颗粒增强Sn3.8Ag0.7Cu复合无铅焊料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择Sn3.8Ag0.7Cu(SAC)无铅焊料,首先研究了在Cu和Ni上经过多次焊接(1-10次)和150oC时效(50-1000小时)后的界面反应和剪切强度,并与Sn37Pb(SP)进行了对比;然后通过机械混合方法成功制备了SiC纳米颗粒复合焊料SAC-xSiC和Ni颗粒复合焊料SAC-xNi,重点研究了SAC-xNi/Cu(Ni)焊点在焊接和时效过程中的界面反应和剪切强度。结果表明:
     焊接过程中,SAC(SP)/Cu界面扇贝状的Cu6Sn5 IMC的生长受晶界扩散控制,而SAC(SP)/Ni界面层状IMC的生长受体扩散控制,Ni-Sn IMC晶粒和反应的速度都小于Cu-Sn。时效过程中,Cu和Ni上的IMC生长都由体扩散控制,时效50小时后,SAC(SP)/Cu界面IMC为双层结构(Cu_6Sn_5和Cu_3Sn);而SAC(SP)/Ni界面保持单层结构。焊接次数和时效对焊点剪切强度影响较小,富Pb相合并生长降低了SP焊点的强度,SAC的焊点强度一直高于SP。
     首次选用SiC纳米颗粒与焊料成功复合,复合焊料SAC-xSiC的熔点有所下降,焊料内部IMC颗粒和β-Sn相的亚晶粒显著细化,复合焊料硬度值比SAC增加30-44%。由于表面吸附效应,SiC纳米颗粒抑制了焊料中Ag3Sn的生长,强化了合金的性能,位错绕过理论的预测值与实验测得的强化结果紊合良好。
     SAC-xNi的工艺性能与SAC相当,Ni颗粒起形核剂的作用,复合焊料凝固过程中发生了非均匀形核,减小了过冷度,得到了颗粒Ni与焊料合金良好润湿性的判据。焊接过程中,SAC-xNi/Cu焊点界面(CuNi)6Sn5 IMC由疏松和致密的两层构成,与SAC相比,复合焊料SAC-xNi与Cu的反应速度大大增加,界面IMC晶粒显著细化,IMC的生长由反应扩散和体扩散双重控制,本文利用热-动力学理论讨论了颗粒Ni对反应速度和晶粒尺寸的影响。焊料中自由活动的Cu原子数量对SAC-xNi/Ni界面IMC的形貌和结构起决定性作用。由于Ni颗粒的添加,SAC-xNi/Cu(Ni)剪切强度有所增加,焊点断裂呈韧性特征。
     时效50小时后,SAC-xNi/Cu焊点界面变为双层结构即(CuNi)6Sn5和Cu3Sn层,IMC的生长受体扩散控制,添加Ni颗粒抑制了Cu3Sn层的生长。时效过程中,SAC-xNi焊料中的Cu原子逐渐扩散到Ni界面,除了SAC-2Ni/Ni外,界面都形成了双层IMC结构即(CuNi)6Sn5和(NiCu)3Sn4。500小时时效后的SAC-1Ni/Cu(Ni)和SAC-2Ni/Cu(Ni)剪切焊点,断裂区域部分发生在界面。
In the first, the interfacial evolution and shear strength of SAC lead free solder were studied in detail on Cu and Ni substrate during multiple reflows and isothermal aging at 150oC. The eutectic SP solder were used as the control. Then the particle reinforced composite solders were successfully prepared by mechanically dispersing SiC nanoparticles and dendrite Ni micro-particles into the SAC solder paste. The Surface Adsorption Effect and reinforced mechanism rendered by nanoparticles were revealed. Lastly the research was emphasized on the intermetallic compound (IMC) microstructure, morphology and shear strength of SAC-xNi/Cu(Ni) joints in the process of reflow and aging. More details were given as following.
