海坨子地区井壁失稳及钻井液技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管人们对井壁失稳的基本原因已有深刻认识,但由于地质特点及地层条件等各方面的差异,仍必须对具体油田进行具体分析。勘探开发过程当中,吉林油田海坨子地区存在着缩径、掉块、漏失、坍塌等问题。针对这一情况,本文利用X射线衍射、电镜扫描、分光光度法、滚动回收率测试、膨胀率测试和定向度测试等室内实验手段,对海坨子地区岩样的组构及理化性能进行了系统分析,通过分析认识到海坨子地区嫩江组地层属强膨胀中~弱分散中等~弱定向泥页岩地层,姚家组、青山口组和泉头组属弱膨胀弱分散良好定向泥页岩地层。考虑到上述实验工作量大,周期长等原因,在对泥页岩理化性能及组构特征进行预测时引入了人工神经网络技术,建立了评价模型。经验证,所建立的模型准确可靠。在泥页岩地层分类评价基础上,对井壁失稳的原因进行了探讨,然后从失稳原因入手进行适合该地区钻井液体系的研究,在室内实验的基础上研制出了适合该地区地层钻进的钻井液体系——不渗透钻井液体系。现场试验结果表明,该钻井液体系能有效控制该地区的井壁失稳,大幅度降低井下复杂情况的发生。
Though the basic reasons of wellbore instability have been profoundly understood, due to differences in geological characteristic and formation condition and so on, detailed analysis of each oilfield should be carried out. some problems have been encountered, such as borehole shrinkage, loss, sidewall collapse and blocks falling off during exploration and exploitation of Haituozi area in Jilin Oilfield. In view of this situation, the physical-chemical properties and orientation of rock samples of Haituozi area are analyzed systematically by X-ray diffraction, spectrophotometry, cuttings roller recovery measuring and expansion rate measuring. The conclusion is got by systematical analyses that the mud shale of Nenjiang formation belongs to the type of strong expansion, medium to weak dispersity and medium to weak orientation, Yaojia formation, Qingshankou formation and Quantou formation belong to the type of medium to weak expansion, medium to weak dispersity and good orientation. Considering the time taken in experiments and large workload and so on, artificial neural network has been introduced into evaluation, evaluation model has been instructed. The accuracy and credibility of the model has been proved. On the basis of evaluating physical-chemical properties and orientation of shale, the paper discusses the wellbore instability reason of ground in this area. According to the reason, the impermeable drilling fluid suitable to the formation penetration of Haituozi area is developed on the basis of laboratory experiments. The results of field test show that this kind of drilling fluid can control the wellbore instability of this area and decrease the occurring of borehole complexities substantially.
引文
[1]马丽,倪文学,丁安虎.胜北构造泥页岩水敏性与井眼稳定性关系研究[J].西安石油学院学报,1999,14(3):1~5
    [2]马丽,倪文学,丁安虎.胜北构造硬脆性裂隙特征及防塌机理[J].西安石油学院学报,1999,14(4):26~29
    [3]徐家放,邱正松,刘庆来等.塔河油田井壁稳定机理与防塌钻井液技术研究[J].石油钻采工艺,2005,27(4):33~36
    [4]王富华,李万清.大安地区井壁稳定机理与硅醇成膜防塌钻井液技术[J].断块油气田,2007,14(4):68~70
    [5]徐同台,崔茂荣,王允良等.钻井工程井壁稳定新技术[M].北京:石油工业出版社,1999,3~17.
    [6]徐同台.油气田地层特性与钻井液技术[M].北京:石油工业出版社,1998,1~14
    [7]中国石油天然气总公司勘探局.油气钻探新技术[M].北京:石油工业出版社,1998,41~42
    [8]刘玉石,白家祉,黄荣樽等.硬脆性泥页岩井壁稳定问题研究[J].石油学报,1998,19(1):85~89
    [9]黄维安,邱正松,徐加放等.吐哈西部油田井壁失稳机理实验研究[J].石油学报,2007,28(3):116~118
    [10]杜青才,石晓兵,等.霍10井高陡构造井壁失稳及井下复杂的机理研究[J].钻采工艺, 2004 (4):12~14
    [11]赵峰,唐洪明,孟英峰等.微观地质特征对硬脆性泥页岩井壁稳定性影响与对策研究[J].钻采工艺, 2007, 30(6): 16~18
    [12]狄勤丰.长庆苏里格气田欠平衡钻井井壁稳定性预测研究[J].天然气工业, 2004, 24(2): 70~72.
    [13]张兆盈,鞠德泉.钻井科技创新与管理创新研究[M].北京:石油工业出版社,1999,159~161.
    [14]徐同台.井壁稳定技术研究现状及发展方向[J].钻井液与完井液,1997,14(4):36~43
    [15]Burkhard J A, Ward M B, McLean R H. Effect of Core Surfcaing and Mud Filtrate Flushing on Reliability of Core Analysis Conducted on Fresh Cores. SPE 1139-G.
    [16]Sharma M M, Wunderlich R W. The Alternation of Rock Properties Due to Interactions with Drilling Fluid Components. SPE 14302.
