影响重油热反应产品分布因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化原料的性质及反应温度和反应时间是影响重油热反应产品分布的主要因素,提出采用中段循环油作为替代塔底重循环油,作为焦化循环油品成为提高炼厂效益的良好选择。论文期间采集了现场装置的典型减压渣油、中段回流油和塔底循环油,进行了不同循环比模拟辐射进料的复配以及不同原料的馏分分布等常规物性测定。利用静态实验装置重油热加工性能评价仪,开发了定温条件、定热条件、同反应历程及不同循环油配比评价实验,为重油热反应产品分布规律的研究奠定了基础。并完成了减压渣油掺炼塔底循环油和中段回流油复配比分布在0.1、0.2、0.3条件下九个模拟焦化原料的产品分布测定,得到了产品分布变化规律。此外,研究了将不同循环比模拟辐射进料的实测产品分布关联到以减压渣油为基准的产品分布的计算方法。
     实验结果表明:在各评价实验条件下,减压渣油掺炼中段回流油与掺炼塔底循环油相比,循环比分别为0.1、0.2、0.3时,焦炭产率下降的平均值分别为2.1%、5.2%、7.8%;液体收率升高的平均值分别为4.3%、7.3%、10.3%;气体收率下降的平均值分别为1%、2.1%、2. 5%。减压渣油掺炼中段回流油的产品分布好,能够到达增加液收、降低焦炭的目的。
     实验研究了同种反应油样的条件下,同时考察反应温度和反应时间对产品分布的影响。实验结果表明:油样在先高温后低温下的反应,高温段对产品分布的影响较大,低温段对产品分布的影响较小;反应温度对产品分布的影响较大,反应时间对产品分布的影响稍小。其中较高的高温段温度和较长的反应时间,是取得较好产品分布的最佳条件。
The thermal reaction product distribution of heavy oil is mainly affected by raw material’s properties, reaction temperature and reaction time. A method that mid-reflux oil replaces bottom heavy-cycle oil as coking cycle oil is introducted which can enhance refinery benefit. During the paper typical vacuum residue, the mid-reflux oil and bottom heavy-cycle oil were collected. Analog radiation feed of different recycle ratio were made, and the different raw material’s boiling range were measured. The constant temperature experiment, the constant heat experiment, the same reaction process experiment different recycle ratio experiment were developed with the heavy oil thermal process unit. It is the research foundation of the thermal reaction product distribution. At the condition of recycle ratio 0.1, 0.2, 0.3, the product distribution experiment of vacuum residue oil blending with mid-reflux oil and bottom heavy-cycle oil were completed, and the variation law of product distribution was obtained. In addition, a design procedure was get which can transform the product yield.
     The results show that: At the different experimental conditions, compared to the vacuum residue oil blending with bottom heavy-cycle oil, the mid-reflux oil can get a better product distribution. At the recycle ratio of 0.1,0.2,0.3, the average yield of coke were declined by 2.1%, 5.2%, 7.8%; average yield of liquid were increased by 4.3%, 7.3%, 10.3%; the average yield of gas were decreased by 1%, 2.1%, 2.5%.
     Experiment studied using the same oil, how was the product distribution affected by the reaction temperature and reaction time simultaneously. The results show that: in the high-temperature section followed by low-temperature section reactions, the high-temperature section has larger effect on product distribution than low-temperature section; the reaction temperature has greater impact than the reaction time. The higher of high-temperature section and longer reaction time, is the best condition for a better product distribution.
引文
[1]宋春才,亓玉台,谢传新等.延迟焦化工艺及其发展趋势[J].抚顺石油学院学报,2000,20(3) :1.
    [2]晁可绳.延迟焦化工艺技术及其进展[J].炼油设计,2001,31(10):1.
    [3]瞿国华.延迟焦化工艺与工程[M].北京:中石化出版社,2008:264-267.
    [4]Ram Maik.Delayed Coking Design and Project Execution.Petroleum[J].Technology Quarterly:Autumn,2002,21(1) :53-61.
    [5]林世雄.石油炼制工程[M].第3版.北京:石油工业出版社,2000:302-303.
    [6]程丽华.石油炼制工程学[M].北京:中国石化出版社,2005:204-205.
    [7]Robert A Meyes.Handbook of Petroleum Refining processes[M].New York:McGraw-Hill Companies Inc,1997:126-128.
    [8]瞿国华,黄大智,梁文杰.延迟焦化在石油加工中的地位和前景[J].石油学报(石油加工),2005,21(3):32-35.
    [9]Anthony D B.Advances in coking technology[C].AIChE Spring 1996 Meetin,New Orleans,LA,1996:17-19.
