抗生素M331的抗铜绿假单胞菌的作用及对其体外形成生物被膜影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本课题通过对铜绿假单胞菌临床株和标准株的生物学特性、其生物被膜形态学的研究,探讨了不同浓度的M331以及其联合大环内酯类抗生素对铜绿假单胞菌及其形成生物被膜的影响,以探讨新的治疗铜绿假单胞菌感染及它的生物被膜的方法;并初步探讨了药物M331的药物毒性。
     方法:应用四区划线法分离纯化了菌株;通过对比其对细胞的粘附能力,来观察其毒力;采用改良的组织培养平板法,建立了临床株PA1和标准株PA27853生物被膜的模型;应用微量稀释法,测定了不同药物及其联合用药对PA1、PA3、PA5、PA2059, PA27853的MIC值,应用微量稀释法,测定了PA1、PA2059的MBEC值;应用MTT法测定了不同剂量M331及联合用药后PA1、PA27853生物被膜中的存活细菌数;应用银染法及扫描电镜鉴定生物被膜,并观察了不同剂量M331及其联合用药后PA1、PA27853的超微结构,对其菌落形态学进行描述。
     结果:临床株和标准株不同菌株的产绿色素的情况不一;PA1、PA27853对Hela细胞的粘附性实验显示,PA1、PA27853对Hela细胞的粘附类型为弥散性粘附,且临床株PA1比标准株PA27853更易于粘附Hela细胞。银染法快速鉴定结果显示,都可见浓密黑染交织分布的物质,其间隙中可见聚集的短杆状菌体。扫描电镜观察,铜绿假单胞菌呈短杆状,聚集成团,为浓厚的粘液样物质紧密包绕,菌体之间相互以粘稠的纤维状粘液丝相连。MTT法测定不同剂量M331及联合罗红霉素PA1、PA27853生物被膜中存活的细菌数,结果显示,罗红霉素对M331有增效作用。应用银染法、扫描电镜观察不同剂量M331和联合罗红霉素处理的PA1、PA27853的生物被膜,可见随着M331及罗红霉素的剂量增大,PA1、PA27853生物被膜中的细菌逐渐被清除,细菌量逐渐减少。
     结论:通过前期的实验研究,发现从贵州省耕土中分离的某种放线菌能产生一种抗生素,经前期的实验证实其对铜绿假单胞菌疗效较确定,对其它常见菌种无效,我们将此代谢产物命名为M331。本课题通过研究发现,不同抗菌药物对PA1、PA27853的浮游菌的杀菌活性存在明显差异,M331的疗效比庆大霉素弱,与多粘菌素B相当,强于羧苄青霉素。使用大环内酯类抗生素能显著增强M331的抗菌活性,酶抑制剂也能增强β-内酰胺酶类抗生素的抗菌活性。国内外研究发现,14、15元环的大环内酯类抗生素能抑制细菌藻酸盐的合成,其作用机制可能是抑制藻酸盐合成的关键酶——甘露糖脱氢酶(GMD)的活性,与其它药物联合应用能够抑制细菌生物被膜的形成。应用不同剂量的M331及联合罗红霉素在生物被膜培养过程中分别处理PA1、PA27853,显示了罗红霉素联合M331可有效抑制铜绿假单胞菌生物被膜的形成,其对Vero细胞无细胞毒性作用,是一个较为理想的针对铜绿假单胞菌的抗生素。
Objective:To study the biological characteristics as well as the biofilm morphology of PA1 and PA27853, and identify the sensitivity of PA1 and PA27853 in planktonic or in bacterial biofilms to different kinds of antibiotics. To investigate the influence of different concentration of M331 and the combination of M331 and Roxithromycin on the formation of Pseudomonas aeruginosa biofilm. And to examine the cytotoxicity of M331.
