氧化铝陶瓷的微波连接及其界面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合微波升温迅速、选择性加热、高效节能、瞬时无污染等特性,设计保温装置,选择金属Al粉、纳米Si粉、Al-Si合金粉及含Al-Si合金的微膨胀ZTM复合中间层为研究对象,在系统研究金属Al粉、纳米Si粉、Al-Si合金粉的吸波升温特性、润湿特性基础上,通过制定相应的微波连接制度(如时间、功率、压力及装置等),实现了以金属Al粉、纳米Si粉、Al-Si合金粉以及微膨胀ZTM复合中间层的95-Al_2O_3陶瓷的微波连接,并通过对界面结构、物相、元素线扫描分析得出结论如下:
     粒径小于100μm金属Al粉、纳米Si粉、Al-Si合金粉均能吸波并迅速升温至熔点以上,实现微波选择性加热。
     选用金属Al粉为中间层时,金属Al粉微波加热过程中迅速升温、氧化、熔融,熔体体积膨胀,破壳铺展。增大微波功率和外界压力促进连接。
     选用纳米Si粉为中间层时,1KW/20min→2KW/20min→3KW/20min→0KW可成功连接95-Al2O3陶瓷。微波连接过程伴随着中间层的快速升温、氧化、熔融、铺展、渗透,通过液相形成连接;微波热处理促进了界面两侧的元素交换,随中间层的氧化,与基体化合生成莫来石,界面消失,微观结构均匀一致;活性添加剂Mg含量在5wt%以下时有利于发生界面反应,促进界面生成。选用Al-Si合金粉为中间层时,微波连接制度为2KW/20min→自然冷却时可获得陶瓷/合金连接界面,中间层快速升温熔融,在界面上流动、渗透,在冷却中凝固形成陶瓷/合金连接界面;纯Al-Si合金粉由于氧化膨胀剧烈,升温过程难以控制,很难实现无缺陷的陶瓷/陶瓷连接界面。
     以20wt%ZrO2、23.7wt%Al-Si、33wt%Al_2O_3、22.3wt%SiO_2和1wt%Y_2O_3为原料的微膨胀ZTM复合中间层在1KW/20min→2KW/20min→3KW/20min→2KW/20min→1KW/20min→0KW微波作用下和5.71KPa外加压力作用下可实现95-Al_2O_3陶瓷的微波连接,连接界面消失,连接强度略低于基体,为324±36MPa;微膨胀ZTM复合中间层微波连接95-Al_2O_3陶瓷的连接机制综合了Al-Si合金粉体、SiO_2粉体微波连接的优点,同时避免了由于过分体积膨胀而引起的界面缺陷,是液相连接、固相反应连接、原位氧化连接、界面化合反应连接的共同作用结果。
95-Al_2O_3 ceramics were successfully joined by microwave selective heating in industrial microwave furnace. In this paper, temperature-rising characteristics of Al power, nano-Si powder, Al-Si alloy powder and 95-Al_2O_3 ceramic in a self-making microwave heating system were experimentally investigated, based on which the wetting properties and the interfacial bonding properties of Al powder, Al-Si alloy powder and nano-Si powder to 95-Al_2O_3 ceramics were studied. Combination the advantages of Al-Si alloy powder and nano-Si powder, ZTM ceramic composites with micro-expansive effects, consisted of ZrO_2, Al-Si alloy, Al_2O_3,SiO_2 and Y_2O_3 for raw materials, were successfully prepared. The ZTM ceramic composites contain the different absorbing microwave elements at different temperature. 95-Al_2O_3 ceramics were effectively joined by using Al power, nano-Si powder, Al-Si alloy powder and ZTM powder containing Al-Si alloy powder. The results indicate that:
     Al powders which are less than 100μm, nano-Si powders and Al-Si alloy powders, used as active component, absorb microwave strongly and rise in temperature over the fusion temperature. Microwave selective heating can be performed at targeted regions during joining 95-Al_2O_3 ceramics with the above intermediates.
     95-Al_2O_3 ceramics were effectively joined by using Al power. During microwave joining process, microwave raises the Al powder to fusion temperature, at which Al-Si alloy powder melt immediately to form molten metal. The molten metal spread over the surface of 95-Al_2O_3 ceramics after breaking the oxide shell into fragments. Increasing the microwave power and the impressed pressure promote the joint’s forming.