     During multiple reflows, the scallop like Cu6Sn5 IMC at interfaces of SAC(SP)/Cu grew by grain boundary diffusion controlling. Whereas for SAC(SP)/Ni joints, the IMC growth was controlled by the volume diffusion. The growth rate and grain size of Ni-Sn IMC was less than that of Cu-Sn. During aging, the IMC growth on Cu and Ni substrate was controlled by volume diffusion. After 50 h aging, duplex layer structure was displayed at the solder/Cu interface. They are Cu6Sn5 close to solder and Cu3Sn adjacent to Cu substrate. The strength of SAC joints was always higher than that of SP.
     Composite solder SAC-xSiC was fabricated, which never was reported in literatures. In comparison to SAC, the melting temperature of SAC-xSiC solders was lower by 1oC. The grain size ofβ-Sn sub-grain and Ag3Sn decreased significantly in the composite solder matrix. Addition of SiC nanoparticles in the SAC solder could improve the microhardness by 30-44%, which was in good agreement with the prediction of the classic theory of dispersion strengthening.
     The process characteristics of SAC-xNi composite solders were equal to that of the non-composite solder. Ni particles could wet well with SAC solder. During multiple reflows, the SAC-xNi/Cu interfaces showed two distinct Ni bearing (CuNi)6Sn5 regions in the IMC layer. The reaction between Cu and SAC-xNi composite solder was accelerated with the Ni addition increasing, but IMC grains were refined. IMC growth at SAC-xNi/Cu interfaces was controlled by the combination of volume diffusion and reaction diffusion. The quantity of free Cu atoms in the solder bulk influenced the IMC morphology and crystal structure of solder/Ni interfaces. The shear strength of SAC-xNi/Cu(Ni) was enhanced by Ni particle additions, and the joint fracture presented ductile mode.
     After aging 50h at 150oC, the interfacial IMC in SAC-xNi/Cu joints become duplex layer structure, i.e. (CuNi)6Sn5 and Cu3Sn. The volume diffusion is the main controlling process for each IMC layer growth. The addition of Ni particles could depress the growth of Cu3Sn layer. After aging, except for SAC-2Ni joint with single (NiCu)3Sn4 IMC layer, the interface of all joints presented duplex IMC layers, whose upper and lower IMC layers were comprised of (CuNi)6Sn5 and (NiCu)3Sn4, respectively. Shear test result showed partial brittle fractures at interfaces of SAC-1Ni/Ni(Cu) and SAC-2Ni/Ni(Cu) after 500h aging.
引文
[1] H. H. Manko, Solder and soldering, New York: McGraw-Hill, 2nd Edition, l979: 23-24
    [2] W. Huang, O. A. Palusinski, D. L. Dietrich, Efect of randomness of Cu-Sn intermetallic compound layer thickness on reliability of surface mount solder joints, Trans on Advanced Packaging, 2000, 23(2): 277-283
    [3] K. S. Kim, S. H. Huh, K. Suganuma, Efects of intermetallic compounds on properties of Sn-Ag-Cu lead free solder joints, Journal of Alloys and Compounds, 2003, 35(2): 226-236
    [4] E. R. Monsalve, Lead ingestion hazard in hand so1dering environments, in: Proceedings of the 8th Annual So1dering Techno1ogy and Product Assurance seminar, Naval Weapons Center, China Lake, CA 1984: 16-27
    [5]马鑫,何鹏,电子组装中的无铅软钎焊技术,哈尔滨工业大学出版社,2006,8
    [6]石素琴,董占贵,钱乙余,软钎焊钎料的最新发展动态,电子工艺技术,2000,21(6):231-234