     Method:The bacteria were purified by coloning them and then the colony forming unit was used to the bacteria counting. The modified plate culture method was used to establish biofilm model in vitro; The morphology of PA1 and PA27853 biofilms was observed by both optical microscopy and SEM. The minimal inhibitory concentrations(MICs) of M331, gentamycin, Carbenicillin, Polymyxin B, and Roxithromycin and of the combination of M331 and Roxithromycin, Piperacillin and tazobactam were determined by micro-dilution method. The minimal biofilm eradication concentration(MBEC) was also determined by micro-dilution method. The viable counts of bacteria in PA1 and PA27853 biofilms were carried out by MTT method after treated with different concentration of M331 or the combination of M331 and Roxithromycin. PA1 and PA27853 biofilms were observed by the optical microscopy after being stained by AgNO3, and by SEM after treated with different dosages of M331 and the combination of M331 and Roxithromycin. The cytotoxicity of M331 were monitered by the of MTT method.
     Results:Microscopy of PA1 and PA27853 biofilms showed that cluster bacilli is surrounded by dense black-stained substance. The SEM results showed that bacteria were either the bacillus surrounded by accidented substance or the bacteria connected to each other by mucoid substance to form biofilms.The cell adhension of PAl and PA27853 were ubiquitous, and PA1-adhered cell outnumbered that of PA27853. The MTT assay results imply that M331 have no cytotoxicity. of PA27853. The MTT assay results imply that M331 have no cytotoxicity.
     The MICs of M331 were lower than that of gentamycin and Polymyxin B, on the other hand, higher than Carbenicillin. Roxithromycin enhanced the penetration of M331 to PA1 and PA27853 strain through biofilms. PA1 and PA27853 biofilms were gradually cleared with the increased dosages of M331 or the combination of M331 and Roxithromycin.
     Conclusion:Previous research work have been done to illustrate that a strain of actinomycetes desingated M331 which extracted from the soil in Guizhou Province has therapeutic effects on Pseudomonas aeruginosa, and macrolides can enhance the its biological effects on Pseudomonas aeruginosa and its biofilms. From this investigation, we provide evidence that Sub-MIC levels of Roxithromycin and M331 substantially inhibited the structure and architecture of the biofilm, and reduced the bacteria count accordingly.
引文
[1]Cachia PJ, Hodges RS. Synthetic peptide vaccine and antibody therapeutic development:prevention and treatment of Pseudomonas aeruginosa [J]. Biopolymers, 2003,71(2):141-68.
    [2]Saiman L, Sieqel J. Infection control in cystic fibrosis [J]. Clin Microbiol Rev, 2004,17(1):57-71.
    [3]贾文祥.医学微生物学[M].北京:人民卫生出版社,2005:36.
    [4]Lambert P A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa [J]. J R Soc Med 2002,95(Suppl 41):22-26.
    [5]Wozniak DJ, Keyser R. Effects of Subinhibitory Concentrations of Macrolide Antibiotics on Pseudomonas aeruginosa [J]. Chest 2004,125(2 Suppl):62S-69S; quiz 69S.
    [6]Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1 an opportunistic Pathogen[J].Nature,2000, 406(6799):959-64.
    [7]Sadikot RT, Blackwell TS, Christman JW, et al. Pathogen-Host Interactions in Pseudomonas aeruginosa Pneumonia [J]. Am J Respir Crit Care Med,2005,171(11): 1209-23.
    [8]Nichols WW, Dorrington SM, Slack MP, et al. Inhibition of tobramycin diffusion by binding to alginate [J]. Antimicrob Agents Chemother,1988,32(4):518-23.
    [9]Ciofu O, Fussing V, Bagge N, et al. Characterization of Paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis Patients:antibiotic resistance, b-lactamase activity and Riboprinting[J]. J Antimicrob Chemother,2001,48(3):391-6.
    [10]Mai GT, McCormack JG, Seow WK, et al. Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase, specific monoclonal-antibodies, and antibiotics[J]. Infect Immun,1993,61(10):4338-43.
    [11]Bayer AS, Park S, Ramos MC, et al. Effects of alginase on the natural-history and antibiotic-therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa[J]. Infect Immun,1992,60(10):3979-85.
    [12]覃雪军,陈一强,钟小宁.金银花水煎液以及联合头孢他啶对绿脓杆菌生物膜作用的体外研究[D].广西:广西医科大学,2003:
    [13]Lindsay D, von Holy A. Bacterial biofilms within the clinical setting:what healthcare professionals should know [J]. J Hosp Infect,2006,64(4):313-25.