     At the following microwave heating process: 1KW/20min→2KW/20min→3KW/20min→0KW, 95-Al_2O_3 ceramics were effectively joined by using nano-Si powder as interlayer. During microwave joining process, nano-Si powder absorb microwave and be heated to high temperature combining with oxidation, fusion, spreading and penetrating. The joints are formed by liquid phase. Microwave heat-treatment promotes the elemental diffusion. Al_2O_3 ceramic joints were obtained with unobvious bond line, homogeneous microstructure finally following the oxidazing of the interlayer. When the content of Mg is less than 5wt%, Mg will facilitate the interfacial reaction and promote the forming of joint.
     95-Al_2O_3 ceramics were effectively joined by using the Al-Si alloy powder at 2KW/20min→0KW. During microwave joining process, micrwowav raises the Al-Si alloy to fusion temperature, at which Al-Si alloy powder melt immediately to form molten metal. The molten metal fills the interfacial gaps and the in-situ oxidation of Al-Si on the interface facilitates joint formation. Because of the volumetric expansion caused by the oxidation reactions and combination reaction at the interface are too strongly to control the heating process, the flawless joint is too difficult to obtain.
     At the following microwave heating process: 1KW/20min→2KW/20min→3KW/20min→2KW/20min→1KW/20min→0KW, 95-Al_2O_3 ceramics were effectively joined by using the ZTM ceramic composites with 20wt%ZrO_2, 23.7wt%Al-Si, 33wt%Al_2O_3, 22.3wt%SiO_2 and 1wt%Y_2O_3 as the interlayer. Al_2O_3 ceramic joints were obtained with unobvious bond line, homogeneous microstructure and high micro-hardness at the interface. The bond strength, which is 324±36MPa, is near to the matrix strength. The joining mechanism of joint formation are associated with the liquid joining, in-situ oxidation reaction joining, solid reaction joining, interfacial combination reaction joining and rapid inter diffusion across the interface. At the same time, pressure promotes the formation of the joint.
引文
[1]中国机械工程学会,中国材料研究学会等.中国材料工程大典(第23卷,材料焊接工程),北京:化学工业出版社,2006, 326-334
    [2]任家烈,吴爱萍.先进材料的连接,北京:机械工业出版社,2000, 120-173
    [3]朱志斌,郭志军,刘英等,氧化铝陶瓷的发展与应用,陶瓷,2003, 1:5-7
    [4]唐绍裘,高铝瓷的烧结机理与低温烧结技术的研究进展,火花塞与特种陶瓷,1997, 1: 13-16
    [5]陆章明,95瓷的低温烧成及其性能提高的途径,火花塞与特种陶瓷,1995, 3: 18-20
    [6] Loehman R E, Tomsia A P, Joining of ceramics, American Ceramic Society Bulletin, 1988, 67(2): 375-380
    [7] Pask J A, From technology to the science of glass/metal and ceramic/metal sealing, American Ceramic Society Bulletin, 1987;66(11): 1587-1592
    [8]陈康华,包崇玺,金属/陶瓷润湿性(下),材料科学与工程,1997;15(4):27-34
    [9] Naidich J V,and Chuvashov Jun,Wettability and contact interaction of gallium-containing melts with non-metallic solids,Journal of Materials Science,1983,18: 2071-2080
    [10] P. Kritsalis, et al. Contribution to the study of reactive wetting in the CuTi/Al_2O_3 system, Journal of Materials Science, 1991, 26(12): 3400-3408
    [11] Kim D H, Hwang S H, Chun S S, The wetting, reaction and bonding of silicon nitride by Cu-Ti alloys, Journal of Materials Science, 1991, 26: 3223-3234
    [12]竹田博光,森田幹朗,X线上为复合材料热应力测定,材料,1975,24:35-38
    [13] Crispin R M, Nicholas M G, Diffusion bonding stainless steel to alumina using aluminum interlayer, Journal of Materials Science,1982, 17: 3347-3360
    [14] Mehan R L, Mckee D W, Interaction of metals and alloys with silicon-based ceramics,Journal of Materials Science,1976,11: 1009-1018
    [15] Suganuma K, Okamoto T, Koizumi M, et al., Effect of thickness on direct bonding of silicon nitride to steel, Journal of the American Ceramic Society, 1985, 68(12): 334-335
    [16] Cao H C, Thouless M D, Evans A G, Residual stresses and cracking in brittlesolids bonded with a thin ductile layer, Acta Metall, 1988, 36(8): 2037-2046
    [17] Suganuma K, Okamoto T, Koizumi M, et al., Solid-state bonding of partially stabilized zirconia to steel with titanium interlayer, Journal of the American Ceramic Society, 1984, 67(12): 256-257
    [18] Zheng J, Unal O, Akinc M, Green state joining of SiC using polycarbosilane, Journal of the American Ceramic Society, 2000, 83(7): 1687-1691
    [19] Wang L, Aldinger F, Joining of advavced ceramics in green state, Materials Letters, 2002, 54: 93-97
    [20] Besshi T, Sato T, Joining of ceramic green bodies and sintering characteristics, Journal of Materials Processing Technology, 2003, 132: 269-273.
