用户名: 密码: 验证码:
分子筛催化毛竹热解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用世界上分布最广,生长最快的竹种一毛竹为原料,进行了多种分子筛催化剂催化热解转化为能源和化工原料的研究。重点探讨了在NaY分子筛催化毛竹热解实验中,不同实验条件对热解产物的作用规律并优化了实验参数;此外,使用其他分子筛及其负载金属后的催化剂分别在N_2和H_2氛围中催化热解毛竹,探讨不同分子筛及其改性后对毛竹热解的催化特性及热解加氢效果。
     在自行设计的固定床反应器中,考察了使用NaY分子筛做催化剂时,不同实验参数,包括催化剂用量、反应温度、反应时间、催化剂含水量、催化剂前处理等,对毛竹催化液化的影响和对NaY分子筛结构的影响,并且对NaY分子筛进行了失活再生实验。实验发现,NaY分子筛催化剂的使用极大地提高了毛竹热解所得液体产物的产率和毛竹的转化率(最高可达97.3%),醋酸为毛竹热解所得液体产物的主要组分,在不同的热解温度下其含量可达56.7-92.9%。当催化剂用量高于NaY/P(NaY分子筛/毛竹)=1∶1后,一些在无催化条件时会通过热解最终转化为气体产物的中间产物将被催化转化为液体产物,NaY/P增加到3∶1时,获得了最高液体产率(74.5%)。热解温度对液体产率和产物分布有重要影响,773 K时可获得最高的液体产率;而873 K下可以得到较高的液体产率和更有价值的液体有机组成。低温下延长热解时间可以获得更多的液体产物,973 K时毛竹在前2.5小时之内完全分解。新鲜的NaY分子筛中所含的水能促进毛竹的热解转化,并有利于2/3/4—甲基苯酚的生成。对NaY分子筛的热预处理使其表面、孔结构和晶体结构都发生改变,而在相同温度下参与毛竹热解反应2.5 h的NaY分子筛结构变化不大,说明NaY分子筛与毛竹热解中间产物间的相互作用起到了稳定NaY分子筛结构的效果。NaY分子筛重复使用4次(40 h)后失活,原因是炭沉积和其晶体结构遭到破坏。简单的炭烧尽可完全除去沉积的炭,但不能恢复已被破坏的结构,因此不能完全恢复其活性。
     在氮气氛围中,分别使用HY、HZSM-5、1%Pt-HZSM-5(NR)、1%Pt-HZSM-5(R)、1%Pt-HY(NR)、1%Pt-HY(R)、1%Co-HZSM-5(NR)和1%Co-HZSM-5(R)八种催化剂在不同温度下催化热解毛竹,考察了所生成的液体产物和气体产物的产率和组分分布,研究了不同分子筛和及负载金属后在毛竹热解中的催化特性,并探讨了还原预处理对催化剂活性的影响。采用HY作催化剂时获得了最高的液体收率。在HZSM-5上负载Pt或Co金属后,液体产率比单独使用HZSM-5时有所提高。加入分子筛催化剂或进一步在分子筛上负载金属会抑制毛竹热解过程中乙酸等羧酸类主要化合物的生成。加入HY、HZSM-5或者在HY上负载Pt对多羟基苯酚类化合物的生成有利,对单羟基苯酚类化合物的生成不利。而在HZSM-5上负载Pt、Co后,不仅所得单羟基苯酚类化合物的含量增加,还对2-呋喃甲醇、环戊烯酮类化合物的生成有利。但加入分子筛或其负载金属后并没有很好地改善液体产物分布较广的分散状态。热解生成气体组分量的信号值大小次序为CO_2>CH_4≈H_2>CO。加入催化剂可提高H_2的生成量,对CO、CH_4的产生影响不大。针对改性分子筛,还原预处理对不同载体和金属制备的催化剂可以表现出不同的影响。
     在氢气氛围中,采用NaY、HY、HZSM-5、1%Pt-HY、1%Pt-HZSM-5、2%Co-HZSM-5、γ-Al_2O_3、5%NiO-Al_2O_3八种催化剂催化热解毛竹,考察所生成的液体产物和气体产物的产率和组分分布,并与在氮气氛围中进行的实验结果进行对比。不加催化剂时,毛竹在H_2气氛下热解比在N_2气氛下更有利于液体产物的生成,1073 K时液体收率最高,为48.30%,且升高热解温度使生物质转化率提高。毛竹在H_2气氛下热解时,反应温度对液体产物分布变化的影响不如在N_2气氛下显著,得到了含量较高的甲醇、环丙基甲醇等在N_2气氛下热解时检测不到的醇类化合物。液体产物中含量最高的仍是乙酸,其次是甲醇。甲醇在673K时生成含量最高,达到10.5%,而环丙基甲醇在973 K时含量达到5%。毛竹在N_2气氛下热解时,H_2为反应的产物,而在H_2气氛下时,H_2明显参与了反应。在不同载体上负载不同金属,可以显著改变毛竹催化热解产物的气液固分布。使用HY获得了最高液体产率(54.18%)和最低残渣量(14.39%)。无论加入ZSM-5型还是Y型分子筛都使液体收率有不同程度的增加,残渣显著减少。γ-Al_2O_3的加入将抑制毛竹向液体和残渣转化,有利于气体产物的生成。使用NaY、HY和HZSM-5将不同程度地抑制CH_4和CO_2的生成,受到抑制的这部分C原子则进入液相产物或者残渣,对获得液体产物有利。
Pubescens is a kind of bamboo, which is distributed widely in the world and grows very fast. The catalytic pyrolysis of pubescens to energy carrier and chemicals was studied in the present work. The effects of the operating conditions on the liquid products were discussed and the reaction parameters were optimized. The structural variation of the zeolite NaY catalyst was also studied. Furthermore, the catalytic pyrolysises of pubescens were carried out in N_2 flow and H_2 flow respectively using zeolite or modified zaolite catalysts.
