John Wiley & Sons, Chi chester, 2003.
    [9] K.Z. Yao, K. Karan and K.B. McAuley et al., Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells, Fuel Cells, 4(2004) 3-29.
    [10]A.Z. Weber and J. Newman, Modeling Transport in Polymer-Electrolyte Fuel Cells, Chem. Rev, 104 (2004) 4679-4726.
    [11]S. Parkand B. N. Popov, Effect of Hydrophobicity and Pore Geometry in Cathode GDL on PEM Fuel Cell Performance, Electrochimica Acta, 54 (2009) 3473-3479.
    [12] S. Dutta, S. Shimpalee and J.W. Van Zee, Numerical Prediction of Mass-Exchange between Cathode and Anode Channels in a PEM Fuel Cell, Int. J. Heat and Mass Transfer,40-4(2001)229242.
    [13]L.X. You, H. T. Liu, A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells, Int. J. Heat and Mass Transfer, 45 (2002) 2277-2287.
    [14]T. Berning, D.M. Lu and N. Djilali, Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell, J. Power Sources, 106 (2002) 284-294.
    [15]T. Zhou, H. Liu, A 3D Model for PEM Fuel Cells Operated on Reformate, J. Power Sources, 138(2004) 101-110.
    [16]H. Meng and C. Y. Wng, Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 152 (2005) A1733-A1741.
    [17]U. Pasaogullari and C. Y. Wang, Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 152 (2005), A380-A390.
    [18]L.X. You and H. T. Liu, A Two-Phase Flow and Transport Model for PEMFC Fuel Cells, J. Power Source, 155 (2006) 219-230.
    [19]G. Lin and T. V. Nguyen, A Two-Dimensional, Two-Phase Model of a PEMFC, J. Electrochem. Soc., 153 (2006) A372-A382.
    [20] G. Luo, H. Ju, and C. Y. Wang, Prediction of Dry-Wet-Dry Transition in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 154 (2007) B316-B321.
    [21] Y. Wang and C. Y. Wang, A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 153 (2006) A1193-A1200.
    [22] A. A. Shah, G. S. Kim, P. C. Sui and D. Harvey, Transient Non-isothermal Model of a Polymer Electrolyte Fuel Cell, J. Power Sources, 163 (2007) 793-806.
    [23]A.D. Le and B. Zhou, A General Model of Proton Exchange Membrane Fuel Cell, J. Power Sources, 182(2008) 197-222.
    [24]P.C. Sui, S. Kumar and N. Djilali, Advanced Computational tools for PEM Fuel Cell Design Part 1. Development and Base Case Simulations, J. Power Sources, 180(2008) 410-422.
    [25] J.J. Baschuk and Xianguo Li, A comprehensive, Consistent and Systematic Mathematical Model of PEM Fuel Cells, Applied Energy, 86(2009) 181-193.
    [26] Y. Lu and R.G. Reddy, Investigation of Micro-PEM Fuel Cell using Experimental andModeling Methods, Electrochimica Acta, 54( 2009) 3952-3959.
    [27]P.M. Wilde, M. Mandle, M. Murata, N, Berg, Structure and Physical properties of GDL and GDL/BPP Combinations and their Influence on PEMFC Performance, Fuel Cell, 3(2004) 180-184.
    [28]W. Lee, C.H. Ho, J.W. Van Zee, M. Murthy, The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell, J. Power Sources, 84(1999) 45-51.
    [29]D. Bevers, R. Rogers, and M. V. Bradke, Examination of the Influence of PTFE Coating on the Properties of Carbon Paper in Polymer Electrolyte Fuel Cells, J. Power Sources, 63 (1996) 193-201.
    [30]M.F. Mathias, J. Roth, J. Feleming and W. Lehnert, in Hand book of Fuel Cells: Fundamentals, Technology and Applications, W. Lietsich, A. Lamm, and H. A. Gasteiger, Editors, Vol. 3, Part 1. John Wiley & Sons, Chichester, 2003.