    [21] Wei Y Q, Liu J C, Peng Z Z, et al. Green state joining of ZrO_2(8YSZ)-Al_2O_3 ceramics using slurry containing PLS nanocomposites, Journal of Rare Earths, 2003, 21: 102-104
    [22]赵永清,利用化学镀实现Al_2O_3陶瓷与金属的连接,焊接技术,1999, (2): 16-17
    [23]顾小龙,王大勇,王颖,Al_2O_3陶瓷/AgCuTi/可伐合金钎焊接头力学性能,材料科学与艺, 2007, 15 (3) : 366-369
    [24]吴铭方,反应层厚度对Al_2O_3 /AgCuTi/ Ti-6Al-4V接头强度的影响,稀有金属材料与工程, 2000,19 (26) : 419-422
    [25]王洪潇,氧化铝陶瓷与金属活性封接技术研究:[硕士学位论文].大连;大连交通大学,2006
    [26]刘军红,复相Al_2O_3基陶瓷/钢大气中直接钎焊连接界面的微观组织结构,焊接学报, 2003,24 (6) : 26-28
    [27]张玮,镍离子注入Al_2O_3/1Cr18Ni9Ti的钎焊界面成分分析,包头钢铁学院学报, 2000,19 (3) : 219-221
    [28]王大勇,冯吉才,刘会杰, Al_2O_3 /Cu /A l扩散连接工艺参数的优化,材料科学与工艺, 2003,11 (1) : 73-76
    [29]陈铮,赵其章,方芳等,陶瓷/陶瓷(金属)部分瞬间液相连接,硅酸盐学报, 1999,27 (2) : 186-188
    [30]余圣甫, Al_2O_3陶瓷/不锈钢自蔓延高温原位合成连接,焊接学报, 2004,25 (2) 119-122
    [31] Min-Cheol Chu, Seong-Jai Cho, Kyung-Jin Yoon, et al. Crack repairing in alumina by penetrating glass, Journal of the American Ceramic Society, 2005, 88(2): 491-493
    [32]冯铁程,刘家臣,李顺等,陶瓷裂纹的修复,稀有金属材料与工程,2005,34:421-423
    [33]张太多,粘接技术在炮射导弹上的应用,粘接,1999,(1):30-33
    [34]崔永丽,江利,周华茂.陶瓷二次金属化镀镍工艺,电镀与涂饰,2002,21(4):23-25
    [35] Riccardi B,Nannetti C A,Wohersdorf J,et al. High temperature brazing for SiC and SiC/SiC ceramic matrix composites, International Journal of Materials& Product Technology, 2004, 20(5): 440-452
    [36]冯吉才,靖向萌,张丽霞等,TiC金属陶瓷/钢钎焊接头的界面结构和连接强度,焊接学报,2006,27(1):5-7
    [37]吴斌,邹家生,陈铮等,用Cu-Ni-Ti钎料连接SiN陶瓷的试验研究,华东船舶工业学院学报(自然科学版),2001, 15(1):83-85
    [38]邹家生,翟建广,吴斌等, Cu-Ni-Ti钎料连接SiN /In718接头强度及断裂分析焊接技术,2003,32(3):8-10
    [39] Blugan G,Janczak-Rusch J,Kuebler J.Properties and fractography of Si3N4/TiN ceramic joined to steel with active single layer and double layer braze filler alloys, Acta Materialia, 2004, 52(15): 4579-4588
    [40]刘军红,孙康宁,谭训彦,等.双层陶瓷复合材料与钢钎焊接头界面的微观组织结构,焊接学报, 2002, 23(4):41-43
    [41]李先芬,徐道荣,刘宁, Ti(C, N)基金属陶瓷与45号钢火焰钎焊试验研究,硬质合金,2003, 20(2): 95-96
    [42] Aravindan S, Krishnamurthy R, Joining of ceramic composites by microwave heating, Materials Letters 1999, 38: 245-249
    [43] Binner J G P , Fernie J A ,Whitaker P A et al. The effect of composition on the microwave bonding of alumina ceramics, Journal of Materials Science, 1998, 33 (12) : 3017-3029
    [44] Ammar Ahmed, Elias Siores, Microwave joining of 48% alumina-32% zirconia -20% silica ceramics, Journal of materials processing technology, 2001, 118: 88-95
    [45] Foley M R et al., Analytical and experimental evaluation of joining silicon carbide to silicon nitride: Final Report, Oak Ridge National Laboratory, Oak Ridge: TN, 1992
    [46] Goretta K C, Gutierrez-Mora F , Joining alumina/zirconia ceramics, Materials Science and Engineering A , 2003, 341:158-162
    [47] Wang L, Aldinger F. Joining of advanced ceramics in green state. Materials Letters, 2002, 54: 93~97
    [48] Jing Zheng, Mufit Akinc, Green state joining of silicon carbide using polycarbosilane, Journal of the American Ceramic Society, 2000,83(7)E19-E19
    [49]刘家臣,高海,魏艳秋等,CePO_4基与ZrO_2基陶瓷的坯体连接及其界面特征,天津大学报,2004,4:33-39
    [50]高海,刘家臣,刘志锋等,氧化锆基陶瓷的坯体连接及其界面研究,硅酸盐学报,2003,12: 56-60
    [51]刘家臣,王丽娟,杜海燕,先进陶瓷的无压坯体连接与组装成型,稀有金属材料与工程, 2003, 32(1):184-187
