结构导向集总新方法构建延迟焦化动力学模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对延迟焦化工艺进行优化是应对原油重质化、劣质化,提高重质油加工水平的重要方法。采用计算机集总动力学模型进行工艺优化方便可靠,是工艺优化的有效途径。结构导向集总新方法以新的理念实现分子尺度的集总。用其构建动力学模型将提升模型的适用性和实用性。
     论文首先对延迟焦化原料油分子组成进行了模拟。在对原有结构向量进行适当修改的基础上,提出了代表延迟焦化原料油分子组成的92种单核种子分子和46种多核种子分子,共7004种分子集总。结合分子集总数据库和优化算法,论文确定了模拟计算重质油分子组成的新方法。该方法较好反映了重质油分子集总组成和含量。由此计算得到的重质油宏观性质和实际值接近。
     其次,论文采用92条反应规则描述延迟焦化反应行为,利用计算机软件和回归算法理论计算反应速率常数,以求解动力学微分方程组的形式构建了一个延迟焦化结构导向集总模型,并编写了该模型的工艺包和用户操作界面。该模型能较好反映焦化过程的真实分子反应行为,具有较好原料适应性和产物分布预测功能。为确保模型验证和后续计算的合理性,论文对DVS-JHJL-1130型延迟焦化实验室小试装置进行了可靠性验证。通过小试试验数据和中石化高桥分公司二套焦化装置的工业统计数据比对,证实了该小试试验装置的可靠性。在此基础上,论文利用该小试装置数据和工业统计数据验证了所建立模型在不同条件下对不同原料的预测准确性。结果表明,模型预测结果和小试试验结果以及工业统计数据均吻合良好,相对误差不超过10%。
     随后,论文利用所建立的模型分析了原料性质对延迟焦化液体产物收率的影响,并进行了延迟焦化原料组成调优。在480℃,0.15MPa,0.3循环比条件下,论文对不同原料渣油相互掺炼进行了结构导向集总模型计算和小试试验。比对结果表明:工业操作条件下,2#和4#原料渣油按7:3(质量)掺炼,液体产物收率相比两种原料渣油单独焦化之和提高1.22%。
     接着,论文利用所建立的模型考察了回收废道路沥青作为延迟焦化原料的可能性。结果表明:回收废道路沥青含有饱和分和芳香分,而且其中胶质沥青质具有可发生裂解反应的大长链,可以作为延迟焦化掺炼原料。但是其直接焦化的生焦率高达70%,易堵,难以满足延迟焦化工艺要求,因而需要和渣油掺炼。通过结构导向集总模型计算渣油掺炼回收废道路沥青共焦化的结果后发现:焦化液体产物收率随着掺入量的增加而减少,气体和焦炭收率增大;焦炭收率随着共焦化反应温度和反应时间的提升而下降,气体和液体收率上升。为避免装置堵塞和操作安全,论文认为利用延迟焦化实验室小试装置开展渣油掺炼回收废道路沥青共焦化实验时,回收废沥青掺入量的上限是20%(质量),共焦化反应温度和反应时间也需要进行一定控制。
     最后,论文在470℃,0.15MPa,零循环比条件下利用实验室小试装置开展了渣油掺炼回收废道路沥青共焦化实验。回收废道路沥青采用旋转薄膜烘箱试验法模拟,掺入量为20%。渣油选用4#原料渣油。比较掺炼前后的产物分布发现:和全渣油结果乘以80%的数据相比,掺炼后增产气体2.3%,增产液体2.91%,增产焦炭14.79%。经济效益估算表明,掺炼废沥青共焦化有利于环境保护和经济效益。掺炼产物中,焦化气体烯烃含量增加。焦化汽柴油性质和掺炼前相近。焦化蜡油和石油焦的品质有所下降。焦化蜡油中重组分、残炭、硫、氮和金属含量增多。石油焦灰分和硫含量增加。掺炼后的焦化蜡油仍符合催化裂化进料标准,掺炼后石油焦从三A级变为三B级,但仍能作为燃料处理。这既拓宽了延迟焦化原料,又为回收废道路沥青如何合理利用开辟了一条值得尝试的新途径。
Optimization of delayed coking is a main method to meet the problem that crude oil becoming heavier and worse and increase the heavy oil processing level. Optimizing with lumped kinetic model is convenient and reliable; it is an effective way to process optimization. Structure Oriented Lumping (SOL) new method achieved molecular level lumping with new concept. Build kinetic model with SOL method will increase applicability and commodity of the model largely.