    [7] Official journal of the European Union. Directive 2002/96/EC of the European Parlianment and of the Council of 27 January 2003[R]. Waste Electrical and Electronic Equipment (WEEE), 2003, L37: 24-38
    [8] Official journal of the European Union. Directive 2002/96/EC of the European Parlianment and of the Council of 27 January 2003[R]. the Restriction of the use of certain Hazardous substances in electrical and Electronic Equipment, 2003, L37: 19-23
    [9] Mulugeta Abtew, Guna selvaduray, lead-free solders in microelectronics, Materials science and engineering, 2000, 27(5-6): 95-141
    [10]史耀武,夏志东,雷永平等,绿色高性能电子组装钎料研究的新进展,产业论坛,2001, 12(7):30-33
    [11] S. Rum, Components, Materials re-examined for lead-free compatibility, electronic packing&production, 2000, 40(6): 13
    [12] D. R. Frear, Trends and issues in Pb-Free soldering for electronic packaging.Electronic and information technigue, 2001, 118(2): 81-86
    [13] B. P. Riehards, C. L. Levoguer, K. Nimmo, An analysis of the current status of lead-free soldering, Department of trade and industry, UK, 1999
    [14]史耀武,陈志刚,夏志东等,高蠕变抗力含稀土锡基无铅钎料及其制备方法,中国专利,1385280,2002-12-18
    [15]史耀武,郝虎,雷永平等,含稀土的SnAgCuY锡基无铅钎料及其制备方法,中国专利,1621196,2005-06-01
    [16]史耀武,陈志刚,夏志东,含稀土的锡基无铅钎料及其制备方法,中国专利,1292316,2001-04-25
    [17] J. S. Hwang, Solder Materials, SMT, 2001, 15(7): 21
    [18] L. M. Maestrelli, R.C. Pfahl, Technology for environmentally prefered products, IMAPS-brazi, Sao Paulo, Brazil, 2001
    [19] NIST database for solder properties with emphasis on new lead-free solders, IPC Leadfree website:www.1eadfree.org
    [20]史耀武,雷永平,夏志东,SnAgCu系无铅钎料技术发展,新材料产业,2004,4:10-14
    [21]管沼克昭,无铅焊接技术,北京:科学出版社,2004:37
    [22]郭福,无铅钎焊技术与应用,北京:科学出版社,2006:2
    [23] J. L. Marshall, J. Calderon, Hard-particle reinforced compsite solders, Part3: Mechanical properties. Soldering Surface Mount Technology, 1997, 9(3): 11-14
    [24] H. Mavoori, S. Jin, New, creep-resistant, low melting point solders with ultrafine oxide dispersions. Journal of Electronic Materials; Nov 1998, 27(11): 1216
    [25] D. C. Lin, G. X. Wang, T. S. Srivatsan, et al,The influence of copper nanopowders on microstructure and hardness of lead–tin solder,Materials Letters, 2002, 53: 333–338
    [26] D. C. Lin, G. X. Wang, T. S. Srivatsan, et al,Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin–lead solder,Materials Letters, 2003 57: 3193-3198
    [27] J. Shen, Y. C. Liu, H. X. Gao, et al., Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn-3.5Ag lead-free solder, Materials Science and Engineering A, 2006, 441(1-2): 135-141
    [28] S. M. L. Nai , J. Wei, M. Gupta,Development of lead free solder composites containing nanosized hybrid (ZrO2+8mol.%Y2O3) particulates, Solid state phenomena 2006, 111: 59-62
    [29] C. T. Ho, D. L. Chung. Carbon fiber reinforced Tin-Lead alloy as a low thermal expansion solder perform. J. Mater. Res. 1990, 5(6): 1266-1270
    [30] K. Mohan Kumar, V. Kripesh, L. Shen, et al,Study on the microstructure and mechanical properties of a novel SWCNT-reinforced solder alloy for ultra-fine pitch applications, Thin Solid Films, 2006, 504(1-2): 371-378
    [31] K. M. Kumar, Single-wall carbon nanotube (SWCNT) functionalized SnAgCu lead-free composite solders, Journal of Alloys Compounds, 2006, 450(1-2): 229-237