    [52] Gao H, Liu J C, Du H Y,Effect of adhesive composites on bond strength of green joined CePO_4/ZrO_2 ceramics,Scripta Materialia,2003, (49):515–520
    [53] Tian Boran,Liu Jiachen,Zhao Yuhong,et al., Effects of adhesive composition on green joining of CePO_4-ZrO_2 ceramics, Journal Wuhan University of Technology, Materials Science Edition, 2005, 20: 17-20
    [54] Tian Boran, Liu Jiachen, Liu Libin, Direct joining of Al_2O_3 and ZrO_2 in plastic green state. Journal of Rare Earths, 2005, 23 (3):471-473
    [55] Wei Yanqiu, Liu Jiachen, Zhang Xinxin, et al., Effects of PLS on green state joining ZrO_2/Al_2O_3 ceramics, Key Engineering Materials, 2005, 280-283(2): 1061-1064
    [56] Tian Boran, Liu Jiachen, Li Shun, et al., The gradient joining of Al_2O_3 and ZrO_2 ceramic in green state, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2005, 34(1): 430-433.
    [57] Zhang Jundi, Liu Jiachen, Ye Hao, et al., Green state joining ZrO_2/Al_2O_3 ceramics by metal interlayer. Journal of Rare Earths, 2005, 23(3): 194-196
    [58] Santella M L, A review of techniques for joining advanced ceramics, American Ceramic Society Bulletin, 1992, 71(6): 947-954
    [59] Schwartz M M, Ceramic Joining, ASM International, Materials Park, OH, 1990
    [60] Suganuma K, Joining of Ceramics, Nicholas M G (Ed.) London: Chapman and Hall, 1990: 173-192
    [61]臧建兵,赵玉成,王明智等,超硬材料表面镀覆技术及应用,金刚石与磨料磨具工程, 2000, 3(117): 8-12
    [62]罗瑞盈,金志浩,添加剂对快速CVD抗氧化C/C复合材料力学性能的影响,无机材料学报, 1997, 12(4): 627-631
    [63]冼爱平,第三组元在金属/陶瓷界面化学润湿中的作用,中国科学,1994,24(3): 323-329
    [64]庄艳歆,冼爱平,王义康,粗真空条件下锡基钎料与SiAlON陶瓷的润湿和连接,金属学报, 1996, 32(7): 735-741
    [65] Zhu Ding-yi, Ma Ming-liang, Jin Zhi-hao, The effect of molybdenum net interlayer on thermal shock resistance of A1_2O_3/Nb brazed joint. Journal of Materials Processing Technology, 1999, 96: 19-21
    [66]顾小龙,王大勇,王颖,Al_2O_3陶瓷/AgCuTi/可伐合金钎焊接头力学性能,材料科学与工艺,2007,15(3):366-369
    [67]吴铭方,反应厚度对Al_2O_3/AgCuTi/Ti-6Al-4V接头强度的影响,稀有金属材料与工程,2000,19(26):419-422
    [68]王洪潇,氧化铝陶瓷与金属活性封接技术研究,大连交通大学硕士论文,2006:1-50
    [69]刘军红,复相Al_2O_3基陶瓷/钢大气中直接钎焊连接界面的微观组织结构,焊接学报,2003,24(6):26-28
    [70]刘会杰,冯吉才,钱乙余, SiC/TiAl扩散连接接头的界面结构和连接强度,焊接学报,1999, 20(3): 170-174
    [71]刘会杰,冯吉才,钱乙余, SiC陶瓷与TiAl基合金扩散连接接头的强度及断裂路径,焊接,2000, 3:13-17
    [72] Gutierrez-Mora F, Koretta K C, Majumdar S, et al., Influence of internal stresses on superplastic joining of zirconia-tougheded alumina, Acta Materialia, 2002, 50: 3475-3486
    [73] Chen N, Gutierrez-Mora F, Kioritala R E, et al., Joining particulate and whisker ceramic composites by plastic flow, Composites Structure, 2002, 57:135-139
    [74] Koretta K C, Gutierrez-Mora F, Picciolo J J, et al., Joining alumina/zirconia ceramics, Materials Science and Engineering A, 2003(341):158-162
    [75] Gutierrez-Mora F, Routbort J L, Electrical characterization of a joined electroeramic , La0.85Sr0.05MnO3, Journal of the American Ceramic Society, 2002, 85: 2370-2372
    [76] Nicholas M G, Mortimer D A, Ceramic/metal joining for structural applications, Materials Science and Technology 1985, 1(9): 657-665
    [77] Loehman R E, Tomsia A P, Joining of ceramics, American Ceramic Society Bulletin, 1988, 67(2): 375-380
    [78] Suganuma K, Miyamoto Y, Koizumi M, Joining of ceramics and metals, Annual Review of Materials Science, 1988, 18: 47-73
