壳聚糖及其表面活性剂复合物的抗菌性与抗菌机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是由2-乙酰氨基—2-脱氧—D—吡喃葡萄糖和2-氨基-2-脱氧-D-吡喃葡萄糖通过β—(1→4)糖苷键连接的二元线性聚合物。由于它具有抗菌、抗肿瘤、增强免疫力等功能,以及其无毒、可降解和可再生等特性而倍受关注。作为抗菌剂,壳聚糖及其衍生物可以抑制多种细菌、真菌的生长。目前,对壳聚糖及其衍生物的抗菌活性、影响因素及与结构之间的关系研究还不够完整系统,而对抗菌机理也只有一些推论性的报道。本文综述了近年来国内外在壳聚糖及其衍生物的抗菌性、抗菌机理以及壳聚糖与表面活性剂在诸多方面研究应用的进展,并较系统地考察了壳聚糖及其衍生物的结构参数对抗菌活性的影响与抗菌机理。同时,还研究了壳聚糖-表面活性剂复合物的抗菌性与其表面活性,以及壳聚糖与表面活性剂分子间的相容性,探讨分子间非共价健相互作用的本质和规律,从而确立相容性—结构—抗菌性的关系,以及总结出表面活性剂对壳聚糖增强抗菌性的机理与基本规律。
     主要研究内容与结论如下:
     1.壳聚糖的超声波降解:对4个壳聚糖原料(Mw:154×10~4~44.7×10~4,DD:91.6~61.9%)通过超声波降解,得到28个不同分子量(Mw:98.3×10~4~9.1×10~4)与脱乙酰度(DD:92~55%)的壳聚糖降解产物,并采用GPC、UV、IR、XRD等方法测定了Mw、DD与结晶性,分析了壳聚糖原料Mw与DD对超声波降解速率、降解产物Mw、DD、结晶性的影响。结果表明:Mw大,DD低的壳聚糖降解较快;超声波降解使壳聚糖产物的Mw分布变窄,结晶度提高,且Mw愈大的原料降解后Mw分布愈窄;超声波降解会降低壳聚糖产物的DD,尤其是Mw较大(Mw:154×10~4)、DD较低(DD:72.1%)的壳聚糖原料降解后DD降到了55.1%。
     2.壳聚糖及其衍生物的抗菌性:采用固体平板与液体培养方法研究了壳聚糖及其衍生物对革兰氏阳性菌金黄色葡萄球菌、表皮葡萄球菌、革兰氏阴性菌大肠杆菌、绿脓杆菌、真菌白色念珠菌等的最低抑菌浓度(MIC)、抑菌时间(IT)、抑菌率、短期杀菌效果(180min内),并考察了分子量、脱乙酰度、降解方法、有机酸对壳聚糖抗菌性的影响,实验表明:① 0.5%壳聚糖溶液在5分钟内就杀
    
    死了1.2 109 CFU/m】的大肠杆菌,1加分钟内杀死全部的大肠杆菌与部分的金黄
    色葡萄球菌;它对金黄色葡萄球菌、表皮葡萄球菌、大肠杆菌、绿脓杆菌均有抑
    制活性,MIC值为0.025~0.05%,但对白色念珠菌无抑制效果;②酶解壳聚糖
    产物的抗菌性随分子t的降低而有减弱的趋势,尤其是分子量小于10000的壳低
    聚糖MIC值下降1倍;③超声波降解壳聚糖的产物在分子量小且脱乙酞度高时
    的抗菌性最强,且脱乙酞度相近的壳聚糖随分子量的降低其抗菌性增强,但分子
    量相近的壳聚糖的抗菌性并不一定随脱乙酞度的增加而增强,这可能与样品本身
    的分子结构有关:④通过分析壳聚糖衍生物如梭甲基壳聚糖、壳聚糖季胺盐、
    壳寡糖、壳聚糖亚硒酸盐、钠米壳聚糖与壳聚糖的季胺盐等的抗菌性认为,壳聚
    糖的氨基对其抗菌性是至关重要的,能增强壳聚糖分子的电荷密度,促进其与带
    负电荷的细菌表面的相互作用有利于抗菌性的增强,反之亦然。⑤有机梭酸如苯
    甲酸、水杨酸、抗坏血酸、柠檬酸与壳聚糖醋酸溶液混合后对细菌的抑菌时间增
    长,0.05%壳聚糖醋酸溶液+0.01%水杨酸溶液具有最强的抗菌性,pH<5 .8时混
    合液对细菌有较强的抑制作用。
     3.壳聚糖与表面活性剂分子间的相互作用:制备了壳聚糖与两性甜菜碱型
     (Betaine)、非离子烷基多昔(APG)、阴离子型十二烷基磺酸盐(sDs)与直链十
    二烷基苯磺酸盐(LAS)的复合物,并用IR、XRD、热分析(TG、DTG、DSC)
    等方法表征了其结构,并用粘度法、GPC法测定了复合溶液的GPC谱图与特性
    粘数(【川),分析了壳聚糖与表面活性剂的相互作用。结果表明,壳聚糖在pH<6
    的酸性溶液中,C一2位上的氨基以氨基正离子的形式存在,因而它可以与带有负
    电荷的表面活性剂如阴离子型与两性甜菜碱型的表面活性剂以静电作用生成复
    合物:由于壳聚糖分子中含有大量的轻基、氨基功能团,其可以与含有轻基的表
    面活性剂如烷基多昔形成一OH.二OH一或司OH…NH一形式的分子间氢键,从而形
    成复合物。复合物的结晶性发生了变化,且易于热分解,这可能是由于复合物中
    壳聚糖的高级结构如聚集态、分子链构象等发生了变化。在溶液中,壳聚糖上的
    经基与氨基可以在分子内或分子间生成氢键,从而形成聚集体。GPC与特性粘
    数的测定结果初步表明,表面活性剂的加入可能使聚集态的壳聚糖趋于解聚,且
    分子链趋于伸展。
     4.壳聚糖一表面活性剂复合物的抗菌性及其表面活性功能:用张力仪在25℃
    