     Firstly, the molecular composition of delayed coking feedstock has been simulated. After doing some modifications to original structure vectors,92 kinds of single-core and 46 kinds of multi-core seed molecules, totally 7004 kinds of molecular lumps were proposed to represent the molecular composition of delayed coking feedstock. Combining with optimizing algorithm and molecular lump database, the paper proposed a new method to calculate the molecular composition of heavy oil. The method reflected the composition and contents of molecular lumps of heavy oil. The calculation bulk properties of simulated heavy oil agreed with true values well.
     Secondly, paper used 92 kinds of reaction rules to describe the reaction behaviors of delayed coking, used computer software and regress algorithm to estimate the reaction rate constants of delayed coking, built a delayed coking SOL model with the function of predicting product distribution as the form of solving kinetic simultaneous differential equations, and compiled the interface and processing package. The model reflected real molecular reaction behaviors well, and had a good material flexibility and product distribution predict functions. To ensure the rationality of model test and next calculation, paper checked the reliability of DVS-JHJL-1130 delayed coking experimental device. The reliability of delayed coking experimental device was proved by the comparison of experimental data and industrial statistics data from Sinopec. Based on this, paper checked the reliability of the proposed model on different feedstock under different operating conditions with experimental data and industrial data. The results shows that, model predict results agreed with experimental results and industrial average results well. The relative errors are less than 10%.
     Thirdly, the effects of feedstock properties on liquid yields of delayed coking were analyzed by the proposed model, and do delayed coking materials composition optimization. Under the operating condition of 480℃,0.15MPa and 0.3 recycle ratio, model calculation and experiments on different material residues mix have been done. The results show that:mix 2# with 4# residue (7:3) will increase liquid yields 1.22% than sum of them coking independent under industrial operating conditions.
     Fourth, paper analyzed the possibility of recycling waste road asphalt as delayed coking new feedstock with the proposed model. The results shows that:recycling waste asphalt has saturates and aromatics, and the long side chains in resins and asphaltenes could also be break in delayed coking process, so it could be a new mix feedstock of delayed coking. However, coke yields were high to 70% when recycling waste asphalt as delayed coking feedstock directly. It is hard to satisfy the requirements of delayed coking and easy to block up. So, it is better to mix with residues. After calculating the results of residue and recycling waste asphalt co-coking with the SOL model, liquid yields of co-coking were decreased with the increasing of asphalt mixing ratio while gas and coke increasing, coke yields of co-coking were decreased with the increasing of reaction temperature and time while gas and liquid yields increasing. In view of device blocking and safety, the upper limit of asphalt mixing ratio was 20% and temperature and reaction time of co-coking also needed to be limited when do residue and asphalt co-coking experiments on the delayed coking experimental device.
     Lastly, experiments of residue and asphalt co-coking were carried out on the experimental device under the conditions of 470℃,0.15MPa and 0 recycle ratio. Recycling waste road asphalt was simulated by RTFOT experiments. Asphalt mixing ratio was 20%. Comparing with 80% residue coking, gas, liquid and coke yields of after-mixing were increased 2.3%,2.91% and 14.79% respectively. Economic benefit estimate shows that:residue and asphalt co-coking is helpful for environmental protection and economic benefit. After mixing, olefins in gas were increased. The quality of gasoline and diesel were similar. The quality of wax oil and coke were decreased. Carbon residue, heavy components, sulfur, nitrogen and metal content in wax oil were increased; ash and sulfur content in coke were increased. The wax oil from after-mixing was still accord with the standard of catalytic cracking feedstock. The coke turned to 3B from 3A, but it still could be used as fuel. This developed a new way to deal with the problem how to used recycling waste asphalt well and extend the material of delayed coking.