    [79] Elssner G, Petzow G, Metal/ceramic joining, ISIJ International, 1990, 30(12);1011-1032
    [80] Brandon D, Kaplan W D, Joining processes: an introduction, John Wiley and Sons, New York, 1997
    [81] Hill A, Wallach E R, Modelling solid-state diffusion bonding, Acta Materialia, 1989, 37(9): 2425-2437
    [82] Klomp Bonding of metals to ceramics and glasses, American Ceramic Society Bulletin, 1972, 51(9): 683-688
    [83] Klomp J T, Van De Ven A J C, Parameters in solid-state bonding of metals to oxide materials and the adherence of bonds, Journal of Material Science, 1980, 15(10): 2483-2488
    [84] Dalgleish B J, Lu M C, Evans A G, The strength of ceramics bonded with metals, Acta Materialia, 1988, 36(8): 2029-2035
    [85] Suganuma K, New process for brazing ceramics utilizing squeeze casting, Journal of Material Science, 1991, 26(22): 6144-6150
    [86]邹贵生,吴爱萍,任家烈等, Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷与接头质量控制,航空材料学报,2001, 21(1): 18-22
    [87]陈铮,顾晓波,李国安等,用中间层为非活性金属FeNi/Cu的Si3N4陶瓷与Ni的扩散连接,焊接学报,2001, 22(3): 25-28
    [88] Ikawa H, NakaoY, Transient liquid phase (T.L.P.) diffusion bonding of nickel-base heat resisting alloys, Transactions of the Japan Welding Society, 1977, 8(1): 3-8
    [89] Ikawa H, Nakao Y, Isai T, Theoretical considerations on the metallurgical process in T.L.P. bonding of nickel-base superalloys, Transactions of the Japan Welding Society, 1979, 10(1): 24-29
    [90] Nakao Y, Nishimoto K, Shinozaki K, et al., Theoretical research on transient liquid insert metal diffusion bonding of nickel base alloys, Transactions of the Japan Welding Society, 1989, 20(1): 60-65,
    [91] MacDonald W D, Eagar T W, Transient liquid phase bonding, Annual Review of Materials Science, 1992, 22: 23-46
    [92] Zhou Y, Gale W F, North T H, Modelling of transient liquid phase bonding, International Materials Reviews, 1995, 40(5): 181-196
    [93] Shalz M L, Dalgleish B J, Tomsia A P, ET AL., Ceramic joining III. Bonding of alumina via Cu/Nb/Cu interlayers, Journal of Material Science, 1994, 29(14):3678-3690
    [94]王娟,李亚江,马海军等, Ti/Cu/Ti复合中间层扩散连接TiC-Al_2O_3/W18Cv4V接头组织分析,焊接学报,2006, 27(7): 9-12
    [95]陈铮,楼宏青,李志章, Si_3N_4/Ti/Cu/Ni二次部分瞬间液相连接,材料研究学报,1999,13(3): 313-3l6
    [96] Ceccone G, Nicholas M G, Peteves S D, et al., An evaluation of the partial transient liquid phase bonding of Si_3N_4 using Au coated Ni–22Cr foils, Acta Materialia, 1996, 44(2): 657-667
    [97] Merzhanov A G, Inter symposium on combus and plasma syn of high-temp, Materials of San Francisco, CA, 988-993
    [98] Horlock A J, McCartney D G, Shipway P H, et al. Thermally sprayed Ni(Cr)–TiB_2 coatings using powder produced by Self-propagating High Temperature Synthesis: microstructure and abrasive wear behavior, Materials Science and Engineering, 2002, A336(1-2): 88-98
    [99] Messler R W J R, Orling T T, Fundamentals of the SHS joining process, Proceedings of the 1993 Mrssymposiumon joining and adhesion of advanced inorganic materials, 1993, 314(2):177-182
    [100] Messler R W J R, Orling T T, Welding with Self-propagating High-temperature Synthesis, Welding Journal, 1995, 74(10):37-41.