    [31]J. Pharaoh, On the Permeability of Gas Diffusion Media used in PEM Fuel Cells, J. Power Sources, 144 (2005) 77-82.
    [32] G. Inoue, Y. Matsukuma, M. Minemoto, Effect of Gas Channel Depth on Current Density Distribution of Polymer Electrolyte Fuel Cell by Numerical Analysis including Gas Flow through Gas Diffusion Layer, J. Power Sources, 157(2006) 136-152.
    [33]J.P. Feser, A.K. Prasad, S.G. Advani, On the Relative Influence of Convection in Serpentine Flow Fields of PEM Fuel Cells, J. Power Sources, 161(2006) 404-412.
    [34] J. Ihonen, M. Mikkola and G. Lindbergh, Flooding of Gas Diffusion Backing in PEMFCs: Physical and Electrochemical Characterization, J. Power Source, 151(2004) 1152-1161.
    [35]J.P. Feser, A.K. Prasad, S.G. Advani, Experimental Characterization of in-plane Permeability of Gas Diffusion Layers, J. Power Sources, 162(2006) 1226-1231.
    [36]J.T. Gostick, M.W. Fowler, M.D. Pritzker, M.A. Ioannidis and L.M. Behra, In-plane and Through-plane Gas Permeability of Carbon Fiber Electrode Backing Layers, J. Power Sources, 162(2006)228-238.
    [37]J.H. Nam and M. Kaviany, Effective Diffusivity and Water-saturation Distribution in Single- and Two-layer PEMFC Diffusion Medium, Int. J. Heat and Mass Transfer, 46(2003)4595-4611.
    [38]G. Inoue, T. Yoshimoto, Y. Matsukuma and M. Minemoto, Development of simulated gas diffusion layer of polymer electrolyte fuel cells and evaluation of its structure, J. Power Sources, 175 (2008) 145-158.
    [39]G.L. He, Z.C. Zhao and P.W. Ming et al., A Fractal Model for Predicting Permeability and Liquid Water Relative Permeability in the Gas Diffusion Layer (GDL) of PEMFCs, J. Power Sources, 163(2007) 846-852.
    [40] Y. Shi, J.S. Xiao and M. Pan et al., A Fractal Permeability Model for the Gas Diffusion Layer of PEM Fuel Cells, J. Power Sources, 163(2006) 277-283.
    [41]M. Prasanna, H. Y. Ha, E. A. Cho, S. A. Hong and I. H. Oh, Influence of Cathode Gas Diffusion Media on the Performance of the PEMFCs, J. Power Sources, 131 (2004) 147-154.
    [42]C. Lim and C. Y. Wang, Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell, Electrochimica Acta, 49 (2004) 4149-4156.
    [43]C.Y. Wang, Fundamental Models for Fuel Cell Engineering, Chem. Rev., 104 (2004), 4727-4766.
    [44]D. Natarajan and T.V. Nguyen, A Two-Dimensional, Two-phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell using Conventional Gas Distributors, J. Electrochem. Soc., 148(2001) A1324-A1335.
    [45] T. Berning and N. Djilali, A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell, J. Electrochem. Soc., 150 (2003) A1589-A1598.
    [46] C. Y. Wang and C. Beckermann, A Two-Phase Mixture Model of Liquid-Gas Flow and Heat Transfer in Capillary Porous Media-I. Formulation, Int. J. Heat and Mass Transfer, 36(1993)2747-2758.
    [47] C. Y. Wang and P. Cheng, Multiphase Flow and Heat Transfer in Porous Media, Adv. Heat Transfer, 30 (1997) 93-196.
    [48] S. Mazumder and J. V. Cole, Rigorous 3-D Mathematical Modeling of PEM Fuel Cells, I. Model Predictions without Liquid Water Transport, J. Electrochem. Soc., 150 (2003) A1503-A1509.