    [14]Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms [J]. Lancet,2001,358(9276):135-8.
    [15]Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents [J]. Trends Microbiol,2001,9(1):34-9.
    [16]Riedel K, Hentzer M, Geisenberger O, et al. N-Acylhomoserinelactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms[J]. Microbiology,2001,147 (pt 12):3249-62.
    [17]钱皎,王睿.阿奇霉素对铜绿假单胞菌密度感知系统及生物被膜形成影响的研究[D].北京:中国人民解放军军医进修学院,2006:
    [18]Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections [J]. Science,1999,284(5418):1318-22.
    [19]Mattick JS, Whitchurch CB, Alm RA. The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa:a review [J]. Gene,1996,179(1):147-55.
    [20]Mattick JS. Type IV pili and twitching motility [J]. Annu Rev Microbiol,2002, 56:289-314. [21] Shi W, Sun H. Type IV pilus-dependent motility and its possible role in bacterial Pathogenesis [J]. Infect Immun,2002,70(1):1-4.
    [22]O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Mol Microbiol,1998, 30(2):295-304.
    [23]Wozniak DJ, Keyser R. Effects of Subinhibitory Concentrations of Macrolide Antibiotics on Pseudomonas aeruginosa [J]. Chest,2004,125(2 Suppl):62S-69S.
    [24]Brinkman FS, Bains M, Hancock RE. The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model [J]. J Bacteriol,2000,182(18):5251-5
    [25]Livermore DM. Of Pseudomonas, porins, pumps and carbapeanems [J]. J Antimicrob Chemother,2001,47(3):247-50.
    [26]Gilleland LB, Gilleland HE, Gibson JA, et al. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa[J]. J Med Microbiol,1989, 29(1):41-50.
    [27]Nikaido H. Multiple antibiotic resistance and efflux [J]. Curr Opin Microbiol, 1998, 1(5):516-23.
    [28]Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms [J]. J Mol Microbiol Biotechnol,2001, 3(2):255-64.
    [29]Giwercman B, Lambert PA, Rosdahl VT, et al. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis Patients due to in-vivo selection of stable Partially derepressed betalactamase producing strains[J]. J Antimicrob Chemother, 1990,26:247-59.
    [30]Giwercman B, Meyer C, Lambert PA, et al. High-level beta-lactamase activity in sputum samples from cystic fibrosis Patients during antipseudomonal treatment [J]. Antimicrob Agents Chemother,1992,36(1):71-6.
    [31]Vahaboglu H, Coskunkan F, Tansel O, et al. Clinical importance of extended-spectrum beta-lactamase (PER-1-type)-producing Acinetobacter spp. and Pseudomonas aeruginosa strains [J]. J Med Microbiol,2001,50(7):642-5.
    [32]Maiti SN, Phillips OA, Micetich RG, et al. Beta-lactamase inhibitors:agents to overcome bacterial resistance [J]. Curr Med Chem,1998,5(6):441-56.
    [33]Chaibi EB, Sirot D, Paul G, et al. Inhibitor-resistant TEM betalactamases: phenotypic, genetic and biochemical characteristics [J]. J Antimicrob Chemother, 1999,43(4):447-58.
    [34]Woodford N, Palepou MF, Babini GS, et al. Carbapenemase-producing Pseudomonas aeruginosa in UK [J]. Lancet,1998,352(9127):546-7.
    [35]MacLeod DL, Nelson LE, Shawar RM, et al. Aminoglycosideresistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment[J]. J Infect Dis,2000, 181 (3):1180-4.
    [36]Akasaka T, Tanaka M, Yamaguchi A, et al. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999:role of target enzyme in mechanism of fluoroquinolone resistance [J]. Antimicrob Agents Chemother,2001,45(8):2263-8.
    [37]Srikumar R, Tsang E, Poole K. Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillinbinding protein and beta-lactamase-derepressed mutants of Pseudomonas aeruginosa[J]. J Antimicrob Chemother,1999,44(4):537-40.
    [38]Tateda K, Ishii Y, Yamaguchi K. MIC, sub-MIC of macrolide resistant bacteria-special reference to their quorum-sensing system[J]. Jpn J Antibiot, 2001,54 Suppl C:109-112.