引文
[1]R.J.Quann, S.B.Jaffe. Structure-Oriented Lumping:Describing the Chemistry of Complex Hydrocarbon Mixtures[J].Ind.Eng.Chem.Res,1992,31:2483-2497
    [2]王从岗,陈泽辉,富嘉文.基团贡献法预测石油馏分热力学性质的探索[J].石油炼制.1993,24(5):57-64
    [3]陈泽辉,富嘉文.用基团贡献法预测石油馏分汽液相平衡的进展[J].石油大学学报.1993,17(6):131-138
    [4]富嘉文,齐国泉,张起等UNIFAC基团贡献法预测石油馏分常压汽液平衡[J].石油炼制与化工.1996,27(4):53-58
    [5]鄂红,富嘉文,陈泽辉等UNIFAC基团贡献法预测新疆直馏油汽液平衡[J].石油大学学报.1997,21(1):72-76
    [6]张艳梅,陈泽辉,寿德清.基团贡献法预测胜利原油>350℃常压重油汽液平衡[J].石油大学学报.1998,22(3):84-86
    [7]寿德清等.国产石油物性研究的进展[J].石油大学学报.1993,17(s):254-261
    [8]寿德清.我国石油馏分10种物性的预测方法[J].炼油设计.1993,23(3):39-49
    [9]王从岗,张艳梅.预测新疆九区稠油物性的经验关联式及常用计算方法的考察[J].石油大学学报.1998,22(4):100-102
    [10]寿德清,王从岗,刘建华.用基团贡献法预测石油馏分临界性质的探讨[J].石油大学学报.1991,15(1):86-89
    [11]刘子媛.塔里木原油馏分油临界性质测定与预测[J].炼油设计.2001,31(12):49-51
    [12]王从岗,张艳梅.用ndM-GP模型和基团贡献法预测石油馏分临界性质的探索[J].石油炼制与化工.1998,29(2):43-46
    [13]R.J.Quann. Modeling the Chemistry Petroleum Mixtures[J]. Environmental Health Perspectives,1998,106(s6):1441-1448
    [14]R.J.Quann, S.B.Jaffe. Building useful models of complex reaction systems in petroleum refining[J]. Chemical Engineering Science,1996,51:1615-1635
    [15]徐欧官,苏宏业,褚健.催化裂化装置模拟研究与进展[J].化工自动化与仪表.2005,32(6):1-6
    [16]侯卫锋,苏宏业,褚健等.催化重整集总动力学模型的建立及其在线应用[J].化工学报.2006,57(7):1605-1610
    [17]Prasenjeet Ghosh, Stephen B. Jaffe. Development of a Detailed Gasoline Composition-Based Octane Model[J]. Ind.Eng.Chem.Res,2006,45:337-345
    [18]P.Ghosh, S.B. Jaffe. Detailed Composition-Based Model for Predicting the Cetane Number of Diesel Fuels[J]. Ind.Eng.Chem.Res,2006,45:346-351
    [19]Prasenjeet Ghosh, S.B.Jaffe. Prediction of Chromatographic Retention Times for Aromatic Hydrocarbons[J]. Energy & Fuels,2006,20:609-619
    [20]Gary Christensen, Minas R. Apelian, Stephen B. Jaffe.Future directions in modeling the FCC process:An emphasis on product quality[J]. Chemical Engineering Science,1999,54:2753-2764
    [21]Stephen B. Jaffe. Extension of Structure-Oriented Lumping to Vacuum Residua[J]. American Chemical Society,PAGEEST:12.4
    [22]Yang-Bolun. Molecule Simulation for the Secondary Reactions of Fluid Catalytic Cracking Gasoline by the Method of Structure Oriented Lumping Combined with Monte Carlo[J]. Ind.Eng.Chem.Res,2008,47:4648-4657
    [23]龚剑洪,陆善祥,崔建.重油催化裂化反应动力学分子模型的研究[J].石油炼制与化工.2000,31(8):53-57
