改性HZSM-5催化剂非临氢芳构化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国催化裂化汽油(FCC)比例高达80%,而FCC汽油烯烃体积分数在50%左右,已经远远超出了国家和国际标准。可以采用改进催化裂化技术、醚化和加氢精制等技术来降低FCC汽油烯烃含量,但这些方法降低烯烃含量的幅度很有限,或者使得汽油辛烷值降低。利用汽油非临氢芳构化技术把汽油中烯烃转化为辛烷值更高的芳烃可以达到大幅度降低烯烃和保持辛烷值不降低甚至有所提高的目的,同时节省了能源,降低了设备要求,最终减少了生产成本。
     本文采用共浸渍法制备了Zn、P和Ga改性的HZSM-5催化剂。同时利用X射线衍射(XRD)、N2吸附比表面积测定(BET)、氨程序升温脱附(NH3-TPD)、傅立叶红外光谱(FT-IR)、热重(TG)等方法对水热处理前后改性催化剂的晶相结构、比表面积、表面酸性和反应积炭行为进行表征。结果表明,水热处理总体上没有破坏HZSM-5的骨架结构,降低了ZnPGa/HZSM-5催化剂的比表面积、总酸量和酸强度,抑制了ZnPGa/HZSM-5催化剂上正庚烷芳构化反应过程中的积炭。
     催化剂上正庚烷芳构化反应性能评价结果表明Zn的引入既抑制了HZSM-5上正庚烷的裂解又促进了芳构化反应的进行,最佳Zn负载量为2%;第二组元P的引入能阻止Zn的流失,同时阻碍了芳构化反应过程中大分子物质的生成,减少了催化剂表面积炭,从而提高了催化剂芳构化性能稳定性,最佳P负载量为0.2%;第三组分Ga的引入不仅能促进正庚烷转化和芳构化,还能抑制中间产物氢解,增加液体产物收率,最佳Ga负载量为0.2%。水热处理降低了ZnPGa/HZSM-5上正庚烷芳构化反应的初活性,但提高了液体收率和稳定性。ZnPGa/HZSM-5催化剂具有良好的正庚烷芳构化反应稳定性。在反应温度400 oC,反应压力0.1MPa,WHSV为2h-1的工艺条件下,ZnPGa/HZSM-5催化剂上正庚烷芳构化反应120 h时间内的液体收率、正庚烷转化率、芳烃选择性及液相产物中芳烃含量分别稳定在55%,70%,15%,20%左右。
     FCC汽油中具有代表性的烯烃1-己烯在Zn、P和Ga的负载量分别为2%、0.2%和0.2%的最佳改性HZSM-5上的芳构化反应结果表明,在相同反应条件下,1-己烯比正庚烷更容易芳构化。水热处理降低了ZnPGa/HZSM-5上1-己烯芳构
The proportion of fluid catalytic cracking(FCC) gasoline is as high as 80 % in our country. The fraction of olefins in FCC gasoline is around 50 v% which has far exceeded national and international criterion. Olefins content in FCC gasoline can be reduced by promoting FCC technology, etherification, hydrogenation and so on. But these methods can not reduce olefins content to a great extent, or they will lower gasoline octane number. Converting olefins in FCC gasoline into aromatics with more octane number than olefins by aromatization technology without hydrogen flow can greatly reduce olefins content, keep octane number even increase it, while it can save energy, reduce equipment demand and bring down production cost finally.
     In this thesis, Zn, P and Ga modified HZSM-5 catalysts were prepared by co-impregnation method. The structure, surface area, acid properties and coke deposition of modified catalysts with and without hydrothermal treatment were characterized by x-ray powder diffraction(XRD), nitrogen-adsorption surface area measurement(BET), NH3 temperature-programmed-desorption(NH3-TPD), pyridine FT-IR and thermogravimetry(TG). The results showed that hydrothermal treatment did not destroy HZSM-5 framework structure while it decreased surface area, total acid amount, strong acid sites of ZnPGa/HZSM-5 catalyst and the coke deposition on ZnPGa/HZSM-5 catalyst for n-heptane aromatization.