    下测定了壳聚糖、APG、Betai的e与它们的复合物的表面张力,考察了壳聚糖与
    阴离子表面活性剂SDS与LAS、两性甜菜碱型表面活性剂、非离子型表面活性
    剂APG与烷基乙氧化物(A25E7)、阳离子型表面活性剂澳化十六烷基三甲基钱
    (CTAB)的复合物对革兰氏阳性菌金黄色葡萄球菌、表皮葡萄球菌、革兰氏阴
    性菌大肠杆菌、绿脓杆菌、真菌白色念珠菌等的MIC值、IT、短期杀菌效果,
    并研究了配比、浓度、pH值对其抗菌性的影响。结果表明:壳聚糖与表面活性
    剂的复合物能够抑制壳聚糖不?
Chitosan, a copolymer consisting of ? (1,4)- 2- acetamido - 2 - deoxy- D- glucose and 0-(1,4) -2- amino -2- deoxy -D-glucose units, has attracted considerable interests due to its biological activities such as antimicrobial, antitumor, immune enhancing effects, and its nontoxicity, degradability, renewability. As antimicrobial agent, chitosan and its derivatives can inhibit the growth of many bacteria and fungi. At present, studies about antimicrobial activity of chitosan and its derivates, factors, the tructure-activity relationship and its mechanism are not clear. The resent progresses on the antimicrobial activity of chitosan and its derivatives, its factors, mechanism and application were summarized in this paper. The effects of structure on the antimicrobial activity of chitosan and its derivatives, as well as the mechanism of antimicrobial activity, were systematically studied. And the antimicrobial and surface activity of chitosan combined with surfactants, as well as the interactions between chitosa
    n and surfactant molecule, were also studied, so as to determine compatibility-structure-antimicrobial activity relationship, and find out the mechanism and regularity of the improved antimicrobial activity of chitosan by surfactants.
    The main contents and conclusions are summarized as below:
    1. Ultrasonic degradation of chitosan: 28 chitosan samples with different Mw (98.3 ?104-91? 104) and DD (92-55%) were prepared by ultrasonic degradation of 4 raw chitosan materials (Mw: 154 ?104-44.7 ?104, DD: 91.6-61.9%), and their Mw, DD, crytallinities were characterized by GPC, UV, IR, XRD. It showed that chitosan with higher Mw and lower DD showed faster degradation; The Mw polydispersity of treated chitosans were narrower, the higher the Mw of raw chitosan, the narrower the polydispersity of the degraded samples; The crystallinity of ultrasonic treated chitosan was higher; Ultrasonic treatment decreased the DD of chitosan, especially the DD of chitosan with higher Mw (154 ?04) and lower DD (72.1%) decreased to 55.1%.
    2. Antimicrobial activity of chitosan and its derivatives: The minimum inhibition concentration (MIC), inhibition time (IT), inhibition rate and biocidal effect (within 180 min) of chitosan and its derivatives, against gram-positive bacteria such as 5. aureus, S. epidermidis, gram-negative bacteria such as E. coli, P. aeruginosan, fungi C. albicans, were determined using Agar plate and liquid medium methods. ?0.5% chitosan killed 1.2 log CFU/ml E. coli in 5 min, all E. coli and some Staphylococcus aureus in 120 min , and inhibited the growth of E. coli, Pseudomonas aeruginosa, S.
    
