HMGB1在人脐血造血干细胞归巢和增殖分化中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中文摘要
     背景与目的高迁移率族蛋白B1(high mobility group box 1,HMGB1)是一种DNA结合蛋白,组织损伤后释放至胞外,招募多种类型干细胞,参与受损组织修复。造血干细胞移植(haematopoietic stem cell transplantation ,HSCT)的预处理必然导致骨髓组织受损,释放HMGB1,推测其可能参与造血重建。本实验将首次观察预处理后骨髓基质细胞HMGB1的释放、HMGB1对人脐血造血干细胞归巢和增殖分化的影响,并对其机制予以探讨;以期为促进HSCT术后造血重建寻找新靶点。方法体外培养人骨髓基质细胞,加速器照射后,利用ELISA方法检测培养上清中HMGB1含量的变化。利用MACS系统分选人脐血CD34+细胞,HMGB1与其共培养6天,通过流式细胞术检测脐血CD34+细胞分化指标(CD13、CD14、CD11c、CD41,CD71)的变化。利用克隆形成实验观察HMGB1与对造血干细胞增殖分化的影响。应用transwell小室趋化装置观察HMGB1对人脐血CD34+细胞的迁移活性的影响。流式细胞术检测HMGB1的受体RAGE、TLR2和TLR4在人脐血CD34+细胞上的表达。利用抗-RAGE抗体、抗- TLR2抗体和抗- TLR4抗体阻断RAGE、TLR2和TLR4,重复趋化实验,体外观察RAGE、TLR2和TLR4是否参与HMGB1可能诱导的人脐血CD34+细胞迁移。结果1.经X线照射后骨髓基质细胞培养上清中HMGB1含量增高:人骨髓基质细胞,加速器照射(12Gy)后,培养上清中HMGB1含量为(4.3±0.9)ng/ml,较不照射组HMGB1含量(0.4±0.2)ng/ml升高(p<0.01)。2.HMGB1表面受体检测人脐血CD34+细胞表达HMGB1的受体RAGE(43.1±7.2)%、TLR2(36.1±6.6)%和TLR4(23.1±5.2)%。3.HMGB1促进CD34+细胞向红系和粒单系增殖分化:脐血分选富集的纯度为(98.25±0.93)%,与HMGB1体外液体共培养6天后,和对照组比较,红系(CD71)和粒单系(CD13、CD14、CD11c)标记的表达明显增强,分别为CD13(18.4±3.8 vs 32.6±5.9)%、CD14(12.6±2.7 vs 25.4±4.4)%、CD11c(9.8±2.1 vs 20.3±3.9)%、、CD71(26.6±4.6 vs 47.1±7.4)%,而巨核系标记CD41(1.1±0.4% vs 1.3±0.5%)的表达无明显变化。同样,克隆形成实验示共培养14天后,红系集落、粒-巨噬细胞集落和总集落的生成较对照组明显增多(p<0.05)。4.HMGB1诱导脐血CD34+细胞的迁移:HMGB1在一定的浓度范围内随浓度递增其对人脐血CD34+细胞的迁移作用逐渐增强,当HMGB1浓度为100 ng/ml时,趋化活性最强,趋化指数为3.96±0.46,与对照组比较差异显著(p<0.01),抗-RAGE抗体可部分抑制HMGB1对脐血CD34+细胞的迁移作用。
     结论照射后骨髓基质细胞培养上清HMGB1含量明显升高;HMGB1可促进人脐血CD34+细胞向粒单核及红系分化,并促进红系集落和粒-巨噬细胞集落的生成;一定浓度的HMGB1可加强脐血CD34+细胞迁移功能,此作用有可能通过RAGE介导。
Background and objective High mobility group box 1(HMGB1)is an abundant chromatin-binding protein that acts as a cytokine when released in the extracellular milieu by necrotic and inflammatory cells,can play a role in tissue regeneration. Presently, we build over this hypothesis. The fore treatment of haematopoietic stem cell transplantation(HSCT)will lead the bone marrow tissue damage, and release of HMGB1,which is expected to promote the migration of HSCs to the damaged tissue, and to play a role in reconstruction of hematopoiesis , but little is known about the mechanisms regulating these processes. Here, we elected to study both the release of HMGB1 from irradiation -treated mesenchymal stem cells (MSCs) and the effects of HMGB1 on human cord blood CD34+ hematopoietic progenitor cells homing,proliferation and differentiation and their mechanisms, in order to find new target in reconstruction of hematopoiesis.