    [39]Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence [J].Curr Opin Microbiol,2003,6(1):56-60.
    [40]Davies DG, Parsek MR, Pearson JP, et al. The Involvement of cell to cell signals in the development of a bacterial biofilm [J]. Science,1998,280(5361):295-8.
    [41]XIE Yi, ZENG Wei, JIA Wen-Xiang, et al. Functional Effects of LasR/RhIR on Pseudomonas aeruginosa Biofilm Development and Lung Infections in Mice [J]. Progress in Biochemistry and Biophysics,2006,33(1):31-38.
    [42]Kay E, Humair B, Denervaud V, et al. Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in Pseudomonas aeruginosa[J].J Bacteriol, 2006,188(16):6026-33.
    [43]Reimmann C, Valverde C, Kay E. Posttranscriptional repression of Gac/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0[J]. J Bacteriol,2005, 187(1):276-85.
    [44]Lenz DH, Miller MB, Zhu J, et al. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae [J]. Mol Microbiol,2005, 58(4):1186-202.
    [45]Pessi G, Haas D. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and Rh1R in Pseudomonas aeruginosa[J]. J Bacteriol,2000,182(24):6940-9.
    [46]Pessi G, Haas D. Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1 [J]. FEMS Microbiol Lett,2001, 200(1):73-7.
    [47]Goodman AL, Kulasekara B, Rietsch A, et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa [J]. Dev Cell,2004,7(5):745-54.
    [48]Ventre I, Goodman AL, Vallet-Gely I, et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes[J]. Proc Natl Acad Sci USA,2006,103(1):171-6.
    [49]Heeb S, Blumer C, Haas D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas jluorescens CHA0[J]J Bacteriol,2002,184(4):1046-56.
    [50]Valverde C, Heeb S, Keel C, Haas D. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens [J]. Mol Microbiol,2003,50(4):1361-79.
    [51]Boles BR, Thoendel M, Singh PK. Self-generated diversity produces "insurance effects" in biofilm communities [J]. Proc Natl Acad Sci USA,2004, 101 (47):16630-5.
    [52]O'Toole GA, Gibbs KA, Hager PW, et al. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa [J]. J Bacteriol,2000,182(2):425-31.
    [53]许淑珍,马纪平,马立艳.临床厌氧菌体外药敏实验[J].临床和实验医学杂志,2005,4(1):58-62.
    [54]李向党.一种快速简便的扫描电镜样品制备法[J].电子显微学报,1998,17(4):341-342.
    [55]谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J].电子显微学报,2005,24(4):440.
    [56]李乃静,李胜岐,何平等.银染法鉴定细菌生物被膜[J].辽宁药物与临床2003,6(1):37-38.
    [57]Clutterbuck AL, Cochrane CA, Dolman J, et al. Evaluating antibiotics for use in medicine using a poloxamer biofilm model[J]. Ann Clin Microbiol Antimicrob,2007, 15(6):2.
    [58]Busti E, Monciardini P, Cavaletti L, et al. Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes[J]. Microbiology, 2006,152(Pt 3),675-83.
    [59]Marahiel MA. Protein templates for the biosynthesis of peptide antibiotics [J]. Chem Biol,1997,4(8),561-7.
    [60]Hopwood DA. Genetic contributions to understanding polyketide synthases [J]. Chem Rev,1997,97(7):2465-2498.
    [1]Bodey GP, Bolivar R, Fainstein V, et al.Infections caused by Pseudomonas aeruginosa.[J] Rev Infect Dis,1983,5(2):279-313.
    [2]Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms[J]. Microbes Infect,2003,5(13):1213-1219.
    [3]Waite RD, Paccanarol A, Papakonstantinopoulou A, et al.Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles[J]. BMC Genomics,2006,7:162.
    [4]Stover CK, Pham XQ, Erwin AL, et al.Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic Pathogen[J]. Nature,2000,406 (6799):959-964.
    [5]Waite RD, Papakonstantinopoulou A, Littler E, et al:Transcriptome analysis of Pseudomonas aeruginosa growth:comparison of gene expression in planktonic cultures and developing and mature biofilms[J]. J Bacteriol,2005, 187(18):6571-6576.