     The effects of zeolite NaY dosage, initial moisture content, reaction temperature, reaction time, and the deactivation of NaY on the pyrolysis of pubescens were investigated in a fixed bed reactor. Under the optimized conditions investigated, a 97.3 wt. % conversion of pubescens and a 74.5 wt. % yield of liquid products were obtained respectively. When the NaY/P ratio increased over 1:1, certain intermediate species, which lead to gaseous products by thermal decomposition, was converted catalytically into liquid compounds. The yield of liquid products increased to the maximum as the NaY/P ratio increased to 3:1 within the experimental range. Acetic acid was found to be the main component and it accounted for 56.7-92.9 wt. % of liquid products in the presence of NaY. And other different monomers such as phenol and 2/3/4-methyl-phenol can be obtained by controlling the reaction parameters. The water contained in the Fresh NaY would facilitate the conversion of pubescens and the formation of 2/3/4-methyl phenol in the pyrolysis. The thermal pretreatment of NaY would change its sueface, pore and crystal stucture significantly while slight changes were observed when used in the pyrolysis at the same temperature. The interaction between NaY and the intermediates product from the pyrolysis of pubescens could stabilize the structure of the NaY catalyst. NaY would deactivate after four repeated runs(40h), and the deactivation could be attributed to the destruction of the crystalline structure and the deposition of coke. X-ray Diffraction(XRD) and Scanning Electron Microscope(SEM) results showed that the fine structure of zeolite NaY would in situ reconstruct after used in the pyrolysis.
     Under N_2 flow, the catalytic pyrolysis of pubescens at different temperatures were tested using HY、HZSM-5、1%Pt-HZSM-5(NR)、1%Pt-HZSM-5(R)、1%Pt-HY(NR)、1%Pt-HY(R)、1%Co-HZSM-5(NR) and 1%Co-HZSM-5(R) as catalyst respectively. And the influence of different catalysts on the liquid components distribution and the gas products formation were studied. The results showed that the presence of HY-or HZSM-5-supported Pt and Co catalysts increased the yield of the pyrolytic oil, although the distribution of the liquid products was still decentralized. It was found that under the catalysis of molecular sieves and the metal-loaded zeolite catalysts, the formation of the main carboxylic acid compounds, such as acetic acid, was inhibited. The presence of the catalysts HY, HZSM-5 or Pt-HY could improve the content of polyhydroxyphenol, but suppress the formation of monohydroxyphenol. On the contrary, after Pt or Co being supported on HZSM-5, the content of monohydroxyphenol, 2-furanmethanol and cyclopentenone increased. In general, using molecular sieves and molecular sieves supported Pt and Co catalysts could raise the output of H_2, but had little effect on the amounts of CO,CH_4 during the pyrolysis.