     The evaluation result of n-heptane aromatization performance over various catalysts showed that introduction of Zn not only restrained n-heptane cracking but also accelerated its aromatization. The optimal Zn loading amount is 2 wt%. Introduction of the second element P could prevent Zn from flowing away while it restricted production of big molecules during aromatization process and decreased coke deposit on the surface of the catalyst so that aromatization stability was enhanced. The optimal P loading amount is 0.2 wt%. Introduction of the third element Ga not only promoted n-heptane conversion and aromatization but also restrained hydrogenolysis of middle production and increase liquid yield. The optimal Ga
引文
[1] 刘治中,许世海,姚如杰. 液体燃料的性质及应用[M]. 北京:中国石化出版社,2000
    [2] 尚琪,汤大钢. 控制车用汽油有害物质降低机动车排放[J]. 环境科学研究. 2000,13(1):32-35
    [3] 车延超,刘春岩,李丹东等. 催化裂化汽油在磷改性 Ni/ZSM-5 催化剂上的降烯烃工艺研究[J]. 工业催化. 2004,12(4):13-17
    [4] 仇延生. 汽油的烯烃对发动机排放的影响[J]. 石油炼制与化工. 2000,31(4):40-45
    [5] 王超,王定博,戴伟. 催化裂化汽油降烯烃研究进展[J]. 化工进展. 2005,24(9):971-975
    [6] 徐舟波. 高硅纳米沸石催化 FCC 汽油降烯烃的研究[D]. [硕士学位论文]. 大连:大连理工大学,2004
    [7] 黄望旗. 多产异构烷烃催化裂化工艺(MIP)的工业应用[J]. 炼油技术与工程. 2004,34(3):5-8
    [8] 杨岸冰. MGD 工艺技术应用[J]. 化学工程师. 2002,92(5):65-66
    [9] Wallenstein D, Harding R H. The dependence of ZSM-5 additive performance on the hydrogen-transfer activity of the REUSY base catalyst in fluid catalytic cracking [J]. Appl Catal A: General. 2001, 214(1): 11-29
    [10] 赵宇鹏,罗强. 降烯烃催化剂 RFGFS3 的工业应用试验[J]. 石油炼制与化工. 2003,1:33-37
    [11] 周惠娟,梅建国. FCC 汽油降烯烃技术进展[J]. 当代石油石化. 2002,10(5):33-37
    [12] 郝代军. 降低 FCC 汽油烯烃的措施[J]. 炼油设计. 2001,31(1):49-51
    [13] 郭永刚. 降低汽油烯烃含量的方法和途径[J]. 沈阳化工. 2000,29(2):72-75
    [14] 郑嘉惠. 清洁燃料生产技术评述[J]. 当代石油石化. 2003,11(1):4-9
    [15] 王伟,魏强,徐占武. 催化裂化汽油回炼技术应用[J]. 炼油设计. 2002,32(3):24-28
    [16] 蔺爱国,王德会,戴立顺. 催化裂化汽油改质的研究与探讨[J]. 石油炼制与化工. 2001,32(7):10-13
    [17] 张志华. C5 烯烃的醚化及烷基化[J]. 石油炼制与化工. 1996,27(5):20-25
    [18] 冯翠兰,曹祖宾,徐贤伦等. 催化裂化汽油降烯烃工艺研究进展[J]. 抚顺石油学院学 报. 2002,22(2):25-29
    [19] 张艳霞. FCC 汽油降烯烃技术进展[J]. 齐鲁石油化工. 2004, 32(3):189-191
    [20] 张广林,杨金鹏. 发展 FCC 轻汽油醚化技术[J]. 河南石油. 1998,12(2):34-39
    [21] 王海彦,杜桐林,袁履冰. 催化裂化轻汽油临氨酸化的研究[J]. 石油炼制与化工. 1994,25:16-20
    [22] Nagamori Y, Kawase M. Converting light hydrocarbons containing olefins to aromatics (Alpha Process) [J]. Microporous Mesoporous Mater. 1998, 21(4-6): 439-445
    [23] 陈迺沅等著. 择形催化在工业中的应用[M]. 北京:中国石化出版社,1992
    [24] 刘丹禾,郝代军. 加氢焦化汽油芳构化改质提高辛烷值的研究[J]. 石油炼制与化工. 1999,30(4):21-24
    [25] 刘路加,董群. 油田轻烃在镧,锌改性的 HZSM-5 催化剂上转化为芳烃的研究[J]. 石油炼制. 1993,24(1):26-29
    [26] 谢朝钢,刘舜华,王亚民. 催化裂解汽油催化芳构化工艺的研究[J]. 石油炼制与化工. 1999,30(11):6-9
    [27] 胡永康, 赵乐平, 李扬等. 全馏分催化裂化汽油芳构化烷基化降烯烃技术的开发[J]. 炼油技术与工程. 2004,34(1):1-4
    [28] Argauer R J, Landolt G R et al. Crystalline zeolite ZSM-5 and method of preparing the same [P]. US: 3702886, 1972
    [29] 赵光,邓启刚. 工业催化基础[M]. 哈尔滨:哈尔滨工程大学出版社,1999
    [30] Sahoo S. K, Viswanadham N, Ray N et al. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization [J]. Appl Catal A: General. 2001, 205(1-2): 1-10
    [31] Bhattacharya D, Sviasanker S. A comparision of aromatization activities of the medium pore zeolites, ZSM-5, ZSM-22, and EU-1 [J]. J Catal. 1995, 153(2): 353-355.