    [6]Bagge N, Schuster M, Hentzer M, et al.Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and betalactamase and alginate production[J].Antimicrob Agents Chemother,2004,48(4):1175-87.
    [7]Palma M, DeLuca D, Worgall S, et al. Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide[J]. J Bacteriol,2004,186(1):248-52.
    [8]Schuster M, Lostroh CP, Ogi T, et al. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum controlled genes:a transcriptome analysis[J]. J Bacteriol,2003,185(7):2066-79.
    [9]Schuster M, Hawkins AC, Harwood CS, et al.The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing[J]. Mol Microbiol,2004, 51(4):973-85.
    [10]Wagner VE, Bushnell D, Passador L, et al. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons:effects of growth phase and environment[J]. J Bacteriol,2003,185(7):2080-95.
    [11]Hentzer M, Riedel K, Rasmussen TB, et al.Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound[J]. Microbiology,2002,148(1):87-102.
    [12]Smith KM, Bu Y, Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs[J]. Chem Biol,2003,10(1):81-89.
    [13]Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants[J]. Mol Microbiol,2003, 48(6):1511-24.
    [14]Passerini L, Phang PT, Jackson FL, et al. Biofilms on right heart flow-directed catheters[J]. Chest.,1987,92(3):440-6.
    [15]Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa[J]. J R Soc Med,2002,95, Suppl,41:22-6.
    [16]Sauer K, Cullen MC, Rickard AH, et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm[J]. J Bacteriol,2004, 186(21):7312-26.
    [17]Rice SA, Koh KS, Queck SY,et al. Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues[J]. J Bacteriol,2005, 187(10):3477-85.
    [18]Boyd A, Chakrabarty AM. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa[J]. Appl Environ Microbiol,1994,60(7):2355-9.
    [19]Davey ME, Caiazza NC, O'Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1[J]. J Bacteriol,2003, 185(3):1027-36.
    [20]Gjermansen M, Ragas P, Sternberg C. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms[J]. Environ Microbiol,2005, 7(6):894-906.
    [21]Morgan R, Kohn S, Hwang SH, et al. Bd1A, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa[J].J Bacteriol,2006,188(21): 7335-43.
    [22]Jackson DW, Simecka JW, Romeo T. Catabolite repression of Escherichia coli biofilm formation[J]. J Bacteriol,2002,184 (12):3406-10.
    [23]Jackson DW, Suzuki K, Oakford L, et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli[J]. J Bacteriol,2002, 184(1):290-301.
    [24]Barraud N, Hassett DJ, Hwang SH, et al. Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa[J]. J Bacteriol,2006,188(21):7325-7.
    [25]Soong G, Muir A, Gomez MI, et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production [J]. J Clin Invest,2006,116 (8):2297-2305.
    [26]Sadikot RT, Blackwell TS, Christman JW, et al. Pathogen-Host Interactions in Pseudomonas aeruginosa Pneumonia[J]. Am J Respir Crit Care Med,2005, 171(11):1209-23.
    [27]Gacesa P. Bacterial alginate biosynthesis-recent progress and future prospects[J]. Microbiology,1998,144(Pt 5),1133-43.
    [28]May TB, Shinabarqer D, Maharaj R, et al. Alginate Synthesis by Pseudomonas aeruginosa:a Key Pathogenic Factor in Chronic Pulmonary Infections of Cystic Fibrosis patients[J].Clin Microbiol Rev,1991,4(2):191-206.
    [29]Fett WF, Wijey C, Lifson ER. Occurrence of alginate gene-sequences among members of the Pseudomonad ribosomal-RNA homology groups I-IV[J]. FEMS Microbiol Lett,1992,78(2-3):151-7.
    [30]Fialho AM,Zielinski NA, Fett WF, et al. Distribution of alginate gene-sequences in the Pseudomonas ribosomal-RNA homology group I-Azomonas-Azotobacter lineage of superfamily-B prokaryotes[J]. Appl Environ Microbiol,1990,56(2): 436-43.