    [49] S. Mazumder and J. V. Cole, Rigorous 3-D Mathematical Modeling of PEM Fuel Cells, II. Model Predictions with Liquid Water Transport, J. Electrochem. Soc., 150 (2003) A1510-A1517.
    [50] Y. Wang and C. Y. Wang, Ultra Large-Scale Simulation of Polymer Electrolyte Fuel Cells, J. Power Sources, 153 (2006) 130-135.
    [51] J. Yuan and B. Sunden, Two-Phase Flow Analysis in a Cathode Duct of PEFCs, Electrochim. Acta, 50 (2004) 677-683.
    [52] U. Pasaogullari and C. Y. Wang, Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 151 (2004) A399-A406.
    [53] Q. Ye and T.V. Nguyen, Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Function, J. Electrochem. Soc., 154 (2007) B1242-B1251.
    [54] V. Gurau, M. J. Bluemle, E. S. De Castro and Y. M. Tsou et al., Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers), J. Power Sources, 160(2006) 1156-1162.
    [55]H. Ju, G. Luo and C.Y. Wang, Probing Liquid Water Saturation in Diffusion Media of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 154 (2007) B218-B228.
    [56] J.T. Gostick, M.W. Fowler and M.A. Ioannidis et al., Capillary Pressure and Hydrophilic Porosity in Gas Diffusion Layers for Polymer Electrolyte Fuel Cell, J. Power Sources, 156(2006)375-387.
    [57]J.D. Fairweather and P. Cheung et al., A Microfluidic Approach for Measuring Capillary Pressure in PEMFC Gas Diffusion Layers, Electrochemistry Communications, 9(2007) 2340-2345.
    [58] T. V. Nguyen, G. Lin, H. Ohn and X. Wang, Measurement of Capillary Pressure Property of Gas Diffusion Media used in Proton Exchange Membrane Fuel Cells, Electrochemical and Solid-State Letters, 11(2008) B127-B131.
    [59] J. T. Gostick, M.A. Ioannidis, M.W. Fowler and M.D. Pritzker, Direct Measurement of the Capillary Pressure Characteristics of Water-air-gas Diffusion Layer Systems for PEM Fuel Cells, Electrochemistry Communications, 10(2008) 1520-1523.
    [60]E.C. Kumbur, K.V. Sharp and M.M. Mench, Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media, J. Electrochemical Society, 154(2007) B1295-B1304.
    [61]E.C. Kumbur, K.V. Sharp and M.M. Mench, Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media, J. Electrochemical Society, 154(2007) B1305-B1314.
    [62]E.C. Kumbur, K.V. Sharp and M.M. Mench, Validated Leverett Approach for Multiphase Flow in PEFC Diffusion Media, J. Electrochemical Society, 154(2007) B1315-B1324.
    [63]E.C. Kumbur, K.V. Sharp and M.M. Mench, On the Effectiveness of Leverett Approach for Describing the Water Transport in Fuel Cell Diffusion Media, J. Power Sources, 168(2007) 356-368.
    [64]R.J. Bellows, M. Y. Lin, M. Arif, A. K. Thompson and D. Jacobso, Neutron Imaging Technique for in situ Measurement of Water Transport Gradients within Nafion in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 146 (1999), 1099-1103.
    [65]A.B. Geiger, A. Tsukada, E. Lehmann, P. Vontobel, A. Wokaun, and G. G. Sherer, In Situ Investigation of Two-Phase Flow Patterns in Flow Fields of PEFCs Using Neutron Radiography, Fuel Cells, 2 (2002), 92-98.
    [66]R. Satija, D. L. Jacobson, M. Arif and S. A. Werner, In situ Neutron Imaging Technique for Evaluation of Water Management Systems in Operating PEM fuel cells, J. Power Sources, 129 (2003), 238-245.
    [67]D. Kramer, J. Zhang, R. Shimoi, E. Lehmann, A. Wokaun, K. Shinohara and G. G. Scherer, In Situ Diagnostic of Two-Phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging. Part A. Experimental, Data Treatment and Quantification, Electrochim. Acta, 50 (2005), 2603-2614.