    [101] Shcherbakov V A, Shteiberg A S, SHS welding of refractory material, International Journal of SHS, 1993, (4): 357-369
    [102] Pascal C, Marin-Ayral R M, Tedenac J C, Joining of nickel monoaluminide to a auperalloy substrate by High Pressure Self-propagating High-temperature Synthesis, Journal of Alloys and Compounds, 2002, 337(5): 221-225
    [103] Pascal C, Marin-Ayral R M, Simultaneous synthesis and Joining of a NiCrAlY Layer to a superalloy substrate by Self-propagating High-temperature Synthesis, Journal of Materials Synthesis and Processing, 2001, 9(6): 375-381
    [104] Pascal C, Marin-Ayral R M, Tedenac J C, et al. Combustion synthesis: a new route for repair of gas turbine components/principles and metallurgical structure in the NiAl/RBD61/superalloy junction. Materials Science and Engineering, 2003, A341(1-2): 144-151
    [105] Kwon Y J, Kobashi M, Kanetake N, Fabrication of TiB_2-Cu composites and simulaneous bonding with aluminum alloy using combustion reaction.日本金属学会誌, 2006, 70(1): 34-42
    [106] Tetsuro Kimata, Keisuke Uenishi, Akira Ikenaga, et al, Dissimilar joining ofnickel aluminide with spheroidal graphite cast iron and Cu alloy by hot pressing. Science and Technology of Advanced Materials, 2004, 5(1-2): 251-254
    [107]李树杰,刘深,段辉平等, SiC陶瓷/SiC陶瓷及SiC陶瓷/Ni基高温合金SHS焊接中的界面反应及微观结构研究,硅酸盐学报, 1999, 127(6): 757-762
    [108] Li S J, Zhou Y, Duan H P, Joining of SiC ceramic to Ni-based superalloy with functionally gradient material fillers and a tungsten intermediate layer, Journal of Materials Science, 2003, 38(19): 4065-4070
    [109] Lessing P A, Erickson A W, Kunerth D C, Electro-phoretic deposition[EPD] applied to reaction joining of silicon carbide and silicon nitride ceramics, Journal of Materials Science, 2000, 35(12): 2913-2925
    [110] Cam G, KocakM,Progress in joining of advanced materials, . International Materials Reviews, 1998, 43 (1) : 1-44
    [111]广赖明夫,金属基复合材料の结合,溶接会志, 1996, 65 (4): 1692-1698
    [112] Agrawal K, Microwave processing of ceramics, Current Opinion in Solid State & Materials Science, 1998, 3: 480-485
    [113] Tinga W R, Voss W A G. Microwave power engineering, New York: Academic Press, 1968: 73-78.
    [114] Sato T, Takahashi N, Shimakage K. Microwave joining of ceramics, silicon nitride and silicon carbide, Journal of the Ceramic Society of Japan, 1993, 101(4): 411-416
    [115]马金龙,童学锋,彭虎.烧结技术的革命,产业论坛,2001,6: 1-3
    [116] Zhou J, Zhang Q X, Mei B C, et al., Microwave joining of alumina ceramic and hydroxylapatite bioceramic, Journal Wuhan University of Technology-Materials Science Edition, 1999, 14(2): 46-49
    [117] Cheng J P, Agrawal D, Zhang Y H, et al. Fabricating transparent ceramics by microwave sintering, American Ceramic Society Bulletin, 2000, 79(9): 71-74
    [118] Fang Y, Roy R, Agrawal D K, et al., Transparent mullite ceramics from diphasic aerogels by microwave and conventional processing. Materials Letters, 1996, 28(1-3): 11-15
    [119]朱文玄,吴一平,徐正达等,微波烧结技术及其进展,材料科学与工程,1998, 16(2):61-64
    [120] Wroe R, Rowley A T, Evidence for a non-thermal microwave effect in the sintering of partically stabilized zirconia, Journal of Materials Science, 1996, 3l: 2019-2026
    [121] Janney M A,Kimrey H D,AHen W R,et a1., Enhanced diffusion in sapphire during microwave heating, Joumal of Materials Science, 1997, 32(5): 1347-1355
    [122] Nightingale S A, Worner H K, Dunne D P, Micro-structural development during the microwave sintering of yttria-zirconia ceramics, Journal of the American Ceramic Society, 1997, 80: 394-400