    [24]马法书,袁志涛,翁惠新.分子尺度的复杂反应体系动力学模拟(Ⅰ):原料分子的Monte Carlo模拟[J].化工学报.2003,54(11):1539-1545
    [25]马法书,袁志涛,翁惠新.分子尺度的复杂反应体系动力学模拟(Ⅱ).DCC-1反应动力学模型的建立[J].化工学报.2003,54(11):1539-1545
    [26]沈荣民,蔡军杰,江洪波等.单事件法建立渣油热裂解的反应动力学模型Ⅰ:主反应网络的计算机生成[J].华东理工大学学报.2004,30(6):627-631
    [27]沈荣民,蔡军杰,江洪波等.单事件法建立渣油热裂解的反应动力学模型Ⅱ:动力学参数的求取[J].华东理工大学学报.2004,30(6):632-635
    [28]高艳霞,江洪波,翁惠新.延迟焦化分子尺度动力学模型的工业应用[J].华东理工大学学报(自然科学版).2006,32(3):264-268
    [29]陈绍洲,徐佩若.石油化学[M].上海:华东化工学院出版社,1993
    [30]周亚松.石油加工与油料学[M].北京:石油工业出版社,2008
    [31]沈本贤.石油炼制工艺学[M].北京:中国石化出版社,2009
    [32]Journal Editors. Global capacity growth reverses; Asian, Mideast refineries progress[J]. Oil & Gas Jounal,2011,149(49):51-62
    [33]申海平,刘自宾,范启明.延迟焦化技术进展[J].石油学报(石油加工).2010,(S):14-18
    [34]刘方涛.延迟焦化技术的现状及展望[J].广州化工.2010,38(1):27-32
    [35]姚国欣.国外炼油技术新进展及其启示.当代石油化工.2005,13(3):18-25
    [36]王雪松等.延迟焦化工艺的技术进展[J].工业催化,2006,14(4):22-25
    [37]Li-R, Wang-Z-J, Long-J. Combined process of low degree solvent deasphalting and delayed coking[P]. US:6673234
    [38]Dabkowski M.J, Malladi M. Delayed coking process[P]. US:4661241
    [39]Journal Editors. Latest coker designs increase liquid yields reduce emissions [J]. Oil & Gas Journal.1993,91(45):82-87
    [40]John B, Brien O. New formula yields coking refinery margins more reliability[J]. Oil & Gas Journal.2005,103(19):53-59
    [41]Ram M. Delayed coking design and project execution. PTQ.2002:53-61
    [42]中国石化信息研究所.渣油深度加工技术方向(分报告一).1993,12
    [43]张立新.中国延迟焦化装置的技术进展[J].炼油技术与工程,2005,36(6):1-7
    [44]吕倩等.我国延迟焦化技术现状及发展趋势[J].炼油与化工,2009,(1):5-7
    [45]李出和.国内外延迟焦化技术对比[J].石油炼制与化工,2010,41(1):1-5
    [46]钱伯章.延迟焦化技术的发展前景[J].石油规划设计,2005,16(4):10-12,23
    [47]杨莹,张兰波.延迟焦化增加液体收率助剂的研究与应用现状[J].石化技术,2006,13,(3):57-59
    [48]黎元生.提高延迟焦化液收的专利方法[J].石油化工动态,1999,7(6):50-52
    [49]Goyal. Coking with decant oil addition to reduce coke yield[P]. US:4832 823,1989
    [50]Wiene. Addition of radical initiators to resid conversion processes[P]. US: 5006223,1991
    [51]孙在春,苏君雅,杨继涛.循环比对胜利渣油焦化行为的影响[J].石油学报(石油加工).1997,13(4):10-16
    [52]梁朝林,沈本贤.延迟焦化[M].北京:中国石化出版社,2007
    [53]郭爱军,张宏玉,沐宝泉等.焦化原料的表征与延迟焦化性能[J].石油化工高等学校学报.2003,16(1):14-19
    [54]Stefani, A. Debottle neck delayed cokers for greater profitability [J]. Hydrocarbon Processing,1996,75(6):99-103