    [10]Ellis P J.Tutorial:Delayed coking fundamentals[C].AIChE Spring 1998 Meeting.New Orleans,LA,1998:23-25.
    [11]李春年.渣油加工工艺[M].北京:中国石化出版社,2002:158.
    [12]程哲生.延迟焦化日益被重视[J].石油化工要闻,2003(1):15-16.
    [13] Stell J.2000 Worldwide refining survey[J].Oil & Gas Journal,2000,98(51):66~120.
    [14]肖家治,王兰娟,蔡升等.焦化炉工艺校核方法的研究[J].炼油设计,2001,31(10):18-22.
    [15]侯祥麟.中国炼油技术[M].北京:中国石化出版社,2001:94-95.
    [16]程之光.重油加工技术[M].北京:中国石化出版社,1994:382-383.
    [17]甘丽琳,徐江华,李和杰.可调循环比的延迟焦化工艺[J].炼油技术与工程,2003,33(10):8-10.
    [18]程之光.重油加工技术[M].北京:中国石化出版社,1994:1-2.
    [19]瞿国华.延迟焦化工艺与工程[M].北京:中石化出版社,2008:50-65.
    [20]林世雄.石油炼制工程[M].第3版.北京:石油工业出版社,2000:307-309.
    [21]王玉章.延迟焦化加热炉辐射进料结焦性能的研究[J].炼油技术与工程,2004,34(12):9-14.
    [22]梁文杰.石油化学[M].东营:石油大学出版社,1995:257-261.
    [23]张学萍,根据渣油的热裂解性能优化延迟焦化操作温度[J].抚顺烃加工技术,2005,2:23-26.
    [24]日本石油学会重质油分会. Characterization of heavy oils and its application (Part6)[J].石油学会志,1984,27(1):81-86.
    [25]梁文杰.石油化学[M].东营:石油大学出版社,1995:262-265.
    [26]吴指南.基本有机化工工艺学[M].修正版.北京:化学工业出版社,1990:22-31.
    [27]程之光.重油加工技术[M].北京:中国石化出版社,1994:374-376.
    [28]李春年.渣油加工工艺[M].北京:中国石化出版社,2002:143-144.
    [29]施阿小,陆善祥,孙建军等.烃类裂解阻焦强化剂的研究.石油化工,2003,32(6):462-466.
    [30]马博文,黄惠敏,陈绍洲等.延迟焦化装置加热炉管内结焦模型的开发和应用.炼油设计,1998,28(5):35-28.
    [31]瞿国华.延迟焦化产品及其应用.延迟焦化工艺与工程.中国石化出版社.296-308.
    [32]晁可绳.焦化加热炉长周期运行的设计考虑[J].炼油设计,1999(11):32-35.
    [33]中国石化延迟焦化技术交流暨第二届焦化年会会议纪要,中国石化股份有限公司焦化科技情报站.2006,3:15-16.
    [34]姚国欣.国外炼油新进展及其启示[J].当代石油化工,2005,13(3):23-24.
    [35]CHOWDHURYJ.A crude awakening for refiners[J].Chem Eng,1998,105(13):33-37.
    [36]李锐,丁宗禹.同时生产两种规格焦炭的延迟焦化工艺[J].石油炼制与化工,1997,28(10):12-15.
    [37] RAM MAL IK.Delayed coker design and project execution[M].Petroleum Technology Quarterly(Autumn),2002:53-61.
    [38]刘晓欣.催化裂化-延迟焦化组合工艺[J].石油炼制与化工,1998,29(11):28-33.
    [39]肖雁,冯茂生.减粘-焦化联合工艺的工业应用[J].炼油设计,2000,30(12):12-15.
    [40]黄新龙,沙颖逊,曲贺欣等.延迟焦化-溶剂精制-催化裂化组合工艺应用[J].炼油设计,2001,31(6):48-51.
    [41]黄新龙,朱景利,刘金龙等.延迟焦化-溶剂精制-加氢裂化组合工艺的工业试验[J].炼油技术与工程,2004,34(7):10-12.
    [42]倪晓亮,吴青.延迟焦化-加氢裂化-催化裂化联合工艺的应用[J].2002,33(5):1-4.
    [43]魏超,袁志祥,肖革江.焦化装置灵活循环比流程的应用[J].炼油与化工,2006:1 (17):60-61.
    [44]甘丽琳,徐江华,李和杰.可调循环比的延迟焦化工艺[J].炼油技术与工程,2003:33 (10):8-11.
    [45]刘晨光等.减压渣油热反应特性与原料性质的关联,石油学报(石油加工),1999(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700