     Under H_2 flow, the catalytic pyrolysis pubescens at different temperatures were tested using NaY、HY、HZSM-5、1%Pt-HY、1%Pt-HZSM-5、2%Co-HZSM-5、γ-Al_2O_3、5%NiO-Al_2O_3 as catalyst respectively. And the influence of different catalysts on the liquid components distribution and the gas products formation were studied comparestively with that obtained under N_2 flow. It was found that in the absence of catalyst, the pyrolysis of pubescens under H_2 flow was in favor of the formation of liquid product compared to under N_2 flow. In the pyrolysis under H_2 flow, the higher pyrolysis temperature used, the higher conversion of biomass obtained, and the highest yield of liquid product, 48.30%, was obtained at 1073 K. Acetic acid was the major component in the liquid product and methanol ranked the second. The effect of pyrolysis temperature on the distribution of liquid products under H_2 flow was not as obvious as that under N_2 flow. Under H_2 flow, methanol, cyclopropyl carbinol and so on were obtained with high contents, while they were not detected under N_2 flow. The content of methanol reached 10.5% at 673 K while cyclopropyl carbinol reached 5% at 973 K.When pubescens was pyrolyzed under N_2 flow, H_2 was one gas product, however, under H_2 flow, H_2 was observed to be consumed. It was found that with the catalysis of molecular sieves and the metal-loaded zeolite catalysts, the yield of liquid and gas products were different. The highest yield of liquid product(54.18%) and the lowest amount of residue(14.39%) was obtained over HY. The use of ZSM-5 as the catalyst also increased the liquid product and decreased the amount of residue. The presence ofγ-Al_2O_3 would restrain the conversion of biomass to liquid and residue, but promote the formation of gas product. The use of NaY、HY and HZSM-5 would go against the formation of CH_4 and CO_2, and the restrained C atom may enter the liquid product or the residue, and then giving out more liquid product.
引文
1. Asadullah, M., Miyazawa, T., Ito, S., Kunimori, K., Yamada, M., Tomishige, K. Catalyst development for the gasification of biomass in the dual-bed gasifier. Appl. Catal. A: Gen.,2003, 255, 169-180
    2. Bhattacharya, S. C., Mizanur Rahman Siddique, A. H. Md., Pham. H. L. A study on wood gasification for low-tar gas production. Energy, 1999, 24, 285-296
    3. Chen, G., Andries, J., Spliethoff, H. Biomass conversion into fuel gas using circulating fluidised bed technology: the concept improvement and modelling discussion. Renew.Energ., 2003, 28, 985-994
    4. Chen, G., Andries, J., Spliethoff, H., Fang, M., van de Enden, P. J. Biomass gasification integrated with pyrolysis in a circulating fluidised bed. Solar Energy, 2004, 76, 345-349
    5. Hall, D. O., Rosillo-Calle, F., de Groot, P. Biomass energy lessons from case studies indeveloping countries. Energ. Policy, 1992, 20, 62-73
    6. Wang, D., Montan6, D., Chornet, E. Catalytic steam reforming of biomass-derived oxygenates: acetic acid and hydroxyacetaldehyde. Appl. Catal. A: Gen., 1996, 143,245-270
    7. Yang, Y. F., Feng, C. P., Inamori, Y., Maekawa, T. Analysis of energy conversion characteristics in liquefaction of algae. Resour. Conserv. Recy., 2004, 43, 21-33
    8. Demirbas, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energ.Convers. Manage., 2000, 41,633-646
    9. Demirbas A. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 2004, 30, 219-230
    10. Sutton, D., Kelleher, B., Ross, J. R. H. Review of literature on catalysts for biomass gasification. FuelProcess. Technol., 2001, 73, 155-173
    11. Ying, D., Weiyan, Qi., Xia, M., Guiying, L., Changwei H. Chemical analysis of pubescens and its pyrolysis. J. Chem. Ind. Eng. (China), 2004, 55, 2009-2102