    [55]瞿滨.延迟焦化装置技术问答[M].北京:中国石化出版社,2007
    [56]李春年.渣油加工工艺[M].北京:中国石化出版社,2001
    [57]贝克休斯公司.在烃的热裂解期间提高液体产率的方法.中国,1922288A[P].2007-02-28
    [58]潘延明,杨莹,刘志龙.一种提高延迟焦化液体收率助剂及其制备:中国,1928021A[P].2007-03-14
    [59]Miyawaki Shintaro, Lshii Kiyomi. Process for manufacturing petroleum cokes and cracked oil from heavy petroleum oil[P]. USA, US 5407560.1995
    [60]武海云,王子军,范启明等.添加助剂法提高延迟焦化装置液体收率的研究进展[J].石油技术与应用.2010,28(4):338-340
    [61]曹炳铖.一种提高延迟焦化过程中液体收率的方法:中国,1487056A[P].2004-04-07
    [62]梁朝林,沈本贤,吴世奎等.一种用于延迟焦化装置减少炉管结垢结焦、提高液体收率的添加剂:中国,101113367A[P].2008-01-30
    [63]见赵怡.中国石油化工科技信息指南[M].北京:中国石化出版社,2004
    [64]刘公召.延迟焦化增收剂的研制与实验室效果评价[J].炼油技术与工程,2004,1 2(34):42-44
    [65]黄福堂,阎卫东,李振广等.石油化学[M].北京:石油工业出版社,2000
    [66]程之光.重油加工技术[M].北京:中国石化出版社,1994
    [67]中国石油学会炼制分会.重质油加工利用学术研讨会论文集[M].北京:中国石化出版社,2002
    [68]杨光华.重质油化学与加工研究进展[M].北京:石油大学出版社,1998
    [69]秦匡宗,郭绍辉.石油沥青质[M].北京:石油工业出版社,2002
    [70]潘惠琴,孙杏元,潘天舒等.延迟焦化炉的数学模拟Ⅱ焦化炉的数学模型[J].石油学报(石油加工).1997,13(2):29-33
    [71]孙杏元,潘惠琴,于广锁等.延迟焦化炉的数学模拟Ⅲ焦化炉的模拟计[J].石油学报(石油加工).1997,13(3):78-87
    [72]王娟,毛羽,江华等.延迟焦化加热炉内湍流流动和燃烧的数值模拟研究[J].石油学报(石油加工).2004,20(6):58-62
    [73]周桂娟,毛羽,王娟等.延迟焦化炉内流动、燃烧和传热过程数值模拟[J].石油学报(石油加工).2007,23(1):77-81
    [74]钟长南,龚亚亮.延迟焦化加热炉辐射部分油取热量数学模型的开发[J].炼油设计.1993,23(4):55-59
    [75]易国刚,陈清林,张冰剑.延迟焦化主分馏塔模拟策略研究[J].计算机与应用化学.2007,24(10):1367-1371
    [76]马伯文,黄慧敏,陈绍洲等.延迟焦化加热炉管内结焦模型的开发和应用[J].炼油设计.1998,28(5):44-47
    [77]马伯文,黄慧敏,陈绍洲等.延迟焦化装置综合优化控制策略的开发和应用[J].华东理工大学学报.1999,25(2):127-130
    [78]马伯文,黄慧敏.延迟焦化装置优化系统的开发和应用[J].石脑油与渣油自动化.1998,6(18):18-21
    [79]范启明,杨继涛.减压渣油焦化反应六集总动力学模型的建立及其算法[J].石油大学学报:自然科学版.2001,25(4):79-81,87
    [80]马伯文,黄慧敏,陈绍洲等.延迟焦化装置优化控制模型的建立与应用[J].炼油设计.1998,28(4):53-57
    [81]卢山,吴慧雄.延迟焦化过程的动态模拟[J].哈尔滨理工大学学报.2006,11(4):102-105
    [82]高燕.应用神经网络技术开发延迟焦化装置产品收率模型[J].齐鲁石脑油与渣油.2004,32(3):243-245
    [83]王永刚.废旧沥青的再生[J].石化技术与应用.2003,21(2):134-136
    [84]杨坤.废旧沥青混合料再生技术在农村公路路面结构中的应用研究[J].江苏交通科技.2010,(5):59-62
    [85]姚运飞.国内沥青路面再生技术综述[J].科技信息.2011,(25):21,30
    [86]张立柱等.沥青混凝土路面再生技术及其应用[J].公路.2006(10):199-204
    [87]候伟.旧沥青路面就地冷再生技术浅析[J].山西建筑.2010,36(5):276-277
    [88]ARRA. Basic Asphalt Recycling Manual[M]. Annapolis, MD:Asphalt Recycling & Reclaiming Association (ARRA).2001
    [89]王晓丽.废旧沥青油毡瓦再利用[J].中国建筑防水.2010,15:57
    [90]于文成.旧沥青路面的再生技术[J].建筑工程.2009:65,66
    [91]吕伟民,严家汲.沥青路面再生技术[M].北京:人民交通出版社.1989,35-64