    
    
    aureus, Staphlococcus epidermidis, but not Candida albicans. Minimum inhibition concentrations (MICs) against bacteria were in the range of 0.025~0.05%; ?the antimicrobial activity of chitosan samples gained from enzyme hydrolysis decreased with decreasing Mw, especially that with Mw lower than 10000, whose MICs could be 1 times lower; (3) the antimicrobial activity of chitosan treated by ultrasonic, with low Mw and high DD, showed strongest inhibition effect; antimicrobial activity of chitosan with similar DD increased with decreasing Mw; but the antimicrobial activity of chitosan with similar Mw was not bound to increase with increasing DD, which was related to the molecular structure of samples; ?through analyzing the antimicrobial activity of chitosan derivatives, it is considered that the amino group of chitosan is critical to its antimicrobial activity, and the modification that increases the positive charge of chitosan molecule or benefits to the interaction between chitosan and negative charged bacterial surface will improve antimicrobial activity, or the case is converse. (5) The antimicrobial activity of chitosan acetate solution combined with other organic acids such as benzole acid, salicylic acid, ascorbic acid and citric acid solutions exhibited longer inhibition time than chitosan acetate solution alone. And the mixed solution of 0.05% chitosan acetate and 0.01% salicylic acid solution showed the best antim
引文
[1] Jeuniaux C. Chitine ofchitinelyse, Masson, Pads, 1963.
    [2] Richards A G. The integument of arthropods, University of Minnesota press, Minneapolis, 1951.
    [3] 蒋挺大,壳聚糖,2001,化学工业出版社。
    [4] Majeti N Y, Ravi K. A review of chitin and chitosan application, Reactive and Funtional Polymers, 2000, 46:1.
    [5] Becher T, Schlaak M, Strasdeit H. Adsorption of nickel(Ⅱ), zinc(Ⅱ)and cadmium(Ⅱ) by new chitosan derivatives, Reactive and Functional Polymers, 2000, 44: 289.
    [6] Hirano S. Chitin and Chitosan: new molecular and biofunctions by chemical modification, Advances in Chitin Science, 1997, Jacques Andre Publisher, Vol
    
    Ⅱ, 1-10.
    [7] Hirano S. Application of chitin in biotechniques, Biotechnology Annual Review, 1996,2:137.
    [8] Chen L, Du Y, Zeng X. Relationshiop between chemical structure and moisture-retention ability of earboxymethyl chitosan Ⅱ Effect of degree of deacetylation and substitution. Carbohydrate Research, 2003, 338: 333.
    [9] Chen L, Du Y. Aggregation behavior of 3,6-O-CM-chitin in aqueous solution. Journal of Appllied Polymer Science, 2003, 86: 1838.
    [10] Zhang L, Xu X, Zhang M, et al. Molecular size and aggregation behavior of Erwinia Gum in aqueous solution, Journal of Appllied Polymer Science, 1999, 75: 1083.
    [11] Fredheim G E, Braaten S M, Christensen B E. Macromolecular characterization of three barley β-gluean standards by size-exclusion chromatography combined with light scattering and viscometry: an inter-laboratory study, Journal of Chromatography A, 2002,942:191.
    [12] Sharma J, Bohidar H B. Gelatin-glutaraldehyde supramolecular structures studied by laser light scattering, European Polymer Journal, 2000, 36: 1409.
    [13] 董朝霞,林梅钦,李明远等,光散射技术在研究高分子溶液和凝胶方面的应用,高分子通报,2001,15:25。
    [14] Liu M, Cheng R, Wu C. Laser light scattering study of intrachain and interchain associations of poly(vivyl alcohol)in aqueous solution, European Polymer Journal, 1999, 15: 1907.
    [15] Adolph U, Kulicke W M. Coil dimensions and conformation of macromolecules in aqueous media from flow field-flow fraction/multi-angle laser light scattering illustrated by studies on pullulan, Polymer, 2000, 38: 1513.
    [16] Wu C, Zhou S Q, Wang W. A dynamic laser light-scattering study of ehitosan in aqueous solution. Biopolymers, 1995, 35: 385.
    [17] Peng Yan-fei, Zhang Lina, Characterization of a polysaccharide-protein complex from Ganoderma tsugae myceliurn by size-exclusion
    
    charomatography combined with laser light scattering. Journal of Biochemical and Biophysical Methods, 2003, 56: 243.
    [18] Jumel K, Fiebrig I, Harding S E. Rapid size distribution and purity analysis of gastric mucus glyeoproteins by size exclusion chromatography/multi angle laser light scattering, International Journal of Biological Macromolecules, 1996, 18: 133.
    [19] Christensen B E, Ulset A S, Beer M U, et al. Macromolecular characterization of three barley β-glucan standards by size-exlusion chromatography combined with light scattering and viseometry: an inter-laboratory study. Carbohydrate Polymers, 2001, 45: 11.
    [20] Bongaerts K, Reynaers H, Zanetti F, et al. On the molar mass of κ-carrageenan in the course of conformational transition from the disordered to the fundamental ordered form. Macromolecules, 1999,32:675.
    [21] Picton L, Bateille I, Muller G. Analysis of a complex polysaccharide(gum Arabic)by multi-angle laser light scattering coupled on line to size exclusion chromatography and flow field flow fractionation, Carbohydrate Polymers, 2000,42:23.
    [22] Kaur M, Jumel K, Hardie K R, et al. Determining the molar mass of a plasma substitute succinylated gelatin by size exclusion chromatography-multi-angle laser light scattering, sedimentation equilibrium and conventional size exclusion chromatography, Journal of Chromatography, 2002, 957: 139.
    [23] 杜予民,甲壳素化学与应用的新进展,武汉大学学报(自然科学版),2000,46(2):181.
    [24] Qin Cai-qin, Du Yu-min, Xiao Ling, et al. Enzymic preparation of water-soluble chitosan and their antiturnor activity. International Journal of Biological Macromolecules, 2002, 31: 111.
    [25] 杜昱光,张铭俊,张虎等,海洋寡糖工程药物——壳寡糖制备分离新工艺及其抗癌活性研究,中国微生态学杂志,2001,1:5。
    [26] 杜昱光,白雪芳,李曙光等,寡聚糖生物农药对棉花体内细菌数量和作物生
    