    [32] Komatsu T, Mesuda M, Yashima T. Aromatization of butane on Pt-Ge intermetallic compounds supported on HZSM-5 [J]. Appl Catal A: General. 2000, 194-195:333-339
    [33] Choudhary VR, Mantri K, Sivadinarayana C. Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H–ZSM-5 [J]. Microporous Mesoporous Mater. 2000, 37(1-2): 1-8
    [34] Fan Y, Bao X J, Lei D et al. A novel catalyst system based on quadruple silicoaluminophosphate and aluminosilicate zeolites for FCC gasoline upgrading [J]. Fuel. 2005, 84(4): 435-442
    [35] 陈巍,徐龙伢,谢素娟等. 丙稀与苯烷基化反应分子筛催化剂的研究进展[J]. 天然气化工. 1999,24(4):39-45
    [36] Wu X Ch, Anthony R G. Alkylation of Benzene with Formaldehyde over ZSM-5 [J]. J Catal. 1999, 184(1): 294–297
    [37] Canizares P, de Lucas A, Dorado F et al. Effect of zeolite pore geometry on isomerization of n-butane [J]. Appl Catal A: General. 2000, 190(1-2): 233-239.
    [38] Houzvicka J, Nienhuis J G, Hansildaar S, et al. ZSM-5—An active, selective and stable catalyst for skeletalisomerisation of n-butene [J]. Appl Catal A: General. 1997, 165(1-2): 443-449.
    [39] Bhattacharya D. Aromatization of n-hexane over H-ZSM-5: Influence of promoters and added gases [J]. Appl Catal A: General. 1996, 141(1-2): 105-115
    [40] Heemsoth J. Generation of active sites for ethane aromatization in ZSM-5 zeolites by a solid-state reaction of zinc metal with Br?nsted acid sites of the zeolite [J]. Microporous and Mesoporous Mater. 2001, 46(2-3): 185-190
    [41] 赵亮,王海彦,魏民等. 催化裂化轻汽油在改性 HZSM-5 上的芳构化研究[J]. 工业催化. 2005,13(9):6-9
    [42] 张培青, 王祥生, 郭洪臣等. 改性纳米 ZSM-5 催化剂脱除汽油中烯烃的性能[J]. 催化学报. 2003,24(8):585-589
    [43] Choudhary V R, Devadas P, Banerjee S et al. Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts [J]. Microporous Mesoporous Mater. 2001, 47(2-3): 253-267
    [44] Chetina O V, Vasina T V, Lunin V V. Aromatization of ethane over Pt,Ga/HZSM-5 catalyst and the effect of intermetallic hydrogen acceptor on the reaction [J]. Appl Catal A: General. 1995, 131(1): 7-14
    [45] Meriaudeau P, Naccache C. Gallium based MFI zeolites for the aromatization of propane [J]. Catal Today. 1996, 31(3-4): 265-273
    [46] Mao R L, Yao J H, Dufresne L A et al. Hybrid catalysts containing zeolite ZSM-5 and supported gallium oxide in the aromatization of n-butane [J]. Catal Today. 1996, 31(3-4): 247-255
    [47] 侯玉翠,王定珠,卢学栋. Cd-ZSM-5 沸石催化剂的制备、表征和芳构化催化性能[J]. 石油化工. 1993,22(7):431-436
    [48] Choudhary V R, Panjala D, Banerjee S. Aromatization of propene and n-butene over H-galloaluminosilicate (ZSM-5 type) zeolite [J]. Appl Catal A: General. 2002, 231(1-2): 243-251
    [49] Nash R J, Dry M E, OConnor C T. Aromatization of 1-hexene and 1-octene by gallium/H-ZSM-5 catalysts [J]. Appl Catal A: General. 1996, 134(2): 285-297