     Methods MSCs were obtained from human bone marrow. HMGB1 released by the MSCs after treatment with 12Gy X-Gy irradiated was determined using a enzymelinked immunosorbent assay (ELISA). CD34+ cells were positively selected with a MACS CD34 isolation kit. Subsequently, freshly isolated CD34+ cells were cultured in the presence of HMGB1 for 6 days. Phenotype of cultured cells surface molecules (CD13、CD14、CD11c、CD41、CD71) were analyzed by flow cytometry. Also, the proliferation and differentiation ability of cord blood HSCs were characterized by colony forming cell assay. In addition, the receptors of HMGB1(RAGE、TLR2、TLR4) on cord blood CD34+ cells were detected by flow cytometry. The effects of HMGB1 on HSCs homing were evaluated by chemotaxis assay using Boyden chambers. To analyze the underlying mechanism of HMGB1-induced HSCs migration, we engaged inhibitory antibodies against its receptors, RAGE, TLR2, and TLR4.
     Results 1. HMGB1 is released from MSC treated with X-Gy irradiated. Level of HMGB1in the supernatant(4.3±0.9)ng/ml for MSC treated with 12Gy X-Gy irradiated was significantly higher when compared to control group(0.4±0.2)(p<0.01). 2. Expression of HMGB1 receptors in human cord blood CD34+ cells. Human cord blood CD34+ cells expressed the HMGB1 receptors, RAGE (43.1%±7.2%), TLR2(36.1%±6.6%) and TLR4 (23.1%±5.2%) . 3. HMGB1 induces the proliferation and differentiation of human cord blood CD34+ cells in vitro. The HMGB1-treated CD34+ cells possessed the higher proportion of CD13(32.6±5.9% vs 18.4±3.8%),CD14(25.4±4.4% vs 12.6±2.7%),CD11c(20.3±3.9% vs 9.8±2.1%),CD71(47.1±7.4% vs 26.6±4.6%) compared to control group. But, HMGB1 did not induce the generation of CD41+ cells (1.3±0.5% vs 1.1±0.4%).Colony forming cell assay indicate the growth of BFU-E、CFU-GM and total CFU upregulated. 4. HMGB1 stimulate migration of cord blood CD34+ cells HMGB1 stimulated migration of CD34+ cells in a concentration-dependent manner, when the concentration was 100ng/ml, the strong chemotaxis was shown(p<0.01). A neutralizing anti-RAGE antibody significantly blocked the HMGB1-induced migration of CD34+, whereas neutralizing TLR2 and TLR4 antibodies did not significantly influence HMGB1-stimulated CD34+ migration.
     Conclusion Treatment of human MSC with X-Gy irradiation can cause release of HMGB1. Human cord blood CD34+ progenitor cells constitutively express functional HMGB1 receptors, RAGE, TLR2 and TLR4. HMGB1 can induce the differentiation of human cord CD34+ cells along the granulo-monocytic and erythroid system. A certain concentration of HMGB1 was able to induce the chemotaxis in vitro of CD34+ cells, and the migratory effect of HMGB1 on human HSCs is predominantly mediated by RAGE.
引文
1. Thomas ED, Storb R, Clift RA, et al. Bone-marrow transplantation (second of two parts). N Engl J Med 1975; 292: 895–902.
    2. Haut A, Abbott WS, Wintrobe MM, et al.Busulfan in the treatment of chronic myelocytic leukemia. Blood, 1961; 17:1-19.
    3. De Souza CA, Vigorito AC, Ruiz MA, et al. Validation of the EBMT risk score in chronic myeloid leukemia in Brazil and allogeneic transplant outcome. Haematologica. 2005:232-237.
    4. Hashimoto S, Gm Y, Takeshita I, et al. [J]. Am J Respir Cut Can; Med, 2001,163: 152-157.
    5. Montanari M, Capelli D, Poloni A, et al.Long-term hematologic reconstitution after autologous peripheral blood progenitor cell transplantation: a comparison between controlled-rate freezing and uncontrolled-rate freezing at 80 degrees C. Transfusion. 2003 Jan;43(1):42-49.