    [92]H.R. Paul. Evaluation of Recycled Projects for Performance[M]. Baton Rouge:Louisiana Transportation Research Center.1998
    [93]P.S. Kandhal. Performance of recycled hot mix asphalt mixtures[M]. Auburn: National Center for Asphalt Technology.1995
    [94]P.S. Kandhal. Designing recycled hot mix asphalt mixtures using superpave technology [M]. Auburn:National Center for Asphalt Technology.1997
    [95]马云梅.旧沥青路面再生应用现状与研究[J].建筑与发展.2010,(5):62-63
    [96]李建才.沥青回收与再生[J].东北公路.2001,7(3):74-78
    [97]刘先淼.厂拌热再生沥青路面施工技术及其质量控制[C].2003全国公路沥青路面再生技术与设备研讨会论文集,广州.2003.11
    [98]曾令永,季鹏,奚丽珍等.沥青路面现场热再生技术在沪宁高速公路大修工程中的应用与研究[C].第二届中国国际沥青大会论文集,北海.2004.3
    [99]鲍永生,范强.减粘装置掺炼沥青的工业试生产[J].石油炼制与化工.1998,29(4):17-22
    [100]http://www.doc88.com/p-91890095220.html
    [101]王敬波.掺炼丙脱沥青对焦化装置安全运行及产品的影响[J].炼油技术与工程.2005,35(8):15-17
    [102]瞿国华.延迟焦化工艺与工程[M].北京:中国石化出版社.2008
    [103]李新.延迟焦化装置扩能改造及掺炼沥青的探讨[J].广石化科技.1998,(4):49-52
    [104]http://wenku.baidu.com/view/59154e0302020740be1e9b3c.html
    [105]毛炜,窦潇,王华等.分子模拟在反相液相色谱分离机理研究中的应用[J].计算机与应用化学.2007,24(4):524-528
    [106]D.J.Griffiths量子力学概论[M].北京:机械工业出版社,2006
    [107]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985
    [108]方再根.计算机模拟和蒙特卡洛方法[M].北京:北京工业学院出版社,1988
    [109]J.B.McDermott, Cristian Libanati, and M.T. Klein. Quantitative use of Model Compound Information:Monte Carlo Simulation of the Reactions of Complex Macromolecules[J]. Ind.Eng.Chem.Res,1990,29:22-29
    [110]刘忠文,张志新.复杂反应体系的动力学分析——集总理论及其应用[J].石油化工高等学校学报.1998,11(3):5-10
    [111]http://accelrys.com/products/materials-studio/
    [112]http://www.gaussian.com/
    [113]http://chemport.ipe.ac.cn/ListPageC/L46.shtml
    [114]汪定伟,王俊伟,王洪峰等.智能优化算法[M].北京:高等教育出版社,2007
    [115]E.Hairer, S.N(?)rsett, W.G.Paul. Solving ordinary differential equations I: Nonstiff problems[M]. Berlin, New York:Springer-Verlag,1993 ISBN: 978-3-540-56670-0
    [116]田风华.关于标准四阶龙格-库塔法的收敛性与稳定性的讨论[J].辽宁教育学院学报.2003,20(6):57-58
    [117]中华人民共和国石油化工行业标准[S].SH/T0509-92
    [118]中华人民共和国石油化工行业标准[S].SH/T0170-92
    [119]中华人民共和国石油化工行业标准[S].SH/T2540-88
    [120]中华人民共和国国家标准[S].GB/T264-83
    [121]中华人民共和国国家标准[S].GB 11133-89
    [122]中华人民共和国石油化工行业标准[S].SH/T1759-2007
    [123]阙国和.石油组成和转化化学[M].北京:中国石油大学出版社,2008
    [124]杨光华.重油加工的基本理论问题[M].北京:中国石油大学出版社,2001
    [125]SH/T 0606-2005,中间馏分烃类组成测定法.