    [123] Zhi peng Xie , Jinlong Yang, Yong Huang, Densification and grain growth of alumina by microwave processing, Materials letters, 1998, 37: 215-220
    [124] Nishitani T, Methed for sintering refractories and an apparatus therefor, US, Patent,4147911,1979
    [125]周健,程吉平,袁润章等,微波烧结细晶硬质合金的工艺与性能,中国有色金属学报,1999, 3(9): 465-468
    [126] Lin N,Lcc W C,Liu K S,et al., On the microwave sintering technology for improving the properties of semiconducting eledtronic ceramic, Journal of the European Ceramic Society, 2001, 21(10-11): 2085-2088
    [127] Roy R,Agrawal D,Cheng J P,et al. Full sintering of powdered-metal bodies in a microwave field, Nature, 1999, 399(17): 668-670
    [128] Gedevanishvili S,Agrawal D,Roy R. Microwave combustion synthesis and sintering of intermetallics and alloy, Journal of Materials Science Letters, 1999, 18: 665-668
    [129]周健,程吉平,傅文斌等,2450MHz/5KW改进的单模腔微波烧结系统研制,武汉工业大学学报,1999,21(4): 4-6
    [130] Sutton W H,Microwave processing of ceramic materials,American Ceramic Society Bulletin, 1989, 68(2): 376-385
    [131] Beale Guy O, Arteaga Francisco J, Murray Black W,Design and evaluation of a controller for the process of microwave joining of ceramics,IEEE Trans on Industrial Electronics, 1992, 39(4): 301-312
    [132] Kenkre V M, Skala L, Weiser M M, Theory of microwave interactions in ceramic materials: the phenomenon of thermal runaway,Journal of Materials Science, 1991, 26: 2483-2489
    [133] Meek T T, Blake R D, Ceramic-ceramic seals by microwave heating, Journal of Materials Science Letters, 1986, (5) : 270-274
    [134] Fukushima H, Yamanaka T, Matsui M. Microwave heating of ceramics and its application to joining, Journal of Materials Research, 1990, 5(2): 397-405
    [135] Assafi S A, Ahmad I, Fathi Z, et al., Microwave joining of ceramics,Microwaves: Theory and Applications in Materials Processing, Ceramic Transaction 21, Westerville, OH, 1991, 515-520
    [136] Yu X D, Varadan V V,Varadan V K, Applications of microwave processing to simultaneous sintering and joining of ceramics. Microwaves: Theory and Applications in Materials Processing, CeramicTrans21, Westerville O H,1991,497-501
    [137]章桥新,张东明,周键等,氧化铝陶瓷材料的微波焊接,中国有色金属学报,1998,8(增刊):188-191
    [138]蔡杰,田永赉,施剑林等,氧化铝陶瓷的微波焊接研究,微波学报,1992,2:50-53
    [139] Sato T, Takahashi N, Shimakage K, Microwave joining of magnesia, Journal of the Ceramic Society of Japan, 1996, 104(2): 155-157
    [140] Binner J G P, Fernie J A, Whitaker P A, An investigation into microwave bonding mechanisms via a study of silicon carbide and zirconia, Journal of material science, 1998, 33(12): 3009-3015
    [141] Aravindan S, Krishnamurthy R, Joining of ceramic composites by microwave heating, Materials Letters, 1999, 38(4): 245-249
    [142] Ahmed A, Siores E, Microwave joining of 48%alumina-32% zireonia-20%silica ceram ics, Journal of Materials Processing Technology, 2001, 118(1-3): 88-95
    [143]白向钰,鹿安理,吴苏,异种陶瓷材料微波连接的研究,中国机械工程,1999,10(4):463-465
    [144] Sato T, Takahashi N, Shimakage K. Microwave joining of alumina to magnesia, Joumal of the Ceramic Society of Japan, 1996, 104(10): 905-907
    [145] Zhou J, Zhang Q X, Mei B C, et a1. Microwave joining of alumina ceramic and hydroxylapatite bioceramic, Journal Wuhan University of Technology-Materials Science Edition, 1999, 14(2): 46-49
    [146] Lee J, Case E D. Joining of non-oxide ceramics using conventional and microwave heating, Ceramic Engineering and Science Proceedings, 2000, 21: 589-597.