    [50] 张培青, 王祥生, 郭洪臣等. 水热处理对纳米HZSM-5沸石酸性质及其降低汽油烯烃性能的影响[J]. 催化学报. 2003,24(12):900-904
    [51] 张培青,王祥生,郭洪臣. 不同晶粒度HZSM-5沸石汽油降烯烃性能[J]. 大连理工大学学报. 2003,43(5):571-576
    [52] Biscardi J A, Meitzner G D, Iglesia E. Structure and density of active zn species in Zn/H-ZSM5 propane aromatization catalysts [J]. J Catal. 1998, 179(1): 192-202
    [53] Viswanadham N, Muralidhar G, Prasada Rao T S R. Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions [J]. J Mol Catal A: Chem. 2004, 223(1-2): 269-274
    [54] Viswanadham N, Pradhan A R, Ray N, et al. Reaction pathways for the aromatization of paraffins in the presence of H-ZSM-5 and Zn/H-ZSM-5 [J]. Appl Catal A: General. 1996, 137(2): 225-233
    [55] Choudhary V R, Mulla S A R, Banerjee S. Aromatization of n-heptane over H-AlMFI, Ga/H-AlMFI,H-GaMFI and H-GaAlMFI zeolite catalysts: influence of zeolitic acidity and non-framework gallium [J]. Microporous and Mesoporous Mater. 2003, 57(3): 317-322
    [56] Choudhary T V, Kinage A K, Banerjee S et al. Effect of temperature on the product selectivity and aromatics distribution in aromatization of propane over H-GaAlMFI zeolite [J]. Microporous and Mesoporous Mater. 2004, 70(1-3): 37-42
    [57] Chang Ch Sh, Lee M D. Effects of hydrogen pretreatment on the acidic and catalytic properties of gallium-supported H-ZSM-5 in n-hexane aromatization [J]. Appl Catal A: General. 1995, 123(1): 7-21
    [58] Ha V T.T, Tiep L V, P. Meriaudeau P. Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism [J]. J Mol Catal A: Chem. 2002, 181(1-2): 283-290
    [59] 朱文良. 用纳米HZSM-5进行汽油清洁化的初步探索[D]. [硕士学位论文]. 大连:大连理工大学,2001
    [60] 李晓龙,柯明,范志明等. NiP/ZSM-5催化异构化及芳构化[J]. 石油化工. 2001,31(4):250-253
    [61] 朱光中. 正己烷在某些金属改性HZSM-5上的芳构化反应[J]. 惠州大学学报. 1996, 16(4): 40-44
    [62] 刘一心,何智勇. 轻烃芳构化技术进展[J]. 石油与天然气化工. 2005,34(3):165-167
    [63] 李秋颖, 白英芝, 王海彦等. Zn-P/HZSM-5催化剂上催化裂化汽油馏分的芳构化[J]. 石油炼制与化工. 2003, 34(12):5-8
    [64] 张艳霞, 于廷云, 隋新等. FCC 汽油降烯烃非氢工艺用催化剂的开发[J]. 工业催化. 2004,12(1):12-15
    [65] Nakamura I, Fujimoto K. On the roll of gallium for the aromatization of low paraffins with Ga-promoted ZSM-5 catalyst [J]. Catal Today. 1996, 31(3-4): 335-344.
    [66] Price GL, Kanazirev V, Dooley KM et al. On the Mechanism of Propane Dehydrocyclization over Cation-Containing, Proton-Poor MFI Zeolite [J]. J Catal. 1998, 173(1): 17-27
    [67] 吕仁庆, 王秋英, 项寿鹤. 碱性水蒸汽处理对 ZSM-5 沸石酸性质及孔结构的影响[J].催化学报. 2002,23(5):421-424
    [68] 解红娟,王心葵. HZSM-5 的水蒸汽处理及其对丙烷芳构化反应的影响[J]. 合成化学. 1996,4(3):242-244
    [69] Song Y Q, Li H B, Guo Zh J et al. Effect of variations in acid properties of HZSM-5 on the coking behavior and reaction stability in butene aromatization [J]. Appl Catal A: General. 2005, 292: 162-170
    [70] 尹双风,林洁,于中伟. 锌含量对Zn/HZSM-5催化剂性能的影响[J]. 催化学报. 2001,22(1):57-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700