    [68]N. Pekula, K. Heller, P. A. Chuang, A. Turhan, M. M. Mench, J. S. Brenizer and K. Unlu Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell using Neutron Imaging, Nuclear Instruments and Methods in Phys. Res. A, 542 (2005), 134-141.
    [69] J. Zhang, D. Kramer, R. Shimoi, Y. Ono, E. Lehmann, A. Wokaun, K. Shinohara and G. G. Scherer, In situ Diagnostic of Two-phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging Part B. Material Variations, Electrochimica Acta, 51 (2006),2715-2727.
    [70] P.K. Sinha, P. Halleck and C.Y. Wang, Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography, Electrochem. Solid-State Lett., 9 (2006), A344-A348.
    [71]M.A. Hickner, N.P. Siegel, K.S. Chen, D.S. Hussey, D.L. Jacobson and M. Arif, In Situ High-Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc. 155(2008) B427-B434.
    [72]C. Hartnig, I. Manke, R. Kuhn, N. Kardjilov, J. Banhart and W. Lehnert, Cross-sectional Insight in the Water Evolution and Transport in Polymer Electrolyte Fuel Cells, Applied Physics Letters, 92 (2008) 134106.
    [73]K. Teranishi, S. Tsushima and S. Hirai, Analysis of Water Transport in PEFCs by Magnetic Resonance Imaging Measurement, J. Electrochem. Soc., 153 (2006), A664 -A668.
    [74]K. W. Feindel, S. H. Bergens and R. E. Wasylishen, The Use of 1H NMR Microscopy to Study Proton-Exchange Membrane Fuel Cells, ChemPhysChem., 7 (2006), 67-75.
    [75]M.M. Mench, Q.L. Dong and C.Y. Wang, In situ Water Distribution Measurements in a Polymer Electrolyte Fuel Cell, J. Power Sources, 124 (2003) 90-98.
    [76]X.G. Yang, F.Y. Zhang, A.L. Lubawy, and C.Y. Wang, Visualization of Liquid Water Transport in a PEFC, Electrochem. Solid-State Lett. 7 (2004) A408-A411.
    [77]F.Y. Zhang, X.G. Yang, and C.Y. Wang, Liquid Water Removal from a Polymer Electrolyte Fuel Cell, J. Electrochem. Soc. 153 (2006) A225-A232.
    [78] S. Litster, D. Sinton and N. Djilali, Ex situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers, J. Power Sources, 154 (2006), 95-105.
    [79] A. Bazylak, D. Sinton, Z.S. Liu, N. Djilali, Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers, J. Power Sources, 163 (2007) 784-792.
    [80]B. Gao, T.S. Steenhuis, Y. Zevi and J.V. Parlange et al., Visualization of unstable water flow in a Fuel Cell Gas Diffusion Layer, J. Power Sources, 190(2009) 493-498.
    [81]C. Ziegler and D. Gerteisen, Validity of Two-phase Polymer Electrolyte Membrane Fuel Cell Models with respect to the Gas Diffusion Layer, J. Power Sources,188(2009)184-191.
    [82]B. Markicevic, A. Bazylak, N. Djilali, Determination of Transport Parameters for Multiphase Flow in Porous Gas Diffusion Electrodes Using a Capillary Network Model, J. Power Sources, 171 (2007) 706-717.
    [83]A. Bazylak, V. Berejnov, B. Markicevic, D. Sinton, N. Djilali, Numerical and Microfluidic Pore Networks: Towards Designs for Directed Water Transport in GDLs, Electrochimica Acta, 53 (2008) 7630-7637.
    [84] J.T. Gostick, M.A. Ioannidis, M.W. Fowler and M.D. Pritzker, Pore Network Modeling of Fibrous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells, J. Power Sources, 173(2007)277-290.
    [85]P.K. Sinha and C.Y. Wang, Pore-network Modeling of Liquid Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell, Electrochimica Acta, 52(2007) 7936-7945.