    [147] Silberglitt R, Palaith D, Black W M,et a1. 1nvestigation of interlayer materials for the microwave joining of SiC, Microwaves: Theory and Applications in Materials Processing,Ceramic Trans, Westerville.OH, 1991, 21: 487-496
    [148] Arunajatesan S, Carim A H, Yin T Y,et a1. TEM investigation of microwave joined Si-SiC/Al/Si-SiC andα-SiC/AI/α-SiC,Materials research society symposiumproceedings, 1993, (314): 131-136
    [149] Bruce R L,Guharay S K,Mako F,et a1.Polymer-derived SiCf/SiCm composite fabrication and microwave joining for fusion energy applications, Proceeding s-Symposium on Fusion Engineering , 2002, 426-429
    [150]吴甦,鹿安理,张文雪,用不同种间层微波连接氮化硅陶瓷,中国机械工程,1994,5(2): 8-10
    [151]叶大伦,实用无机物热力学数据手册,北京冶金工业出版社,1981: 265-268
    [152]易建宏,罗述东,唐新文等,金属基粉末冶金零件的微波烧结机理初探,粉末冶金工业,2003, 13(2): 22-25
    [153] Ksiazek M, Sobczak N, Mikulowski B, et al., Wetting and bonding strength in Al/Al_2O_3 system, Materials Science and Engineering A324, 2002, 162-167
    [154]邹贵生,任家烈,吴爱萍等,Al及其合金作钎料或中间层连接陶瓷-金属,材料导报,1999,13(2):16-19
    [155] Laurent V, Chatain D, Chatillon C. Wettability of monocrystalline alumina by aluminum between its melting point, Acta Metall, 1988, 36(7): 1797-1803
    [156] Eustathopoulos N, Joud J C, Desre P, Hicter J M. The wetting of carbon by aluminium and aluminium alloys, Journal of materials Science, 1974, 9(8): 1233-1242
    [157] Porter R F, Schissel P, Inghram M G. A mass spectrometric study of gaseous species in the Al-Al_2O_3 system, Journal of Chemical Physics, 1955, 23: 339-342
    [158] Jacobson D M, Lightweight electronic packaging technology based on spray formed Si-Al, Powder Metallurgy, 2000, 43(3): 200-202
    [159] Leatham, Silicon alloys for electronic packaging: US Patent 6,312,535, 2001-11-6
    [160] Gupta M, Lavernia E J. Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic Al-Si alloy, Journal Material Processing and Technology, 1995, 54: 261-270
    [161]许锋,张建安,用熔剂法改善铸造铝硅合金组织和性能,上海工程技术大学学报, 1996,10(3):37-40
    [162] Hatch J E, Aluminum Properties and Physical Metallurgy, American Society for metal, 1984, 175-177
    [163]童巧英,成来飞,张立同,C/SiC复合材料与Nb的液相渗透连接,航空材料学报,2004,24(1):53-56
    [164] Lin Guobiao, Huang Jihua, Zhang Hong, joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag-Cu-Ti short carbon fiber, Journal of MaterialsProcessing Technology, 2007, 189(1-3): 256-261
    [165] Riccardi B, Nan netti C A, Petrisor T, et a1., Low activation brazing materials an d techniques for SiCf/SiC composites, Journal of Nuclear Materials,2002,307-311:1 237- 1 241
    [166] Riccardi B,Nannetti C A,Petrisor T,et al., Issues of low activation brazing of SiCf/SiC compo sites by using alloys without free silicon, Journal of Nuclear Materials,2004, 329-333:562-566
    [167]童巧英,成来飞,张立同,三维C/SiC复合材料在线液相渗透连接,稀有金属材料与工程,2004,31(1):101-103
    [168] Claussen N, Le T,Wu S, Low shrinkage reaction bonded alumina,Journal of the European Ceramic Society, 1989, 5: 29-35
    [169] Claussen N, Travitzky N A,Wu S,Tailoring of Reaction-Bonded Al_2O_3 (RBAO) Ceramics,Ceramic Engineering and Science Proceedings,1990,11: 806-820
    [170] Claussen N, Janssen R, Holz D, Reaction bonding of aluminum oxide(RBAO)-science and technology, Journal of ceramic society of japan, 1995, 103(8): 749-758
    [171]梁波,靳喜海,陈玉如,RBAO法制备ZTM复相陶瓷,硅酸盐通报,1998, 3:46-49
    [172]陈磊,陈钦生,陈达谦,反应结合氧化铝陶瓷制备新工艺,山东陶瓷,2002, 25(3):7-14
    [173] Scheppokat S,Claussen N, Hannink R, RBAO composites cotaining TiN and TiN/TiC, Journal of the European Ceramic Society,1996, 16(9): 919-927
    [174] Holz D, Wu S, Scheppokat S,et al., Effect of processing parameters on phase and microstructure evolution in RBAO ceramics, Journal of the American Ceramic Society, 1994, 77(10): 2509-2517

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700