    12. 华南理工大学博士学位论文,生物质催化热解气化研究,宋晓锐,1999.11.1
    13. Yueling Gu, Kefa Cen. Research on biomass fast pyrolysis for liquid fuel. Biomass & bioenergy. 2004, 26, 455-462
    14. Freide Tuncel, Hasan Ferdi Gercel. Production and characterization of pyrolysis oils from euphorbia macroclada. Energy resources. 2004,.26, 761-770
    15. I. C. P. Fortes, P. J. Baugh. Pyrolysis-GC/MS studies of vegetable oils from macauba fruit.Journal of analytical and applied pyrolysis. 2004, 72, 103-111
    16. Paul T Williams, Nittaya Nugranad. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy, 2000, 25, 493-495
    17. Sung Phil Mun and El Barbary M. Hassan. Liquification of lignocellulosie biomass with dioxane/polar solvent mixtures in the presence of an acid catalyst,J. Ind. Eng. Chem., 2004,10 (3), 473-477
    18. Selhan Katagoz, Thallada Bhaskar, Akinori Muto, Yusaku Sakata, Toshiyuki Oshiki, Tamiya Kishimoto. Low temperature catalystic hydrothermal treatment of wood biomass: analysis of liquid products, Chemical Engineering Journal, 2005, 108, 183-190
    19. Judit Adam, Marianne Blazso, Erila Meszaros, Michael Stocker, Meter H. Nilsen, Aud Bouzga, Johan E. Hustad, Morten Gronli, Gisle Oye. Pyrolysis in the presence of Al-MCM-41 type catalysts, Fuel 2005, 84, 1494-1502
    20. 《沸石分子筛》,中国科学院大连化学物理研究所分子筛组编著,1978年
    21. 张强,汪晓东,Co-HZSM-25催化剂中Co相态和价态的表征,高等学校化学学报,2002,23(1):129-131
    22.杜瑛,毛竹的主要成分分析及催化热解研究,砑士学位论文,2005.4.30
    23. Rubio, M., Tortosa, J. F., Quesada, J. N., Goamez. D. Fractionation of lignocellulosics solubilization of corn stalk hemicelluloses by a utohydrolysis in aqueous medium. Biomass Bioenerg., 1998, 15, 483-491
    24. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ. Convers. Manage., 2001, 42, 1357-1378
    25. Jiang Hong. Studies on the Process and Mechanism of Lignocellulose Gasification and Pyrolysis: [dissertation] Hefei: University of Science and Technology of China, 2003
    26. Schmidt, A. S., Thomsen, A. B. Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technol., 1998, 64, 139-151
    27. Manuel, R.; Juan, F. T.; Joaquia, N Q.; Demetrio, G. Biomass and Bioenergy., 1998, 15 483-491
    28. Binlin, D.; Jinsheng, G.; Xingzhong, S.; Seung W. B. Appl. Therm. Eng., 2003, 23, 2229-2239
    29.刘金香,热分析在催化研究中的应用,石油化工,2000年第29卷461-469
    30. Tomishige, K.; Miyazawa, T.; Asadullah, M.; Ito, S.; Kunimori, K. Green Chem., 2003, 5, 399-403
    31.煤焦油中二甲酚的提取 屈明达,鄂忠明,化工技术经济 第23卷,第10期,34-36页
    32. Fang, Z.; Minowa, T.; Smith Jr., R. L.; Ogi, T.; Koziski, J. A. Ind. Eng. Chem. Res. 2004, 43, 2454-2463
    33. Demirbas, A. Effect of initial moisture cont on the yield of oily products from pyrolysis of biomass. J. Anal Appl. Pyrolysis, 2004, 71, 803-815.
    34. Minkova, V., Razvigorova, M., Bjombom, E., Zanzi, R., Budinova, T., Petrov, N. Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass. Fuel Process. Technol., 2001, 70, 53-61
    35. Minkova, V., Marinov, S. P., Zanzi, R., Bjornbom, E., Budinova, T., Stefanova, M., Lakov, L.(2000). Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel Process. Technol., 62, 45-52.
    36. Godoolkova, E., Balaz, P., Boldizarova, E. Structural and temperature sensitivity of the chloride leaching of copper, lead and zinc from a mechanically activated complex sulphide. Hydrometallurgy, 2002, 65, 83-93
    37.多晶X射线衍射,石油化工,2001年第30卷第9期,725-736
    38. Garcia, L.; Salvador, M.L.; Bilbao, R.; Arauzo, J. Energy Fuels, 1998, 12, 139
    39. Garcia, L.; Salvador, M.L.; Bilbao, R.; Arauzo, J. J. Anal. Appl. Pyrol., 2001, 491, 58-59
    40. W.Y. Qi, C. W. Hu, G. Y. Li L. H. Guo, Y; Yang, J. Luo, X. Miao, Y. Du, Catalytic pyrolysis of several kinds of bamboos over zeolite NaY. Green Chem., 2006, 8, 183-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700