    [86]P.K. Sinha and C.Y. Wang, Liquid Water Transport in a Mixed-wet Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell, Chemical Engineering Science, 63(2008) 1081-1091.
    [87]K.J. Lee, J.H. Nam and C.J. Kim, Pore-network Analysis of Two-phase Water Transport in Gas Diffusion Layers of Polymer Electrolyte Membrane Fuel Cells, Electrochimica Acta, 54(2009) 1166-1176.
    [88]K.J. Lee, J.H. Nam and C.J. Kim, Steady Saturation Distribution in Hydrophobic Gas-diffusion Layers of Polymer Electrolyte Membrane Fuel Cells: A Pore-network Study, J. Power Sources, 195 (2010) 130-141.
    [89]V.P. Schulz, J. Becker, A. Wiegmann, P.P. Mukherjee and C.Y. Wang, Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach, J. Electrochem. Soc., 154 (2007), B419-B426.
    [90]H.J. Vogel, J. T鰈ke, V.P. Schulz, M. Krafczyk and K. Roth, Comparison of a Lattice-Boltzmann Model, a Full-morphology Model, and a Pore Network Model for Determining Capillary Pressure-saturation Relationships, Vadose Zone J., 4 (2005) 380-388.
    [91]K.S. Chen, M.A. Hickner and D.R. Noble, Simplified Models for Predicting the Onset of Liquid Water Droplet Instability at the Gas Diffusion Layer/Gas Flow Channel Interface,Int. J. Energy Research, 29(2005) 1113-1132.
    [92]E.C. Kumbur, K.V. Sharp and M.M. Mench, Liquid Droplet Behaviors and Instability in a Polymer Electrolyte Fuel Cell Flow Channel, J. Power Sources, 161 (2006) 333-345.
    [93] J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan and J. Itescu, Water Flow in the Gas Diffusion Layer of PEM Fuel Cells, J. Membrane Science, 261 (2005) 98-106.
    [94]E. Kimball, T. Whitaker, I.G. Kevrekidis and J.B. Benziger, Drops, Slugs and Flooding in PEM Fuel Cells, ECS Transactions, 11 (2007) 725-736.
    [95]E. Kimball, T. Whitaker, I.G. Kevrekidis and J.B. Benziger, Drops, Slugs and Flooding in Polymer Electrolyte Membrane Fuel Cells, AIChE Journal, 54(2008) 1313-1332.
    [96]I.S. Hussaini and C.Y. Wang, Visualization and Quantification of Cathode Channel Flooding in PEM Fuel Cells, J. Power Sources, 187(2009)444-451.
    [97]P. Quan, B. Zhou, A. Sobiesiak, Z.S Liu, Water behavior in Serpentine Micro-channel for Proton Exchange Membrane Fuel Cell Cathode, J. Power Sources, 152 (2005) 131-145.
    [98]K. Jiao, B. Zhou, P. Quan, Liquid Water Transport in Parallel Serpentine Channels with Manifolds on Cathode Side of a PEM Fuel Cell Stack, J. Power Sources, 154 (2006) 124-137.
    [99] A. Theodorakakos, T. Ous, M. Gavaises et al., Dynamics of Water Droplets Detached from Porous Surfaces of Relevance to PEM Fuel Cells, J. Colloid and Interface Science, 300(2006) 673-687.
    [100]E. Shirani and S. Masoomi, Deformation of a Droplet in a Channel Flow, J. Fuel Cell Science and Technology, 5(2008) 041008.
    [101] A. Golpaygan and N. Ashgriz, Multiphase Flow Model to Study Channel Flow Dynamics of PEM Fuel Cells: Deformation and Detachment of Water Droplets, Int. J. Computational Fluid Dynamics, 22(2008) 85-95.
    [102]X. Zhu, P.C. Sui and N. Djilali, Three-dimensional Numerical Simulations of Water Droplet Dynamics in aPEMFC Gas Channel, J. Power Sources, 181(2008) 101-115.