    长的作用,中国微生态学杂志,2001,2:70。
    [27] 张文清,柴平海,夏玮等,NaOCl/H_2O_2协同氧化制备壳寡糖,华东理工大学学报,2000,26(4):425。
    [28] Belamie E, Dornard A, Giraud-Guille M M. Study of the solid-state hydrolysis of chitosan in presence of HCl. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35(15): 3181.
    [29] 钱和生,李兰,薛红梅,氨基葡萄糖盐酸盐制备及溶解度研究,化学世界,1994,2:75。
    [30] Allan G G, Peyron M. Molecular weight manipulation of chitosan Ⅰ: kinetics of depolymerization by nitrous acid, Carbohydrate Research, 1995,277: 257.
    [31] Sashiwa H, Saimoto H, Shigemasa Y. N-Acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions, Carbohydrate Research, 1993, 242: 167.
    [32] 覃彩芹,肖玲,杜予民等,过氧化氢氧化降解壳聚糖的可控性研究,武汉大学学报(自然科学版),2000.46(2):195。
    [33] Qin Cai-qin, Du Yu-min, Xiao Ling, Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan, Polymer Degradation and stability, 2002,76:211.
    [34] Kabalnova N N, Murinov K Y, Krasnogorskaya N N, et al. Oxidative destruction of chitosan under the effect of ozone and hydrogen peroxide. Journal of Appllied Polymer Science, 2001,81:875.
    [35] Ilyina A V, Tikhonov V E, Albulov A I, et al. Enzymic preparation of acid-free-water-soluble chitosan. Process Biochemistry, 2000, 35:563.
    [36] Kittur F S, Vishu Kumar A B, Tharanathan R: N. Low molecular weight chitosans-preparation by depolymerization with Aspergillus niger pctinase, and characterization. Carbohydrate Research, 2003,338: 1283.
    [37] Chen J P, Chang K C. Immobilization of chitinase on a reversibly soluble-insoluble polymer for chitin hydrolysis. Journal of Chemical Technology & Biotechnology, 1994, 60(2): 133.
    [38] Kuroiwa T, Ichikawa S, Sato S, et al. Improvement of the yield of
    
    physiologically active oligosaccharidcs in continuous hydrolysis of chitosan using immobilized chitosanase. Biotechnology and Bioengineering, 2003, 84(1): 121.
    [39] Yalpani M, Pantaleone D. An examination of the unusual susceptibilities of aminoglycans to enzymatic hydrolysis. Carbohydrate Research, 1994, 256(1): 159.
    [40] Qin Cai-qin, Du Yu-min, Zeng Lin-tao, et al. Effect of hemicellulase on the molecular weight and structure of chitosan. Polymer Degradation and Stability, 2003, 80: 435.
    [41] Qin Cai-qin, Zhou Bo, Zeng Lin-tao, et al. The physiochemical properties and antitumor activity of cellulase-treated chitosan. Food Chemistry, 2004, 84: 107.
    [42] Tsaih M L, Chen R H. Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan. Journal of Appllied Polymer Science, 2003, 90(13): 3526.
    [43] Chen R H, Chang J R, Shyur J S. Effect of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydrate Research, 1997, 299: 287.
    [44] Choi W S, Ahn K J, Lee D W, et al. Preparation of chitosan oligomers by irradiation. Polymer Degradation and Stability, 2002, 78: 533.
    [45] Lim L Y, Khor E, Koo. γ—irradiation of chitosan. Journal of Biomedical Materials Research, 1998, 43(3): 282.
    [46] Andrady A L, Tokikai A, Kobatake T. Spectral sensitivity of chitosan photodegradation. Journal of Appllied Polymer Science. 1996, 62(9): 1465.
    [47] No H K, Nab J W, Meyers S P. Effect of time/temperature treatment parameters on depolymerization of chitosan. Journal of Appllied Polymer Science, 2003, 87(12): 1890.
    [48] Qin Caiqin, Du Yumin, Xiao Ling, et al. Moisture retention and antibacterial activity of modified chitosan by hydrogen peroxide. Journal of Appllied Polymer Science, 2002, 86(7):1724.
    [49] Pearson F G, Marchesault R H, Liang C Y. Infrared spectra of crystalline
    