    [126]SH/T 0659-1998,瓦斯油中饱和烃馏分的烃类测定法.
    [127]GB/T 18340.4-2001,地质样品有机地化测试重馏分石油芳香烃族组成质谱分析方法.
    [128]N.Metropolies, A.Rosenbluth, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics.1953,21:1087-1092.
    [129]S.Kirkpatrick, C.D.Gelatt, M.P.Vecchi, Optimization by simulated annealing [J]. Science.1983,220:671-680.
    [130]周仁望.石油工业裂解原理和技术[M].北京:化学工业出版社,1982
    [131]Z.Belohlav, P.Zamostny, The kinetic model of thermal cracking for olefins production [J]. Chemical Engineering and processing.2003,42:461-473
    [132]D.L.Allara, A compilation of kinetic parameters for the thermal degradation of n-alkane molecules [J]. J.Phys.Chem.Ref.Data 1980,9(3):523-559
    [133]V.Van Speybroeck, M.F.Reyniers, Marin C.B et al. The Kinetics of Cyclization Reactions on Polyaromatics from First Principles [J]. CHEMPHYSCEM.2002,3:863-870
    [134]胡英.物理化学(第二版)[M].北京:高等教育出版社,2004
    [135]高大元等.Arrhenius方法的局限性讨论[J].含能材料.2006,14(2):132-135.
    [136]P.W.Atkins. Physical Chemistry (Second Edition)[M]. Oxford University Press,1982.
    [137]R.H.Fowler, E.A.Guggenheim. Statistical thermodynamic[M]. Cambridge University Press,1956.
    [138]D.L.Allara. A Compilation of Kinetic Parameters for the Thermal Degradation of n-Alkane Molecules[J]. J. Phys. Chem. Ref. Data.1980,9(3): 523-559
    [139]L.P.Hammet. The effect of structure upon the reactions of organic compounds[J]. J Am Chem Soc.1937,59:96-103.
    [140]E.S.Gould. Mechanism and Structure in Organic Chemistry[M]. Holt, New York.1960.
    [141]M.Neurock, M.T.Klein. Linear free energy relationships in kinetic analysis: applications of quantum chemistry[J]. Polyc. Arom. Compounds.1993, 3:231-246.
    [142]梁朝林.渣油性质对延迟焦化产物的影响和提高焦化液收技术研究.华东理工大学博士学位论文.
    [143]L.Didier. The Colloidal Structure of Bitumen:Consequences on the rheology and on the mechanisms of bitumen modification [J]. Advances in Colloid and Interface Science.2009,145:42-82.
    [144]聂鹏,杨彦海,李迎.利用添加剂改善沈大路旧沥青性质的研究[J].东北公路.2001,24(1):18-20
    [145]景彦平.关于沥青物态结构的研究[J].重庆交通学院学报.2005,24(5):21-24
    [146]王大喜等.石油胶质结构性质的量子化学研究[J].燃料化学学报.2006,34(6):690-694
    [147]韩基一等.再生沥青的化学组成与结构研究[J].兰州石化职业技术学院学报.2009,9(3):4-7
    [148]秦匡宗.用1H核磁共振波谱法对芳基石油沥青的分子结构及其性质的研究[J].华东石油学院学报.1980,(3):103-111
    [149]刘崇理.沥青路面的再生机理与再生剂研究[J].北方交通.2010,18(5):6-9
    [150]SH/T0527-1992,延迟石油焦(生焦)[S]
    [151]王玉章等.延迟焦化石油焦及其应用[J].炼油技术与工程.2008,38(2):25-30
    [152]谢民.浅谈加快开发我国石油焦燃料市场[J].石油化工动态.1998,6(6):17-21
    [153]韩东太,宋正昶,徐涛.循环流化床锅炉燃烧石油焦的可行性试验[J].华东电力.2003,(8):51-53
    [154]韩崇任.加氢裂化工艺与工程[M].北京:中国石化出版社,2006
    [155]陈俊武.催化裂化工艺与工程(第二版)[M].北京:中国石化出版社,2005
    [156]http://page.china.alibaba.com/buy/trade/10.html?tracelog=hpcatalog_ycl_nen gyuan

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700