    6. Statkute L, Verda L, Oyama Y, Mobilization, harvesting and selection of peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2007 Mar;39(6):317-29.
    7. Mahon FX, Deininger MW, et al. Selection and characterization of BCR-ABL positive cells lines with differential sensistivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood,2000;96:1070-1079.
    8. Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood,2000; 95:3498-3505.
    9. Karen K. Ballen. New trends in umbilical cord blood transplantation. Blood 2005; 105: 3788-3792
    10. Section on Hematology/Oncology and Section on Allergy/Immunology. Cord Blood Banking for Potential Future Transplantation. Pediatrics 2007;119:165-170.
    11. Hao QL, Shah AJ, Thiemann FT, A functional comparison of CD34 + CD38- cells in cord blood and bone marrow. Blood. 1995 Nov 15; 86(10):3745-3753.
    12. Risdon G, Gaddy J, Stehman FB,Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol. 1994; 154(1):14-24.
    13. Moretta A, Maccario R, Fagioli F, Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol. 2001; 29(3):371-379.
    14. Petropoulos D, Chan KW. Umbilical cord blood transplantation. Curr Oncol Rep. 2005, 7(6):406-9.
    15. Heissig B, Ohki Y, Sato Y, Rafii S, Werb Z, Hattori K. A role for niches in hematopoietic cell development. Hematology. 2005 10(3):247-53.
    16. Voermans C, Rood PM, Hordijk PL, et al. Adhesion molecules involved in transendothelial migration of human hematopoietic progenitor cells. Stem Cells. 2000; 18(6):435-43.
    17. Papayannopoulou T, Priestley GV, Nakamoto B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood. 1998; 91(7):2231-9.
    18. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol. 2001; 29(3):345-55.
    19. Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol. 2003;79(1):15-25.
    20.张增利.辐射对小鼠骨髓基质细胞分泌血管内皮生长因子的影响.辐射研究与辐射工艺学报.2006;24(1):43-47
    21. Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417(6892):954-8.
    22. Cramer DE, Allendorf DJ, Baran JT, et al. Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood. 2006;107(2):835-40.
    23. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 2000;106(11):1331-9.
    24. Thomas JO, Travers AA. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem Sci. 2001;26(3):167-74.
    25. Xiang YY, Wang DY, Tanaka M, et al. Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa. Int J Cancer. 1997;74(1):1-6.
    26. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999; 285(5425):248-51.
    27. Chen G, Ward MF, Sama AE,et al. Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res. 2004; 24(6):329-33.
    28. Degryse B, Bonaldi T, Scaffidi P, et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol. 2001; 152(6):1197-206.
    29. Limana F, Germani A, Zacheo A, et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res. 2005 Oct 14;97(8):e73-83.
    30. Altmann S, Lange S, Pommerencke J,etal.High Mobility Group Box 1-Protein expression in canine haematopoietic cells and influence on canine peripheral blood mononuclear cell proliferative activity. Vet Immunol Immunopathol. 2008 Dec15;126(3-4):367-72.
    31. Meng E, Guo Z, Wang H, Jin J,etal. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev.2008 Aug;17(4):805-13.
    32. Sioud M, Fl?isand Y, Forfang L, etal. Signaling through Toll-like Receptor 7/8 Induces the Differentiation of Human Bone Marrow CD34+ Progenitor Cells along the Myeloid Lineage. J Mol Biol. 2006; 364(5):945-54.
    33. Kim JM, Kim NI, Oh YK, etal. CpG oligodeoxynucleotides induce IL-8 expression in CD34+ cells via mitogen-activated protein kinase-dependent and NF-{kappa}B-independent pathways Int. Immunol., 2005,17(12): 1525 -31.
    34. Cristofaro P, Opal SM. Role of Toll-like receptors in infection and immunity: clinical implications. Drugs. 2006; 66(1):15-29.
    35. Cho HH, Bae YC, Jung JS. Role of Toll-like Receptors on Human Adipose-derived Stromal Cells. Stem Cells. 2006 Aug 10; [Epub ahead of print]
    36. Nagai Y, Garrett KP, Ohta S, Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006 ; 24(6):801-12.
    37. Fiuza C, Bustin M, Talwar S, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101(7):2652-60.
    38. Yong K, Fahey A, Reeve L et al.. Cord blood progenitor cells have greater transendothelial migratory activity and increased responses to SDF-1 and MIP-3beta compared with mobilized adult progenitor cells. Br J Haematol. 1999; 107(2): 441-9.