    polysaccharides V. chitin. Journal of Polymer Science Part A: Polymer Chemistry, 1960, 41(141):101.
    [50] Liao M L, Chiovitti A, Munro S L A, et al. Sulfated galactans from Australian specimens of the red alga Phacelocarpus peperocarpos(Gigartinales, Rhodophyta), Carbohydrate Research, 1996, 296: 237.
    [51] 杨建红,杜予民,覃彩芹,红外光谱与核磁共振波谱在甲壳素结构研究中的应用。分析科学学报,2003,19(3):282。
    [52] Srivasava R, Kulshreshtha D K. Bioactive polysaccharides from plants, Phytochemistry, 1989, 28(11): 2877.
    [53] Camzazade A, Sldyar A, Nasibov S, et al. Structural features of sulfated chitosans, Carbohydrate Polymers, 1997, 34:113.
    [54] Rinaudo M, Dung P L, Gey C, et al. Substituent distribution on O,N-carbomethylchitosans by~1H and ~(13)C NMR, Inernational Journal of biological Macromolecules, 1992, 14: 122.
    [55] 栗克喜,李志孝,孟延发等,鬼臼多糖的分离及抗肿瘤活性.无然产物研究与开发,2001,13(3):23.
    [56] Tirkistani F A A. Thermal analysis of some chitosan Schiff bases, Polymer Degradation and Stability, 1998,60: 67.
    [57] Shahidi F, Arachchi J K V, Jeon Y J. Food applications of chitin and chitosans. Trends in Food Science and Technology 1999,10(2): 37.
    [58] Papineau A M, Hoover DG, Knorr D, et al. Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure, Food Biotechnology, 1991, 5(1): 45.
    [59] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003,4(6), 1457.
    [60] Li Z, Liu X F, Zhuang X P, et al. Manufacture and properties of chitosan/N,O-carboxymethylated chitosan/viscose rayon antibacterial fibres. Journal Appllied Polymer Science, 2002, 84(11): 2049.
    [61] Uchida Y, Izume M and Ohtakara A. Preparation of chitosan oligomers with purified chitosanase and its application. Chitin and chitosan(Skjak-Braek, G,
    
    Anthonsen, T. and Sandford, P., eds.), 1989,Elsevier Applied Science, New York, P373.
    [62] Wang G. Inhibition and inactivation of five species of foodbome pathogens by chitosan. Journal of Food Protection, 1992, 55(11): 916.
    [63] Sudarshan N R, Hoover D G, Knorr D. Antibacterial action of chitosan. Food Biotechnology, 1992, 6(3): 257.
    [64] Choi B K, Kim K Y, Yoo Y J, et al. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 2001, 18(6): 553.
    [65] Ikinci G, Senel S, Akincibay H, et al. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. International Journal of Pharmaceutics, 2002, 235(1-2): 121.
    [66] Chen Y M, Chung Y C, Wang L W, et al. Antibacterial properties of chitosan in waterborne pathogen. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37(7):1379.
    [67] Hirano S and Nagao N. Effects of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytophathogens. Agricultural & Biological Chemistry, 1989, 53(11): 3065.
    [68] Kendra, D.F. and Hadwiger, L.A. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium Solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 1984, 8(3), 276.
    [69] Laflamme P, Benhamou N, Bussieres G, et al. Differential effect of chitosan on root rot fungal pathogens in forest murseries. Canadian Journal of Botany, 1999,77(10): 1460.
    [70] 于汉寿,张益明,吴汉章等,壳聚糖对几种植物病原真菌的作用,天然产物研究与开发,1999,11(5):33.
    [71] 郑连英,朱江峰,孙昆山,壳聚糖的抗菌性能研究,材料科学与工程,2000,
    