    [17]Davld C.woodland. Borehole Instability in the western Canadian overthrust belt. SPE Drilling Engineering, March 1990:27~33
    [18]Tracey J.Ballard, Steve. P. Bear and Tom. A. Lawlew, Fundmentals of shale stabilization: water transport through shales SPE Formation Evaluation, 1994.7:127~134
    [19]Mack Gipson, Jr. 1966. A study of the relations of depth, porosity and clay mineral orientation in Pennsylvanian shales. J.S.P., 36:888~903
    [20]A.H. Hale, F.K.Mody,D.P.Salisbury:Experimental Investigation of the Influence of Chemical Potential on wellbore Stability, SPE23885
    [21] Van Olphen H.An Introduction to Clay Colloid Chemistry[M].2nd ed.New York:John Wiley&Sons Inc,1977:151~157
    [22]丁锐.地层粘土水化的总体机理和影响因素[J].油田化学.1998,15(2):180~184
    [23]奥西波夫著.粘土类和岩石的强度与变形性能的本质[M].李生林,张之一译.地质出版社,1985:22~29
    [24]吕开河,高锦屏,樊泽霞.井壁化学稳定性评价方法分析[J].钻井液与完井液.2001,18(5):34~39
    [25]陈大钧.油气田应用化学[M].石油工业出版社,2006:1~5
    [26]徐同台,赵敏,熊友明.保护油气层技术[M].第二版.石油工业出版社,2003:14~27
    [27]陈涛平,胡靖邦.石油工程[M].石油工业出版社,2000:109~112
    [28]沈守文,沈明道,梁大川等.泥页岩的X射线衍射定向指数与理化性能及井壁稳定的关系[J].沉积学报,1998,16(2):117~122
    [29]Jim C Y. Microscopic-photometric measurement of polymodal clay orientation using circular-polarized light and interference colours. Applied Clay Science,1988,3(4):307~321
    [30]Sokobov V N and O’Brien N R.A fabric classification of argillaceous rocks, sediments, soils. Applied Clay Science, 1990,5(4):353~360
    [31]Nguyen D,Widrow B.Neural networks for self-learning control systems[J].IEEE Control System Magazine, 1990,10(3):32~35
    [32]The Math Works. Inc. Neural Network Toolbox User’s Guide 2000
    [33]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992:32~51
    [34]刘波,鄢捷年,李静.泥页岩分类的BP神经网络方法[M].石油钻采工艺,2003:25(4):20~22
    [35]邬春学,杨红明,李波等.神经网络技术在滩海地区井壁稳定计算机辅助分析中的应用研究[J].中国石油勘探,2002:7(4):87~90
    [36]吕开河.泥页岩矿物组分与理化性能计算机处理及预测[J].石油钻探技术,2004,32(1):26~28
    [37]胡德文,王正志,王耀南等.神经网络自适应控制[M].长沙:国防科技大学,2006:1~4
    [38]高源.BP神经网络优化算法研究[J].人工智能与识别技,2009,29(5):8248~8249
    [39]Huang S H,Zhang H C.Artificial neural network in manufacturing:concepts,applications,and perspectives[J].IEEE Transaction on Components,Packaging and Manufacturing Technology,1994,17(2):212~228.
    [40]周政.BP神经网络的发展现状综述[J].山西电子技术,2008(2):90~92.
    [41]张山,何建农.BP神经网络的优化算法研究[J].计算机与现代化,2009(1):73~75.
    [42]杨丽芬,蔡之华.BP神经网络优化算法研究[J].软件导刊,2007(3):106~108.
    [43]C.Ferreira.Gene Expression Programming:A New Adaptive Algorithm for solvingProblems[J].Complex Systems,2001,(2).
    [44]代奎,孙玉学,范洪富等.钻井液完井液分析技术[M].成都科技大学出版社,1996:152~155
    [45]刘金利,周保中,张嵇南等.海坨子地区防漏堵漏钻井液技术[J].钻井液与完井液,2002,19(6):104~106
    [46]田兆亿,王亚东,孙永才等.可循环微泡沫钻井液在海坨子地区的应用[J].石油钻采工艺,2004,26(5):26~28
    [47]孙金声,林喜斌等.国外超低渗透钻井液技术综述[J].钻井液与完井液,2005,22(1):57
    [48]孙金声,唐继平等.超低渗透钻井液完井液技术研究[J].钻井液与完井液,2005,22(1):4
    [49]孙金声,张家栋,黄达全等.超低渗透钻井液防漏堵漏技术研究与应用[J].钻井液与完井液,2005,22(4):21
    [50]薛玉志,刘宝锋,唐代绪等.非渗透钻井液体系的研究与初步应用[J].钻井液与完井液,2005,22(2):12~15
    [51]Simpson J P, Walker T O, Jiang G Z. Environmentally acceptable water-based mud can prevent shale hydration and maintain stability[R].SPE 27496,1995:242~249
    [52]徐同台,赵忠举. 21世纪初国外钻井液和完井液技术[M].石油工业出版社, 2004.
    [53]JarrettM A. A New Polymer/GlycolWater-Based System for Stabilizing TroublesomeWater-Sensitive Shales[J]. SPE, 29545.
    [54]Bland R Q. BakerHughes INTEQ Quality Criteria in SelectingGlycols asAlternatives toOil-Based DrillingFluid Systems[J]. SPE 27141.
    [55]EnrightD P. An Environmentally SafeWater-BasedAlternative toOilMuds[J]. SPE, 21937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700