    [31]Davies DG, Chakrabarty AM, Geesey GG Exopolysaccharide production in biofilms-substratum activation of alginate gene-expression by Pseudomonas aeruginosa[J]. Appl Environ Microbiol,1993,59(4),1181-6.
    [32]Davies DG, Geesey GG. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture[J]. Appl Environ Microbiol,1995,61(3),860-7.
    [33]Hoyle BD, Williams LJ, Costerton JW. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms[J]. Infect Immun,1993, 61(2),777-80.
    [34]Rice JF, Fowler RF, White DC, et al. Effects of external stimuli on environmental bacterial strains harbouring an algD-lux bioluminescent reporter plasmid for the study of corrosive biofilms[J]. J Ind Microbiol,1995,15,318-28.
    [35]Geers TA, Baker NR. The effect of sub-lethal concentrations of aminoglycosides on adherence of Pseudomonas aeruginosa to hamster tracheal epithelium[J]. J Antimicrob Chemother,1987,19(5),561-8.
    [36]Mai GT, McCormack JG, Seow WK, et al. Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase, specific monoclonal-antibodies, and antibiotics. Infect Immun,1993,61(10),4338-43.
    [37]Bayer AS, Park S, Ramos MC, et al. Effects of alginase on the natural-history and antibiotic-therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa[J]. Infect Immun,1992,60(10):3979-85.
    [38]Filopon D, Merieau A, Bernot G, et al. Epigenetic acquisition of inducibility of type III cytotoxicity in P.aeruginosa[J]. BMC Bioinformatics,2006,7:272.
    [39]裴斐,胡文斌,王睿.细胞信号系统在铜绿假单胞菌中的应用[J].国外医学呼吸系统分册,2003,23(6).
    [40]Zimmermann S, Wagner C, Muller W, et al. Induction of Neutrophil Chemotaxis by the Quorum-Sensing Molecule N-(3-Oxododecanoyl)-L-Homoserine Lactone[J]. Infect Immun,2006,74(10):5687-92.
    [41]Reimmann C, Valverde C, Kay E. Posttranscriptional repression of Gac/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0[J]. J Bacteriol, 2005,187(1):276-85.
    [42]Lenz DH, Miller MB, Zhu J, et al. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae[J]. Mol Microbiol,2005,58(4):1186-202.
    [43]Pessi G, Williams F, Hindle Z, et al. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa[J]. J Bacteriol,2001,183(22):6676-83.
    [44]Reimmann C, Beyeler M, Latifi A, et al. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase[J]. Mol Microbiol,1997,24(2):309-19.
    [45]Pessi G, Haas D. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and Rh1R in Pseudomonas aeruginosa[J]. J Bacteriol,2000,182(24):6940-9.
    [46]Pessi G., Haas D. Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1[J]. FEMS Microbiol Lett,2001, 200(1):73-8.
    [47]Goodman AL, Kulasekara B, Rietsch A, et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa[J]. Dev Cell,2004,7(5):745-54.
    [48]Ventre I., Goodman AL, Vallet-Gely I, et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA,2006,103(1):171-6.
    [49]Kay E, Humair B,Denervaud V, et al. Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in Pseudomonas aeruginosa[J].J Bacteriol, 2006,188(16):6026-33.
    [50]小林宏行.细菌菌膜的基础与临床[J].中国临床药理学杂志,1999,15:299-307.
    [51]王睿.细菌生物被膜耐药屏蔽及其防治[J].中华老年多器官疾病杂志,2004,3(1):61-66.
    [52]Clutterbuck AL, Cochrane CA, Dolman J, et al. Evaluating antibiotics for use in medicine using a poloxamer biofilm model[J]. Ann Clin Microbiol Antimicrob,2007 Feb 15,6:2.
    [53]Eckert R, Brady KM, Greenberg EP, et al. Enhancement of Antimicrobial Activity against Pseudomonas aeruginosa by Coadministration of G10KHc and Tobramycin[J]. Antimicrob Agents Chemother,2006,50(11):3833-8.
    [54]Cartagena E, Colom OA, Neske A, et al. Effects of Plant Lactones on the Production of Biofilm of Pseudomonas aeruginosa[J]. Chem Pharm Bull,2007, 55(1):22-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700