    18(2): 22。
    [72] Liu Xiaofei, Guan Yunlin, Yang Dongzhi, et al. Antibacterial action of chitosan and carboxymethylated chitosan, Journal of Appllied Polymer Science, 2000,79(7): 1324.
    [73] 陈凌云,杜予民,刘义,羧甲基壳聚糖的结构与抗菌性能研究,武汉大学学报(自然科学版),2000,46(2):191。
    [74] 刘瑾,唐梓进,羧甲基壳聚糖对口腔变形链球菌和口腔乳酸杆菌的抑制作用,南京大学学报(自然科学版),1999,22(4):73.
    [75] 李治,刘晓非,管云林,O-羧甲基壳聚糖抗菌性的研究,日用化学工业,2000,(3):10.
    [76] Chen C, Liau W, Tsai G Antibacterial effects of N-sulfonated and N-sulfobezoyl chitosan and application to Oyster preservation. Journal of Food Protection 1998,61:1124.
    [77] Jia Zhishen, Shen Dongfeng, Xu Weiliang, Synthesis and antibacterial activities of quaternary ammomium salt ofchitosan, Carbohydrate Research, 2001, 333(1): 1.
    [78] Kim C H, Choi J W, Chun H J, et al. Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polymer Bulletin,1997,38(4): 387.
    [79] Xie Wenming, Xu Peixin, Wang Wei, et al. Preparation and antibacterial activity of a water-soluble derivative, Carbohdrate Polymers, 2001,50(1): 35.
    [80] Jung B O, Kirn C H, Choi K S, et al. Preparation of amphiphilic chitosan and their antimierobial activities, Journal of Appllied Polymer Science, 1999, 72(13):1713.
    [81] Cha S Y, Lee J K, Lim B S, et al. Conjugated vinyl derivatives of chitooligosaccharide: Synthesis and characterization, Journal of Polymer Science Part A: Polymer Chemistry, 2001,39(6):880.
    [82] Song J W, Ghim H D, Choi J H, et al. Preparation of antimicrobial sodium alginate with chito-oligosaccharide side chains, Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(10): 1810.
    
    
    [83] Kim C H, Kim S Y, Choi K S. Synthesis and antibacterial activity of water-soluble chitin derivatives. Polymers for Advanced Technologies, 1997, 8(5): 319.
    [84] Kurita K, Shimada K Nishiyama Y, et al. Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having α-mannoside branches, Macromolecules, 1998, 31(15):4764.
    [85] Song Y, Babiker Elfadil E, Usui M, et al. Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates, Food Research International, 2002, 35(5):459.
    [86] 阳元娥,罗发兴,壳聚糖及其衍生物在医药中的应用,中国医药工业杂志,2002,33(8),408。
    [87] 王芳宇,杨露青,周艺等,壳聚糖碘液杀菌效果的实验观察,衡阳医学院学报(医学版),2000,28(5):442.
    [88] 湛学军,熊远珍,柳吉吉等,羧甲基壳聚糖银的合成及抑菌实验的研究,中国生化药物杂志,2001,22(3):142.
    [89] No H K, Park N Y, Lee S H, et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights, International Journal of Food Microbiology, 2002, 74(1-2): 65.
    [90] Shin Y, Yoo D I, Jang J. Molecuar weight effect on antimicrobial activity of chitosan treated cotton fabrics, Journal of Appllied Polymer Science, 2001,80(13):2495.
    [91] Jeon Y J, Park P J, Kim S K. Antimicrobial effect of chitooligosaccharides produced by bioreactor, Carbohydrate Polymers, 2001, 44(1):71.
    [92] Omura Y, Shigemoto M, Akiyama T, et al. Antimicrobial activity of chitosan with different degrees of acetylation and molecular weights, Biocontrol Science, 2003, 8(1):25.
    [93] 杨冬芝,刘晓非,李治等,壳聚糖抗菌性的影响因素,应用化学,2000,17(6):598。
    [94] 宋献周,沈月新,不同平均分子量的α-壳聚糖的抑菌作用,上海水产大学
    
    学报,2000,9(2):138.
    [95] Shaban M A T, Hesham M H S. Antibacterial activity of chitosan against Aeromonas hydrophila, Food, 2002, 46(5): 337.
    [96] El-Shenawy M A, Marth E H. Behavior of Listeda monoeytogenes in the presence of sodium propionate together with food acids, Journal of Food Protection, 1992,55:241.
    [97] Tsai G J, Su W H. Antibacterial activity of shrimp chitosan against Escherichia Coli, Journal of Food Protection, 1999,62(3):239.
    [98] 许萍,宁敏,于丽莎,甲壳素衍生物对烟草抗菌活性影响的研究,功能高分子学报,2002,15(1):53.
    [99] Muzzarelli R A A, Muzzarelli C, Tarsi R, et al. Fungistatic activity of modified chitosans against Saprolegnia parastitia. Biomacromolecules, 2001, 2(1): 165.
    [100] Muzzarelli R, Tarsi R, Filippini O, et al. Antimicrobial properties of N-carboxylbutyl chitosan. Antimicrobial Agent Chemotheraphy, 1990, 34(9): 2019.
    [101] Uchida Y. Antibacterial activity by chitosan and chitosan derivatives, Food Chemical, 1988, 2(1):22.
    [102] Young D Y, Kauss H. Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations and polyamines in relation to effects on membrane permeability. Plant Physiology, 1983, 73(2): 698.
    [103] Young D H, Kohle H, Kauss H. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and phaseolus vulgaris cells. Plant Physiology, 1982, 70(4): 1449.
    [104] Cuera R G, Osuji G, Washington A. N-carboxyl chitosan inhibition of aflatoxin production-role of zinc. Biotechnology Letters, 1991,13: 441.
    [105] Tokura S, Ueno K, Miyazki S, et al. Molecular weight dependent antimicrobial activity of chitosan. Macromolecular. Symposia, 1997, 120(1): 1.
    [106] 廖春燕,马国瑞,洪文英,壳聚糖对番茄枯萎病菌的拮抗作用,浙江大学学报(农业与生命科学版),2001,27(6):619.
    [107] Maribel P J, Crustavo V, Roberto O, et al. Effect of chitosan and temperature
    