    [103]X. Zhu, P.C. Sui and N. Djilali, Numerical Simulation of Emergence of a Water Droplet From a Pore into a Microchannel Gas Stream, Microfluid & Nanofluid, 4(2008) 4543-555.
    [104]B.J. Palmer, D.R. Rector, Lattice-Boltzmann Algorithm for Simulating Thermal two-phase Flow, Phys. Rev. E, 61 (2000) 5295-5306.
    [105] X. He, N. Li, Lattice Boltzmann Simulation of Electrochemical Systems, Comput. Phys. Commun., 129 (2000) 158-166.
    [106]B. Li, D.Y. Kwok, A Lattice Boltzmann Model for Electrokinetic Microchannel Flow of Electrolyte Solution in the Presence of External Forces with the Poisson-Boltzmann Equation, Int. J. Heat and Mass Transfer, 46 (2003) 4235-4244.
    [107] P. Yuan and L. Schaefer, Equations of State in a Lattice Boltzmann Model, Physics of Fluids, 18(2006)042101.
    [108] C.U. Hatiboglu and T. Babadagli, Lattice Boltzmann Simulation of Solvent Diffusion into Oil-saturated Porous Media, Physical Review E, 76 (2007) 066309.
    [109]N.S. Martys and H.D. Chen, Simulation of Multicomponent Fluids in Complex Three-dimensional Geometries by the Lattice Boltzmann Method, Phys. Rev. E, 53 (1996) 743-750.
    [110]P. Raiskinmaki, A. Koponen, J. Merikoski and J. Timonen, Spreading Dynamics of Three-dimensional Droplets by the Lattice-Boltzmann Method, Computational Materials Science, 18 (2000)7-12.
    [111] C. Pan, L.S. Luo and C.T. Miller, An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation, Computers and Fluids, 35 (2006)898-909.
    [112] J. Hyv鋖uoma, P. Raiskinm鋕i, A. J鋝berg, A. Koponen, M. Kataja, and J. Timonen, Simulation of Liquid Penetration in Paper, Phys. Rev. E, 73 (2006) 036705.
    [113]L.P. Wang and B. Afsharpoya, Modeling Fluid Flow in Fuel Cells Using the Lattice Boltzmann Approach, Mathematics and Computers in Simulation, 72 (2006) 242-248.
    [114] J. Park, M. Matsubara, X. Li, Application of Lattice Boltzmann Method to a Micro-scale Flow Simulation in the Porous Electrode of a PEM Fuel Cell, J. Power Sources, 173 (2007)404-414.
    [115]A.S. Joshi, K.N. Grew, A.A. Peracchio and W.S. Chiu, Lattice Boltzmann Modeling of 2D Gas Transport in a Solid Oxide Fuel Cell Anode, J. Power Sources, 164 (2007) 631-638.
    [116] Y. Suzue, N. Shikazono and N. Kasagi, Micro Modeling of Solid Oxide Fuel Cell Anode Based on Stochastic Reconstruction, J. Power Sources, 184 (2008) 52-59.
    [117]K. Fei and C. W. Hong, All-angle Removal of CO2 Bubbles from the Anode Microchannels of a Micro Fuel Cell by Lattice-Boltzmann Simulation, Microfluid Nanofluid, 3 (2007) 77-88.
    [118]X.D. Niu, T. Munekata, S.A. Hyodo and K. Suga, An Investigation of Water-gas Transport Processes in the Gas-diffusion-layer of a PEM Fuel Cell by a Multiphase Multiple-relaxation-time Lattice Boltzmann Model, J. Power Sources, 172 (2007)542-552.
    [119] J. Park and X. Li, Multi-phase Micro-scale Flow Simulation in the Electrodes of a PEM Fuel Cell by Lattice Boltzmann Method, J. Power Sources, 178 (2008)248-257.