    [32] S. M. L. Nai, J. Wei, M. Gupta, Influence of ceramic reinforcements on the wettability and mechanical properties of novel lead-free solder composites, Thin Solid Films, 2006, 504: 401-404
    [33] S. M. L. Nai, J. Wei, M. Gupta, Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes, Materials Science and Engineering A 2006 423: 166-169
    [34]赵连成,蔡伟,郑玉峰,合金的形状记忆效应与超弹性,北京:国防工业出版社,2002:87
    [35] O. Fouassier, J. Chazelas, J. F. Silvain, Conception of a consumable copper reaction zone for a NiTi/SnAgCu composite materia1, Composites: Part A, 2002, 33: 1391
    [36] J. F. Silvain, J. Chazelas, M. Lahaye, et a1, The use of shape memory alloy NiTi particles in SnPbAg matrix : interfacial chemical analysis and mechanical characterization, Mater. Sci. Eng A, 1999, 273-275: 818-823
    [37] I. Dutta, B. S. Majumdar, D. Pan, et a1, Development of a novel adaptive lead-free solder containing reinforcements displaying the shape-memory effect, Journal of Electronic Materials, 2004, 33: 258
    [38] Z. X. Wang, I. Dutta, B.S. Majumdar, Thermomechanical response of a lead-free solder reinforced with a shape memory alloy, Scripta Materialia 2006, 54: 627-632
    [39] R. D. McDonald, J. Singleton, N. Harrison, et a1, Alphen spectra of the shape-memory alloy AuZn, Journal of Magnetism and Magnetic Materialsr, 2004, 272-276: E1681-E1683
    [40] H. Hao, J. Tian, Y. W. Shi, et al., properties of Sn3.8Ag0.7Cu solder alloy with trace rare earth element Y additions, Journal of Electronic Materials, 2007, 36(7): 766-785
    [41] Z. D. Xia, Z. G. Chen, Y. W. Shi, et al., effect of rare earth element additions on the microstructure and mechanical properties of Tin-Silver-Bismuth solder, Journal of Electronic Materials, 2002, 31(6): 564
    [42] L. Wang, D. Q. Yu, J. Zhao, Improvement of Wettability and Tensile Property in Sn-Ag-RE Lead-free Solder Alloy, Materials Letters, 2002, 56(6): 1039-1042
    [43]朱颖,锡铅稀土钎料SMT焊点热循环失效机制研究:[硕士学位论文],哈尔滨;哈尔滨工业大学,1996
    [44]马鑫,微电子表面组装焊点失效的相关力学及金属学因素分析:[博士学位论文],哈尔滨;哈尔滨工业大学,2000
    [45] L. Wang, D. Q. Yu, M. L. Huang, et al, Improvement of wettability and tensile property in Sn-Ag-RE lead-free solder alloy. Materials Letters. 2002, 56(6): 1039-1042
    [46] C. M. L. Wu, D. Q. Yu, C. M. T. Law, The properties ofSn-9Zn lead-frec solder alloys doped with trace rare earth elements, Journal of Electronic Materials, 2002, 31(9):921-927
    [47] C. M. L. Wu, D. Q. Yu, C. M. T. Law, Microstructure and mechanical properties of new lead-free Sn-Cu-RE solder alloys, Journal of Electronic Materials,2002, 31(9): 928-932
    [48]刘晓英,于大全,马海涛,Y2O3增强Sn3Ag0.5Cu复合无铅钎料,电子工艺技术,2004,25(4):156-161
    [49]陈志刚,SnAgCuRE钎焊街头蠕变行为的研究:[博士学位论文],北京;北京工业大学,2003
    [50] R. B. Clough, R. Petel, J. S. Hwang et al, Preparation and properties of reflowed paste and bulk composite solder, Proceedings of Technical Program-Nepcon West Conference, Anahein, CA, 1992, Cahners Exhibition Group, Des Plains, IL, 1992, 3(12): 569
    [51] J. P. Liu, Development of Creep-Resistant, Nano-sized Ag particle-reinforced Sn-Pb composite solders, Journal of Electronic Materials, 2004, 33(9): 10
    [52] K. N. Subramanian, T. R. Bieler, J. P. Lucas, Microstructural engineer of solders, Journal of Electronic Materials, 1999, 28(11): 1176-1183