    on spore germination of Aspergillus niger. Macromolecular Bioscience, 2003, 3(10): 582.
    [108] Walker-Simmon M, Hadwiger L, Ryan C A. Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochemical and Biophysical Research Communications, 1983,110(1): 194.
    [109] Hadwiger L A and Beckman J M. Chitosan as a component of pea Fusarium Solani interactions, Plant Physiology, 1980, 669(1): 205.
    [110] Ben-Shalom N, Ardi R, Pinto R, et al. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection,2003,22: 285.
    [111] 陆森泉,尹秀,壳聚糖加工布料的抗菌性研究,浙江医科大学学报,1997,26(6):255。
    [112] Jeong Y J, Cha S Y, Yu W R, et al. Changes in the mechanical properties of chitosan-treated wool fabric. Textile Research Journal, 2002, 72(1): 70.
    [113] 庄旭品,李治,刘晓非等,壳聚糖、纤维素抗菌纤维的研究与展望。化工进展,2002,21(5):310.
    [114] 陈建勇,刘冠峰,壳聚糖改性及用其整理纺织品抗菌性能的研究,功能高分子学报,2002,15(2):194.
    [115] Isogai A, Atalla R H. Preparation of cellulose-chitosan polymer blends. Carbohydrate Polymers, 1992, 19(1):25.
    [116] Hasegawa M, Isogai A, Onabe F, et al. Characterization of cellulose-chitosan blend films. Journal of Applied Polymer Science, 1992, 45(11): 1873..
    [117] Hasegawa M, Isogai A, Kuga S, et al. Preparation of cellulose-chitosan blend film using chloral/dimethylformamile. Polymer, 1994,35(5):983.
    [118] 樊李红,杜予民,唐汝培,肖玲。纤维素/壳聚糖共混膜的制备、结构与性能,中国化学会第三届甲壳素化学与应用研讨会论文集,浙江玉环,2001,328。
    [119] Dave V, Glasser W. Cellulose-based fibers from liquid crystalline solutions. Ⅲ. Processing and morphology of cellulose and cellulose hexanoate esters. Journal
    
    of Applied Polymer Science, 1993, 48(4): 683.
    [120] Li Zhi, Liu Xiao-fei, Zhuang Xu-pin, et al. Manufacture and properties of chitosan/N,O-carboxymethylated chitosan/viscose rayon antibacterial fibers. Journal of Applied Polymer Science, 2002, 84(11): 2049.
    [121] Nam C W. Kim Y H, Ko S W. Modification of polyacrylonitrile(PAN)fiber by blending with N-(2-hydroxy)propyl-3-trimethyl-ammonium chitosan chloride. Journal of Applied Polymer Science, 1999, 74(9): 2253.
    [122] Kim Y H, Narn C W, Choi J W, et al. Durable antimicrobiai treatment of cotton fabrics using N-(2-hydroxy)propyl-3-trimethyl-ammonium chitosan chloride and polycarbozylic acids. Journal of Applied Polymer Science, 2003, 88(6): 1567.
    [123] Shin Y, Yoo D I, Min K. Antimcirobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. Journal of Applied Polymer Science, 1999, 74(12): 2911.
    [124] Hu S G, Jou C H, Yang M C. Surface grafting of polyester fiber with chitosan and the antibacterial activity of pathogenic bacteria. Journal of Applied Polymer Science, 2002, 86(12): 2977.
    [125] Shih C Y, Huang K S. Synthesis of a polyurethane-chitosan blended polymer and a compound process for shrink-proof and antimicrobial woolen fabrics. Journal of Applied Polymer Science,2003, 88(9): 2356.
    [126] Benhamou N, Lafotaine P J, Nicole M. Induction of systemic resistance to Fusarium Crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 1994, 84(12): 1432.
    [127] Bhaskara Reddy M V, Arul J, Angers P, et al. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry, 1999,47(3): 1208.
    [128] Bell N I, Watson R N, Sarathchandra S U. Suppression of plant parasitic nematodes in pastoral soils amended with chitin. Proceeding in New Zealand Plant Protection Conference, 2000,53th: 44.
    [129] El Ghaouth A, Arul L, Asselin A, Benhamou N. Antifungal activity of
    