    [120] Y. Tabe, Y. Lee, T. Chikahisa and M. Kozakai, Numerical Simulation of Liquid Water and Gas Flow in a Channel and a Simplified Gas Diffusion Layer Model of Polymer Electrolyte Membrane Fuel Cells using the Lattice Boltzmann Method, Journal of Power Sources, 193 (2009) 24-31.
    [121]P.K. Sinha, P.P. Mukherjee and C.Y. Wang, Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells, J. Materials Chemistry, 17(2007)3089-3103.
    [122] X.Y. He and L.S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997) 6811-6817.
    [123] Y. H. Qian, D. d'Humi鑢es and P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters 17 (1992) 479-484.
    [124]C. Pan, L.S. Luo and C.T. Miller, An evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation, Computer and Fluids, 35 (2006) 898-909.
    [125]D. d'Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand and L.S. Luo, Multiple-relaxation-time Lattice Boltzmann Models in Three Dimensions, Philos. Trans. R. Soc. Lond. A, 360 (2002) 437-451.
    [126]Z. L. Guo and C. G. Zheng, Analysis of Lattice Boltzmann Equation for Microscale Gas Flows: Relaxation times, Boundary conditions and the Knudsen layer, Int. J. Comput. Fluid Dyna. 22 (2008) 465-473.
    [127] Q. Zhou and H.Y. He, On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model, Phys. Fluids, 9(1997) 1591-1598.
    [128] X. Shan and H. Chen, Lattice Boltzmann Model for simulating Flows with Multi Phases and Components, Physical Review E, 47(1993) 1815-1819.
    [129] X.Y. He and G.D. Doolen, Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows, J. Statistical Physics, 107(2002) 309-327.
    [130]X. Shan and H. Chen, Simulation of Nonideal Gases and Liquid-Gas Phase-transitions by the Lattice Boltzmann Equation, Physical Review E, 49(1994) 2941-2948.
    [131]M.R. Swift, W.R. Osborn and J.M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids, Physical Review Letter, 75(1995) 830-833.
    [132]M.R. Swift, E. Orlandini, W.R. Osborn and J.M. Yeomans, Lattice Boltzmann Simulations of Liquid-gas and Binary Fluid Systems, Physical Review E, 54(1996) 5041-5052.
    [133] A. J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid-gas system, Philos.Trans. Roy. Soc. London A, 360 (2002) 485-495.
    [134] G.G.M van der Sman, S. van der Graaf, Emulsion Droplet Deformation and Breakup with Lattice Boltzmann Model, Computer Physics Communications, 178(2008)492-504.
    [135] S. van der Graaf, T. Nisisako, C.G.P.H. Schroen et al, Lattice Boltzmann Simulation of Droplet Formation in a T-Sharp Microchannel, Langmuir, 22(2006) 4144-4152.
    [136]M. Yoshino, T. Inamuro, Lattice Boltzmann Simulations for Flow and Heat Mass Transfer Problems in Three-dimensional Porous Structure, Int. J. Numerical Meth. Fluids, 43(2003) 183-198.
    [137]K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann and J. Ohser, Design of Acoustic Trim Based on Geometric Modeling and Flow Simulation for Non-woven. Computational Materials Science, 38(2006) 56-66.
    [138] A.A. Zick and G.M. Homsy, Stokes Flow through Periodic Arrays of Spheres, J. Fluid Mech., 115(1982) 13-26.
    [139]B.T. Astrom, R.B. Pipes and S.G. Advani. On Flow through Aligned Fiber Beds and its Application to Composites Processing, J. Composite Mater, 26(1992) 1351-1373.
    [140] M.M. Tomadakis and T. J. Robertson, Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results, J. Composite Materials, 39(2005) 163-188.
    [141]D.L. Johnson, J. Koplik and L.M. Schwartz, New Pore-size Parameter Characterizing Transport in Porous Media, Physical Review Letter, 57(1986) 2564-2567.
    [142] P.M. Adler, J.F. Thovert, Real Porous Media: Local Geometry and Macroscopic Properties, Appl. Mech. Rev., 51(1998)537-585.
