自治型水下环保机器人运动控制系统的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国幅员辽阔,湖泊众多。淡水湖内蕴藏了丰富的生物资源和淡水资源。但是,现在许多湖泊都遭受了不同程度污染,损害了人类的健康。为了采取适当的方法对其进行开发和保护,我们必须对这些湖泊进行水质勘察。这促使人们开发无人水下环保机器人对水域进行勘察和监测。
     本文首先对自治型水下环保机器人的结构方案作了简要的介绍,然后重点讨论了水下环保机器人的运动控制系统以及利用动态规划方法进行实时的路径规划,最后对总的运动控制系统进行了计算机仿真。后面三个部分是研究重点。
     这里,自治型水下环保机器人具有三个自由度,分别称为推进、升沉和转首。水下机器人本身的非线性以及其操作环境的非线性使得水下机器人的控制问题对控制工程师来说一直是一件富有挑战性的工作。我们采用PID控制和模糊决策来共同实现其运动轨迹控制。这里,水下机器人具有三个推进器,两个水平推进器用来完成推进和转首动作,一个垂直推进器用来完成升沉动作。此外,因为具有了路径规划能力,水下机器人能够自治式绕过障碍物。
     我们成功地对水下环保机器人的运动控制系统进行了仿真。仿真结果证明了我们提出的运动控制系统具有良好的性能。
China is a country with a vast territory and extensive lake land. These freshwater lakes contain vast biological and freshwater resources. But, many of them are polluted to various degrees now, and do great harm to human' s health. So the water quality of them must be investigated and understood so that they can be wisely developed and properly protected. This fact promotes the development of unmanned underwater vehicles for inspection and monitoring of the freshwater lake environment.
    In this paper, we give a brief introduction to the structure of an autonomous underwater vehicle (AUV) for environmental protection firstly, secondly we discuss the control system of the AUV, thirdly discusses the way of real-time path planning for AUV by dynamic programming, finally we simulate the proposed control system and the path planning method by means of computer and give the simulation results of it. The last three parts are the main work of the research.
    This AUV for environmental protection has three degrees of freedom, called surge, heave and yaw. The control of AUV has been a challenge to control engineer due to combined non-linear nature of both the vehicle itself and the environment in which they operate. We use PID control and fuzzy decision to fulfill the motion trajectory control. This AUV are designed to have three thrusters, two horizontal thrusters are used to surge and yaw, one vertical thruster is used to heave. With the help of path planning, the AUV can avoid the obstacle autonomously.
    The control system of the AUV for environmental protection has been successfully simulated. The simulation results demonstrate the good performance of the proposed control system.
引文
[1] 蒋新松.机器入学导论.沈阳:辽宁科学技术出版社,1994
    [2] 蒋新松.未来机器人技术发展方向的探讨.机器人ROBOT.1996,18(5):285-291
    [3] 日本造船学会海中技术专门委员会 编.郑胜文,邱逢琛 译.水下技术概论.台北:国立编译馆出版,1997
    [4] 戈东方.电力工程电气设备手册-电气一次部分-上册.北京:中国电力出版社,1998
    [5] 王耀德.交直流电力拖动控制系统.北京:机械工业出版社,1994
    [6] 杨自厚.自动控制原理.北京:冶金工业出版社,1994
    [7] David A. Smallwood, Louis L. Whitcomb. Toward Model Based Dynamic Positioning of Underwater Robotic Vehicles. OCEANS 2001. November 5:1106~1114
    [8] 王贞荣.最优控制.北京:冶金工业出版社,1989
    [9] 金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划.机器人ROBOT,2002,24(6):526-529
    [10] 戴学丰,边信黔.6自由度水下机器人轨迹控制仿真研究.系统仿真学报2001,13(3):368-340
    [11] 李士勇.模糊控制神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996.10.