    [53] P. Yao, P. Liu, J. Liu, Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu-xNi composite solder joints on electrolytic Ni/Au metallized substrate, Journal of Alloys and Compounds, 2008, 462(25), 73-79
    [54] F. Guo, Composite lead-free electronic solders, Journal of Materials and Science: Materials Electronics, 2007, 18: 129-45
    [55] D. C. Lin, An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin/lead solder,Materials Science and Engineering A, 2003, 360: 285-292
    [56] K. Mohan kumar, A. A. O. Tay, Nano-Particle Reinforced Solders for fine pitch applications, Electronics Packaging Technology Conference, 2004: 455-461
    [57] M. Amagai, A study of nanoparticles in Sn-Ag based lead free solders, Microelectronics Reliability, 2008, 48(1): 1-16
    [58] A. Lee, K. N. Subramanian. Development of nano-composite lead-free electronic solders, Journal of Electronic Materials, 2005, (34):1399-1407
    [59] K. S. Kim, S. H. Huh, K. Suganuma, effects of fourth alloying additive on microstructure and tensile properties of Sn-Ag-Cu alloy and joints with Cu, Microelectronics Reliability, 2003, 43: 259-267
    [60]陈国海,耿志挺,新型无铅焊料合金Sn-Ag-Cu-In-Bi的研究,电子元件与材料,2006,22(4):36-38
    [61]吴文云,Sn-Zn系无铅钎料研究:[硕士学位论文],吉林;吉林大学,2004
    [62] K. S. Kim, S. H. Huh and K. Suganuma, Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu, Microelectronics and reliability, 2003, 43: 259-267
    [63]江炎兰,张金春,纳米材料的性能与应用-金属及其合金,兵器材料科学与工程,2002,25(6):64-66
    [64]邹桂真,曹茂盛,张亮等,化学镀制备Ni包覆纳米SiC核壳颗粒及其介电响应,无机材料学报,2006,21(4):797-802
    [65]陈美玲,李建卫,高宏,改性纳米SiC粉体强化球墨铸铁的组织和力学性能研究,材料导报,2006,20:214-215
    [66]何梅琼,SiC颗粒强化铝基复合材料及其断裂韧性,铝加工,1998,21(2):55-58
    [67]王朝辉,康永林,赵鸿金,纳米SiC颗粒增强AM60镁合金组织性能的研究,特种铸造及有色合金,2005,21:52-53
    [68] M. Kuroda, D. Setoyama, M. Uno, et al, Nanoindentation studies of zirconium hydride, J. Alloys Compounds, 2004, 368: 211-214
    [69] K. S. Kim, S. H. Huh and K. Suganuma, Effects of intermetallic compounds on properties of Sn-Ag-Cu leadfree soldered joints, Journal of Alloys and Compounds, 2003, 352(1): 226-236
    [70] H. T. Lee,M. H. Chen,H. M. Jao, et a1. Influence of interfacial intermetallic compo und on fracture behavior of solder joints, Materials Science and Engineering A, 2003, 358(1-2): 134-141
    [71] H. T. Lee, M. H. Chen, Influence of intermetallic compounds on the adhesive strength of solderjoints, Materials Science and Engineering A, 2002, 333(1-2): 24-34
    [72] E. Saiz, C. W. Hwang, K. Suganuma et al. Spreading of Sn-Ag Solders on Fe-Ni Alloys, Acta Materialia, 2003, 51: 3185-3197
    [73] P. L. Tu, C. ChartYah, J. K. L. Lai, Effect ofintermetallie compounds on the thermal fatigue of Surface mount solder joints, IEEE Transactions on Components Packaging and Manufacturing Technology-Part B, 1997, 20(1): 87-93
    [74] H. L. Pang John, T. H. Low, B. S. Xiong, et a1, Thermal cyc1ing aging efectson Sn-Ag-Cu solder joint microstructure IMC and strength, Thin Solid Films, 2004, 462-463: 370-375
    [75] K. S. Kim, C. H. Yu, J. M. Yang, Aging treatment characteristics of solder bump joint for high reliability optical module, Thin Solid Films, 2004, 46 2-463: 402-407
    [76]李晓延,杨晓华,兑卫真,时效对Sn-3.8Ag-0.7Cu/Cu焊料接头的组织和拉伸性能的影响,机械强度,2008,30(1):24-28