    [143] A. Koponen, M. Kataja and J. Timonen, Permeability and effective porosity of porous media, Physical Review E, 56(1997) 3319-3325.
    [144] A. Koponen, M. Kataja and J. Timonen, Tortuous flow in porous media, Physical Review E, 54(1996) 406-410.
    [145]B.M. Yu and J.H. Li, A Geometry Model for Tortuosity of Flow Path in Porous Media, Chin Phys Lett., 21(2004) 1569-1571.
    [146]P. Xu and B.M. Yu, Developing a New Form of Permeability and Kozeny-Carman Constant for Homogenous Porous Media by Means of Fractal Geometry, Advance in Water Resources, 31(2008) 74-81.
    [147]D. Quere Non-sticking Drops, Rep. Prog. Phys., 68(2005) 2495-2532.
    [148]R. Lenormand, Liquids in Porous Media, J. Phys.: Condens. Matter, 2 (1990) SA79-SA88.
    [149]R.P. Ewing and B. Berkowitz, Stochastic Pore-scale Growth Models of DNAPL Migration in Porous Media, Advances in Water Resources, 24 (2001) 309-323.
    [150]M. Ferer, G.S. Bromhal and D.H. Smith, Spatial Distribution of Avalanches in Invasion Percolation: their Role in Fingering, Physica A, 311 (2002) 5-22.
    [151]G.R. Jerauld and S.J. Salter, The Effect of Pore-Structure on Hysteresis in Relative Permeability and Capillary Pressure: Pore-Level Modeling, Transport in Porous Media, 5(1990)103-151.
    [152] S. Bryant and M. Blunt, Prediction of Relative Permeability in Simple Porous Media, Physical Review A, 46(1992)2004-2011.
    [153]B. Markicevic and N. Djilali, Two-scale Modeling in Porous Media: RelativePermeability Predictions, Physics of fluids, 18(2006)033101.
    [154]H. Li, C. Pan and C.T. Miller, Pore-scale Investigation of viscous coupling effects for to-phase flow in porous media, Physical Review E, 72(2005) 026705.
    [155] C. Pan, M. Hilpert and C. T. Miller, Lattice-Boltzmann Simulation of Two-phase Flow in Porous Media, Water Resources Research, 40(2004), W01501.
    [156] J.H. Xu, G.S. Luo, G.G. Chen, J.D. Wang, Experimental and Theoretical Approaches on Droplet Formation from a Micrometer Screen Hole, Journal of Membrane Science, 266 (2005) 121-131.
    [157] G.De Luca, E. Drioli, Force Balance Conditions for Droplet Formation in Cross-flow Membrane Emulsifications, Journal of Colloid and Interface Science, 294 (2006) 436-448
    [158] J. Yu, P. Cheng, Z. Ma, B. Yi, Fabrication of a Miniature Twin-fuel-cell on Silicon Wafer, Electrochimica Acta, 48(2003) 1537-1541.
    [159] S. Basu, K. Nandakumar, J.H. Masliyah, AModel for Detachment of a Partially Wetting Drop from a Solid Surface by Shear Flow, J. Colloid and Interface Science, 190(1997)253-257.
    [160]M.L. Kokko, D.H. Rothman, Scaling of Dynamic Contact Angle in a Lattice-Boltzmann Model, Physical Review Letters, 98(2007) 254503.
    [161] T.D. Blake and Y.D. Shikhmurzaev, Dynamic Wetting by Liquids of Different Viscosity, Journal of Colloid and Interface Science, 253(2002) 196-202.
    [162]R.G. Cox, The dynamics of the spreading of liquids on a solid surface, Journal of Fluid Mechanics, 168 (1986) 169-194.
    [163]P. Sheng, M.Y. Zhou, Immiscible-fluid displacement: Contact-line dynamics and the velocity dependent capillary pressure, Physical Review A, 45(1992) 5694-5708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700