    chitosan on post-harvest pathogens: induction of morphological and cytological alterations in rhizopus stolonifer. Mycological Research, 1992,96(9):769.
    [130] El Ghaouth A, Smilanick J L, Brown G E, et al, Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruit under semi-commercial conditions. Plant Disease 2000, 84(3): 243.
    [131] El Ghaouth A, Pannampalam R, Castaigne F, et al. Chitosan coating to extend the storage life of tomatoes. Hortscience, 1992, 27(9): 1016.
    [132] Hu Wen-yu, Zou Liang-dong. Effect of coating chitosan on storage of apple. Plant Physiological Letter, 1998, 34(1): 17.
    [133] Yin Lian. Studies on storage of grapeby chitosan coating containing metal ions. Food Science, 1998, 19(9): 51-53。
    [134] Roller S, Covill N. The antifungal properties of chitosan in laboratory media and apple juice. International dournal of Food Microbiology, 1999, 47(1-2): 67.
    [135] Simpson B K, Gagne N, Ashie I N A, et al. Utilization of chitosan for preservation of raw shrimp(Pandalus Borealis). Food Biotechnology, 1997, 11(1): 25.
    [136] Fang S W, Li C F, Shih Y C. Antifungal activity of chitosan and its preservative effect on low-sugar Candied Kumpuat. Journal of Food Protection, 1994, 57: 136.
    [137] Darmadji P, Izumimoto M. Effects of chitosan in meat preservation. Meat Science, 1994, 38(2): 243.
    [138] Rhoades J, Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 2000, 66(1): 80.
    [139] 刘流,郭红英,O-羧甲基壳聚糖对酱油抑菌防腐研究,食品科学,2002,23(5):130。
    [140] Ghosh K G, Srivaatsava A N, Nirmala N, et al. Development and application of fungistatic wrappers in food preservation. Part Ⅰ. Wrappers obtained by impregnation method. Journal of Food Science and Technology, 1973, 10: 105.
    [141] Ghosh K G, Srivaatsava A N, Nirmala N, et al. Development and application
    
    of fungistatic wrappers in food preservation. Part Ⅱ. Wrappers made by coating process. Journal of Food Science and Technology, 1977, 14: 261.
    [142] Zhang D, Quantick P C. Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. Journal of Horticultural Science and Biotechnology, 1998, 73(5): 763.
    [143] 郑化,杜予民。纤维素羧甲基壳聚糖共混膜结构与抗菌性能。高分子材料科学与工程,2002,18(4):124.
    [144] Li Zhi, Zhuang X P, Liu X F, et al. Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N,N-dimethylacetamide solution. Polymer, 2002, 43: 1541.
    [145] Yang M C, Lin W C. The grafting of chitosan oligomer to polysulfone membrane via ozone-treatment and its effect on anti-bacterial activity. Journal of Polymer Research, 2002,9(2): 135.
    [146] 赵铁,杜予民,唐汝培,壳聚糖水杨酸盐-明胶共混膜结构表征及其抗菌性。分析科学学报,2002,18(2):100。
    [147] Bégin A, Van Calsteren M R. Antimicrobial films produced from chitosan. International Journal of Biological Macromolecules, 1999, 26(1): 63.
    [148] Chen R H, Hwa H. Effect of molecular weight of chitosan with the same degree of degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydrate Polymers, 1996, 29(4): 353.
    [149] Hoagland P D, Parris N. Chitosan/peetin laminated films. Journal of Agricultural Food Chemistry, 1996, 44(7): 1915.
    [150] Chen M, Yeh G H, Chiang B. Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative, Journal of Food Processing and Preservation, 1996, 20(5): 379.
    [151] Agullo E, Gschaider M E, Rodriguez M S, et al. Antifungal effects of chitosan films on precooked pizzas. Information Tecnologica, 1998, 9(3): 123(Spanish).
    [152] Ouattara B, Simard R E, Piette G. et al. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan.
    
    International Journal of Food Microbiology, 2000, 62(1-2): 139.
    [153] Choi B K, Kim KY, Yoo Y J, et al. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 2001, 18(6): 553.
    [154] 刘瑾,唐梓进,羧甲基壳聚糖对口腔变形链球菌和口腔乳酸杆菌的抑制作用,南京大学学报(自然科学版),1999,22(4):73.
    [155] Mi F L, Wu Y B, Shyu S S, et al. Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of Membrane Science, 2003, 212(1-2): 237.
    [156] Mi F L, Shyu S S, Wu Y B, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 2001, 22(2): 165.
    [157] Senel S, Ikinci G, Kas S, et al. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. International Journal of Pharmaceutics, 2000, 193(2): 197.
    [158] Ma Jian-biac, Wang Hong-jun, He Bing-lin, et al. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials, 2001, 22(4): 331.
    [159] 梁治齐,宗惠娟,李金华,功能性表面活性剂,2002,中国轻工业出版社。
    [160] 郭祥峰,贾丽华,阳离子表面活性剂及应用,2002,化学工业出版社,精细化工出版中心,231。
    [161] 汪祖模,徐玉珮,两性表面活性剂,1990,轻工业出版社,103。
    [162] 王军,烷基多苷及衍生物,2001,中国轻工业出版社,115。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700