    [77]何大鹏,合金元素对二元Sn基钎料钎焊界面IMC的影响:[硕士学位论文],大连;大连理工大学,2005
    [78]段莉蕾,无铅钎料接头界面化合物层生长及元素扩散行为:[硕士学位论文],大连;大连理工大学,2004
    [79] J. Shen, Y.C. Chan, S.Y. Liu, Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn-Ag solder during solidification, Intermetallic, 2008, 16(9): 1142-1148
    [80] C. E. Ho, R. zhang, G. L. Luo, et al., Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of Ball-Grid-Array packages with the Au/Ni surface finish, Journal of Electronic Materials, 2000, 29(10): 1175-1181
    [81] T. Laurila, V. Vuorinen, Interfacial reaction between lead-free solders and common base materials, Materials Science and Engineering R, 2005, 49: 1-60
    [82] T. Laurila, V. Vuorinen, J. K. Kivilahti, Analyses of interfacial reactions at different levels of interconnection, Materials Science and Engineering A, 2004, 37: 307-317
    [83] H. K. Kim, K. N. Tu, Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening, Physics Review B, 1996, 53(23): 16027-16034
    [84] H. K. Kim, H. K. Liou, K. N. Tu, Three-dimensional morphology of a very rough interfaceformed in the soldering reaction between eutectic SnPb and Cu, Applied Physics Letter, 1995, 66(18): 2337-233
    [85] M. Schaefer, R. A. Fournelle, J. Liang, Theory for Intermetallic Phase Growth Between Cu and Liquid Sn-Pb Solder Based on Grain Boundary Diffusion Control, Journal of Electronic Materials, 1998, 27(11): 1167-1176
    [86] J. W. Yoon, S. B. Jung, effect of isotghermal aging on the interfacial reactions between Sn-0.4Cu solder and Cu substrate with or without ENIG plating layer, Surface & Coatings Technology, 2006, 200: 4440-4447
    [87] D. Q. Yu, L. Wang, The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction, Journal of Alloys and Compounds, 2008, 458(1-2): 542-547
    [88]秦长江,黄金亮,张柯柯,时效处理对Sn57Bi0.5Ag/Cu钎焊接头组织及性能的影响,河南科技大学学报,2006,27(3):5-11
    [89] S. Kang, U. Ramachandran, Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface. Scripta Metallurgica, 1980, 14: 421
    [90] W. K. Choi, H. M. Lee, Effect of Ni Layer Thickness and Soldering Time on IntermetallicCompound Formation at the Interface between Molten Sn-3.5Ag and Ni/Cu Substrate, Journal of Electronic Materials, 1999, 28(11): 1251-1255
    [91]朱奇农,罗乐,肖克,杜黎光,Ni对Sn96.5/Cu之间扩散行为的阻挡作用,中国有色金属学报,2000,10(2):199-202
    [92] C. W. Hwang, J. G. Lee, K. Suganuma. Intermetallic Microstructure between Sn-3Ag-xBi Alloy and Cu Substrate with or without Electrolytic Ni Plating, Journal of Electronic Materials, 2003, 32(2): 52-62
    [93]刘艳斌,兑卫真,吴本生等,等温时效对SnAgCu/Cu焊接接头显微组织及强度的影响,理化检验-物理分册,2007,43:163-166
    [94] K. S. Kim, C. H Yu, J. M Yang, Behavior of tin whisker formation and growth on lead-free solder finish, Thin Solid Films, 2006, 504: 350-354
    [95] C. W. Chang, C. E. Ho, S. C Yang, et al., Knietics of AuSn4 Migration in lead free solders, Journal of Electronic Materials, 2006, 35(11): 1948-1954
    [96] P. G. Shewmon, Transformation in Metals, New York: Mc Graw-Hill Book Co, 1969, 116-117
    [97] A. A. Lin, H. K. Kim, K. N. Tu, et al, Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films, Journal of Applied Physics, 1996, 80(5): 2774-2780
    [98] C. E. Ho, S. C. Yang, C. R. Kao, Interfacial reaction issues for lead-free electronic solders, Journal of Materials Science: Materials in Electronics, 2007, 18: 155-177