    [12] 冯冬青,谢宋和等.模糊智能控制.北京:化学工业出版社,1998.9
    [13] 娄顺天,胡昌华,张伟.基于MATLAB的系统分析与设计—模糊系统.西安:西安电子科技大学出版社,2001.5
    [14] 范影乐,杨胜天,李轶.MATLAB仿真应用详解.北京:人民邮电出版社,2001.7
    [15] Kevin M. Passino, Stephen Yurkovich. Fuzzy Control. Tsinghua University Press, 2001
    [16] 陆宁,MATLAB 语言即学即会.北京:机械工业出版社,2000.8
    [17] Kazuo Ishii, Tamaki Ura. An adaptive neural-net controller system for an underwater vehicle. Control Engineering Practice,
    
    2000,8:177-184
    [18] Motoyuki Takai, Tamaki Ura. Development of a system to diagnose autonomous underwater vehicles. International Journal of Systems Science,1999,30(9):981-988
    [19] 郭琦,洪炳熔.基于人工神经网络实现智能机器人的避障轨迹控制.机器人.2002,24(6):508-512
    [20] 朱海,莫军.水下导航信息融合技术.北京:国防工业出版社,2002
    [21] Gianluca Antonelli, Stefano Chiaverini, Nilanjan Sarkar, et al. Adaptive Control of an Autonomous Underwater Vehicle:Experimental Results on ODIN. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. 2001,9(5):756-765
    [22] 陈兵,朱纪洪,孙增圻.基于PC机的无人机仿真系统.系统仿真学报.2002,14(5):613-616
    [23] 张菁,王立权,张铭钧.基于模糊决策法的水下机器人路径规划方法.哈尔滨工程大学学报.2001,22(1):49-54
    [24] 闻新,周露,张鸿.MATLAB科学图形构建基础与应用(6.x).北京:科学出版社,2002
    [25] 刘玉民,丁怀东,张革.工业液位模糊控制系统的仿真研究.见:2002昆明理工大学研究生学术交流年会论文集.昆明:昆明理工大学学报编辑部,2002
    [26] 吴晓淘,孙增圻.用遗传算法进行路径规划.清华大学学报(自然科学版).1995,35(5):14-19
    [27] 王新晓,黄建国,张群飞等.水下航行器导引系统集成化仿真软件设计.计算机工程与应用.2003.3:213-215
    [28] 李保全,陆军,吴誉.水下机器人定深非线性鲁棒控制方法研究.黑龙江自动化技术与应用.1997,16(4):32-35
    [29] S.M. Smith, G.J.S. Rae and D.T. Anderson. Applications of Fuzzy Logic to Control of an Autonomous Underwater Vehicl. IEEE International Conference on Fuzzy Systems.1993:1099-1106
    [30] J. Yuh. A Neural net Controller for Underwater Robotic Vehicles. IEEE Journal of Oceanic Engineering.1990,15(3):161-166
    [31] 张汝波,顾国昌,张国印.基于局部模型的水下机器人避碰方法研究. 哈
    
    尔滨工程大学学报.1998,15(5):49-54
    [32] 宋军,许晓鸣.水下机器人三维路径制导控制器设计.中国造船,1998.2,第一期
    [33] Healey A J, Linard D. Multivariables sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering.1993,18(3)
    [34] K.R. Goheen, E. R. Jeffereys. Multivariable Self-Tuning Autopilots for Autonomously and Remotly Operate Underwater Vehicles.IEEE Journal of Oceanic Engineering,15(1990):144-151
    [35] McPhail, S.D. and Pebody, M., 1998. Navigation and control of an autonomous underwater vehicle using a distributed, networked, control architecture. Underwater Technology,23(1),pp.19-30.
    [36] W. Lee, G. Kang. A Fuzzy Model-based Controller of an Underwater Robotic Vehicle under the Influence of Thruster Dynamics. IEEE International Conference on Robotics and Automation. Leuven, pp. 750-755,1998
    [37] David Wettergreen, Chris Gaskett, and Alex Zelinsky. Autonomous guidance and control for an underwater robotic vehicle. In Proceedings of the International Conference on Field and Service Robotics(FSR'99), Pittsburgh, USA, September1999
    [38] Yuh, J. Modeling and Control of Underwater Robotic Vehicles. Transactions on Systems, Man and Cybernetics,1990,20(6):1475-1482
    [39] Saffiotti, A. The Uses of Fuzzy Logic in Autonomous Robotics:a catalogue raisonne. Soft Computing 1997.1(4):180-197
    [40] Rosenblatt, J. and Hendler, J. Architectures for Mobile Robot Control. Advances in Computers, vol. 48, M. Zelkowitz, Ed., Academic Press, London,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700