    39. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells.Exp Hematol. 2001; 29(3):345-55.
    40. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105:369-77.
    41. Yong KL, Watts M, Thomas NS, et al. Transmigration of CD34+ Cells acrossspecialized and nonspecialized endothelium requires prior activation by growth factors and is mediated by PECAM-1 (CD31). Blood,1998.91:1196-205.
    42. Lorimore SA, Wright EG.. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol. 2003;79(1):15-25.
    43.郝一文,李亚明,刘显智.辐照的血管内皮对造血干细胞迁徙的影响.中华放射医学与防护杂志. 2005; 25(5): 428-31.
    44. Gaugler MH , Squiban C , Mouthon MA , et al . Irradiation enhances the support of haemopoietic cell transmigration , proliferation and differentiation by endothelial cells. Br J Haematol, 2001; 113:940-50.
    45. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 2000;106(11):1331-9.
    [1] Takeda K, Kaisho T, Akira, S. Toll-like receptors. Annu.Rev. Immunol, 2003, 21: 335–376
    [2] Nishimura M,Naito S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes.Biol Pharm Bull,2005,28(5): 886-922
    [3] Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol,2004, 4(7): 499-511
    [4] O'Neill, L.A. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol, 2004, 25 (12): 687~693
    [5] O'Neill, L.A.& Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Reviews. Immunology, 2007, 7:353–364.
    [6] Hirotani, T., Yamamoto, M., Kumagai, Y.,etal ,Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-beta. Biochemical and Biophysical Research Communications, 2005, 328:383–392.
    [7] Yamamoto, M., Sato, S., Hemmi, H.,etal. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunology, 2003, 4:1144–1150.
    [8] Sioud M, Fl?isand Y, Forfang L, etal. Signaling through Toll-like Receptor 7/8 Induces the Differentiation of Human Bone Marrow CD34+ Progenitor Cells along the Myeloid Lineage. J Mol Biol. 2006; 364(5):945-954.
    [9] Sioud M, Fl?isand Y. TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. Eur. J. Immunol. 2007. 37:1-13.
    [10] Kim JM, Kim NI, Oh YK, etal. CpG oligodeoxynucleotides induce IL-8 expression in CD34+ cells via mitogen-activated protein kinase-dependent and NF-{kappa}B-independent pathways Int. Immunol., 2005,17(12): 1525 -1531.
    [11] Nagai, Y., Garrett, K.P., Ohta, S.,etal. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity, 2006, 24: 801–812.
    [12] Liotta F., Angeli R.,Cosmi L.etal. Toll-Like Receptors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling. Stem Cells Vol. 26 No. 1 January 2008, pp. 279 -289.
    [13] Pevsner-Fischer M, Morad V, Cohen-Sfady M, etal. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007, 109(4):1422-32.
    [14] Cho HH, Bae YC, Jung JS. Role of Toll-like Receptors on Human Adipose-derived Stromal Cells. Stem Cells. 2006, 24(12):2744-52.
    [15] Ueda, Y., Kondo, M. & Kelsoe, G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. The Journal of Experimental Medicine, 2005,201: 1771–1780.
    [16] Ueda, Y., Yang, K., Foster, S.J.,etal. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. The Journal of Experimental Medicine,2004,199, 47–58.
    [17] Hayashi, F., Means, T.K. & Luster, A.D. Toll-like receptors stimulate human neutrophil function. Blood, 2003,102: 2660–2669.
    [18] Maratheftis CI,Andreakos E., Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res.2007 Feb 15;13(4):1154-60
    [19] Heidemann J, Domschke W, Kucharzik T, etal. Maaser Intestinal microvascular endothelium and innate immunity in inflammatory bowel disease: a second line of defense? Infect. Immun., October 1, 2006; 74(10): 5425 - 5432.
    [20] Ogawa HP, Rafiee J, Heidemann PJ, Mechanisms of endotoxin tolerance in human intestinal microvascular endothelial cells. J.Immunol. 2003,170:5956–5964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700