    [99] J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, London, 1972
    [100] D. M. Jacobson and G. Humpston, Depressing the Melting Points of Solders and Brazes by Eutectic Alloying, GEC Journal of Research, 1995, 12(2): 112
    [101] K. Mohan Kumara, B.V. Kripesh, A. O. Tay Andrew, Single-wall carbon nanotube (SWCNT) functionalized Sn-Ag-Cu lead-free composite solders, Journal of Alloys and Compounds, 2008, 450(1-2): 229-237
    [102] S. M. L. Nai, J. Wei, and M. Gupta, Development of lead-free solder composites containing nanosized hybrid (ZrO2 + 8 mol.% Y2O3) particulates,Solid state phenomena, 2006, 111: 59-62
    [103]石霖,合金热力学,北京:机械工业出版社,1992. 456
    [104] Q. J. Zhai, S. K. Guan, Q. Y. Shang, Alloy thermo-mechanism-theory and application, Beijing: Metallurgy Industry Press, 1999: 67
    [105] V. C. Nardone, K. M. Prewo. On the strength of discontinuous silicon carbide reinforced aluminum composite, Scripta Metallurgica, 1986, 20(1): 43-48
    [106]杨德庄,位错与金属强化机制,哈尔滨:哈尔滨工业大学出版社,1991:11
    [107] R. M. Aikin. L. Christodoulou, The role of equizxed particles on the yield stress of composites, Scripta Metallurgica Material, 1991: 25(1): 9-14
    [108] X. Deng, N. Chawla, K. K. Chawla, et al, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation, Acta Materialia 2004, 52: 4291-4303
    [109] Y. N.Yu, Theory of metal, Beijing: Metallurgical lndustry Press, 2003: 315-316
    [110]王文海,唐兴勇,肖斐等,添加微量高熔点金属对无铅焊料性能的影响,电子元件与材料,2005,24:48-51
    [111] Y. H. Lee, H. T. Lee, Shear strength and interfacial microstructure of Sn-Ag-xNi/Cu single shear lap solder joints, Material Science and Engineer A, 2007, 444: 75-83
    [112]方洪渊,简明钎焊工手册,北京:机械工业出版社,2000. 52
    [113]张启运,庄鸿寿,钎焊手册,北京:机械工业出版社,1999. 113
    [114]肖纪美,合金相与相变,北京:冶金工业出版社,1987. 131
    [115]黄诚,宋波,毛谨红等,铁液非均质形核的热力学研究,北京科技大学学报,2003,25(2):127-130
    [116] B. Chalmers, PrinciPles of solidification, New York: John Wiley&Sons lnc,1964: 70
    [117] W. Kurz, D. J. Fisher, Fundamentals of solidification,Switzerland: Trans Tech Publiction Ltd, 1989: 29
    [118]沈骏,Sn-Ag系无铅焊料中金属间化合物的形成与控制,[博士学位论文],天津;天津大学,2006
    [119] M. Abtew, Selvaduray G, Lead-free solders in microelectronics, Materials Science and Enigneering R, 2000, 27: 95-141
    [120] W. C. Luo, C. E. Ho, J. Y. Tsai, et al, Solid-state reactions between Ni and Sn-Ag-Cu solderswith different Cu concentrations, Materials Science and Enigneering A, 2005, 396: 385-391
    [121]聂京凯,郑菡晶,郭福,再流条件对Ni颗粒增强复合钎料组织形态的影响,功能材料,2007,38:3271-3274
    [122] W. K. Choi, S. Y. Jang, J. H. Kim, et al, Grain morphology of intermetallic compounds at solder joints. Journal of Material Research, 2002, 17(3): 597-59
    [123] F. Gao, T. Takemoto, Effects of addition participation in the interfacial reaction on the growth patterns of Cu6Sn5-based IMCs during reflow process, Journal of Alloys and Compounds, 2006, 421: 283-288
    [124] K. J. Ronka, F. J. J. Van Loo, J. K. Kivilahti, A diffusion-kinetic model for predicting solder/conductor interactions in high density interconnections, Metallurgical and Materials Transactions A, 1998, 29: 2951-2956
    [125] K. C. Chou, A general solution model for predicting ternary thermodynamic properties, CALPHAD, 1995, 19(3): 315-325
    [126] A. R. Miedema, P. F. Chatel, F.R. Boer, Quantitative predictions of the heat of adsorption of metals on metallic substrates, Physica B 1980, 100: 1-28
    [127] F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing, Materials Science and Engineering A 2006, 420: 39-46
    [128]刘建萍,阎焉服,郭福等,纳米银颗粒增强复合钎料的研究,焊接技术,2004,4(33):38-40
    [129] X. F. Bian, P. X. Min, X. B. Qin, et a1, Medium-range order clusters in metal melts, Science in China(E), 2002, 45: 113-119
    [130] C. E. Ho, R. Y. Tsai, Y. L. Lin, et al, Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni, Journal of Electronic Materials, 2002, 31(6): 584-590
    [131] W. T. Chen, C. E. Ho, C. R. Kao, Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders, Journal of Material Research, 2002, 17: 263-266
    [132] S. C. Hsu, S. J. Wang, C. Y. Liu, Effect of Cu content on interfacial reactions between Sn(Cu)alloys and Ni/Ti thin-film metallization, Journal of Electronic Materials, 2003, 32: 1214-1221 - 118 -
    [133] C. H. Lin, S. W. Chen, C. H. Wang, Phase equilibria and solidification properties of Sn-Cu-Ni alloys, Journal of Electronic Materials, 2002,907(31): 114
    [134] C. M. I. Wu, D. Q. Yu, C. M. T. Law, et a1, Properties of lead-free solder alloys with rare earth element additions, Mater. Sci. and Enig. A, 2004, 44: 1-44
    [135] K. N. Tu, K. Zeng, Tin-lead(SnPb) solder reaction in flip chip technology, Materials Science and Enigeering A, 2001, 34: 1-58
    [136]何大鹏,于大全,王来等,铜含量对Sn-Cu钎料与Cu、Ni基板钎焊界面IMC的影响,中国有色金属学报,2006(4):701-708
    [137] K. Zeng, K. N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Materials Science an Engineering A, 2002, 38(1): 55-105
    [138] V. F. Kieselev, O. V. Krylov, Adsorption and catalysis on Transition Metals and their Oxides, 1989, Springer-Verlag, Chap.2
    [139] L. Pauling, The nature of the ineratomic forces in metals, Physical Review, 1938, 54: 899-904
    [140]李凤辉,李晓延,严永长,SnAgCu/Cu界面热循环及时效条件下化合物的生长行为,失效分析与预防,2008,3:23-27
    [141] X. Ma, F. J. Wang, Y. Y. Qian, et al, Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface, Materials Letters, 2003, 57: 3361-3365
    [142] W. J. Tomhnson, A. Fullylove, Strength of tin-based solder joints, Journal of Materials Science, 1992, 27: 5777
    [143] D. R. Frear, The mechanical behavior of interconnect materials for electronic packaging, JOM: Journal of the Minerals Metals and Materials Society, 1996, 48(5): 49-53
    [144] W. W. Mullins, R. F. Sekerka, Application of linear programming theory to crystal faceting, Journal of physics and chemistry of solids, 1962, 23(6): 801-803
    [145] P. T. Vianco, P. F. Hlava, A. C. Kilgo. Intermetallic Compound Layer Formation between Copper and Hot-Dipped 100In, 501n-50Sn, I00Sn, and 63Sn-37Pb Coatings, Journal of Electronic Materials, 1994, 23(7): 583-594
    [146] T. Lauril, V. Vuorinen, J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. an Eng. R 2005, 49(1-2): 1-60
    [147] C. W. Chang, C. E. Ho, S. C. Yang, Kinetics of AuSn4 migration in lead free solders, Journal of Electronic Materials, 2006, 35: 1948-1953
    [148] Kazuhiro Nogita, Tetsuro Nishimura, Nickel-stabilized hexagonal (CuNi)6Sn5 in Sn-Cu-Ni lead-free solder alloys, Scripta Materialia, 2008, 59: 191-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700