通用飞机结构耐撞性分析与设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通用飞机耐撞性仿真分析与抗坠毁设计技术是飞机设计的重要内容。本文以实际工程研究为背景,以瞬态非线性有限元分析技术为手段,研究了飞机结构耐撞性仿真和设计中的若干关键问题。具体可归纳为如下几点:
     1)文章首先讨论了飞机结构坠撞分析建模所涉及到的基本理论和关键技术,总结了飞机结构坠撞试验和仿真分析数据处理方法。
     2)引入全局近似模型构造了结构耐撞性优化目标函数、约束函数与设计变量之间的响应面方程,利用遗传算法对响应面进行了优化分析。提出了全局近似模型迭代和优化分析的混合算法,提高了分析效率。
     3)引入子结构综合技术对分析模型进行自由度减缩。构造了一种与保留模态加权正交的向量集,通过这组向量集容易实现自由-自由结构的剩余柔度矩阵的计算。在此基础上,结合飞机结构坠撞问题的特点,提出了相应的有阻尼结构的自由界面子结构综合法。文章随后还给出了一种具有普遍意义的实系数解耦变换方法,构造了与这种变换方法相适应的左、右加权正交向量集,并且在此基础上提出了实数域内的有阻尼结构自由界面子结构综合法。给出了与瞬态非线性有限元分析中广泛采用的中心差分计算格式相容的子结构综合方程。算例分析表明,利用本文方法进行结构碰撞分析,能够大幅提高计算效率,也具有很好的计算精度。
     4)建立了带油箱的机身框段坠撞分析模型。模型中考虑了燃油与油箱结构的液/固耦合作用。通过仿真分析,揭示了坠撞环境下燃油量对机身各部分结构的坠撞响应和损伤的影响,研究了机身框段各部分结构的能量吸收情况。给出了在应急着陆或可生存坠撞条件下飞行员所应采取的应急措施。
     5)开展了50%的Hybrid III型标准假人模型与我国普通乘员体格差异性研究,通过仿真分析算例比较了相同输入条件下不同百分位的Hybrid III型假人模型头部响应数据,评价了50百分位的Hybrid III型标准假人模型的适用性,并给出了相应的建议。
     6)为了评价飞机结构抗坠毁性能对乘员的保护作用,建立了带标准假人模型的全机坠撞有限元模型。比较了材料应变率敏感性对分析结果的影响,给出了建立材料模型时所需遵循的准则。利用仿真分析评价了某轻型飞机的抗坠毁性能,找到了不利于乘员生命安全的因素,提出了相应的设计修改方案。利用仿真分析手段,通过比较研究验证了设计修改的可靠性。为仿真分析技术辅助飞机结构抗坠毁设计提供了指导依据。
Aircraft crashworthiness design and crash simulation is an important parts of aircraft design. This paper focuses on several key techniques about aircraft crash simulation and crashworthiness design. The content is listed below:
     1) General methods in developing an aircraft finite element model under crash environment have been discussed firstly. Test data and simulation result evaluation and filtering methods have been summarized.
     2) Global approximation model is employed for optimization of the energy absorption structure under crashworthiness requirement. The response surface of both object and constraint obtained through global approximation model is coupled with Genetic Algorithms to perform the objective optimization. A mixture method for response surface iteration and objective optimization has been developed to reduce total optimization work.
     3) Components synthesis methods have been integrated into crash simulation. In order to accurately model the dynamics of the structure, the flexibility matrix is calculated through a weighted-orthogonal matrix formulated in this paper. Based on the weighted-orthogonal matrix, a new free interface components synthesis method for damping structure is developed. In order to obtain the real coefficients synthesis equation, a general transformation decoupled method is developed, through which the complex coefficients decoupled equations can be converted into the real coefficiets ones. Left and right weighted-orthogonal matrix compatible with the transformation decoupled method has been obtained. Based on these works, a free interface component synthesis method for damping structure is formulated. The synthesis equation is a real coefficient function, and the form of the equation is compatible with the central differential integration methods. The validation of this method is demonstrated through analytical simulation subsequently.
     4) Finite element model of a fuselage section with fuel tank has been developed. In order to accurately model the dynamics and failure of the fuel tank, the complicated fluid/structure interaction model has been considered in. Simulation result reveals the relationship of the the fuel weight and the responses and failure of fuselage section. The energy absorption capabilities of each part of the fuselage section have been discussed. Recommends have been proposed for the pilots to deal with emergency landing and survival crash.
     5) The differences of the body characteristics between 50% Hybrid III dummy and ordinary Chinese people are discussed. 5%, 50% and 95% Hybrid III dummies head responses have been calculated out to illustrate the effection of the differences of the body characteristic upon the simulation results. The adaptability of 50% Hybrid III dummy for full scale crash test has been evaluated. Corresponding suggestions have been proposed.
     6) A full scale finite element model of a light fixed wing aircraft integrated with a dummy model has been developed. Influence of strain rate dependent of the material effects on the total simulation results has been discussed. Criterion for material modeling has been suggested. The crashworthiness of the light aircraft has been evaluated through analytical methods, and the unfavourable factors of the aircraft have been found out. Modifications have been carried out to improve the protection of the seat system for the occupants. The validation of the modifications has been demonstrated by simulation method.
引文
[1] Crash Survival Design Guide, TR-71-22.
    [2] Shanahan DF, Shanahan M O. Kinematics of U.S. Army helicopter crashes 1980-1985. Aviation, Space and Environmental Medicine, 1989, 60: 112– 121.
    [3] Shanahan DF. Crash experience of the U.S. Army black hawk helicopter. Aircraft accidents: Trends in aerospace medical investigation techniques. Neuilly-Sur-Seine, France:AGARD CP 532,1992,40: 1– 9.
    [4] J.F.M. Wiggenraad. Crashworthiness Research at NLR(1990-2003), NLR-TP-2003-317.
    [5] Military Standard MIL-STD-1290 (AV), Light Fixed- and Rotary-Wing Aircraft Crashworthiness, 25 January 1974, and superceded by MIL-STD-1290A (AV), 26 September 1988.
    [6] Giavotto V, Caprile C, Sala G. The design of helicopter crashworthiness. AGARD, Proceedings of the 66th Meeting of the Structures and Material Panel—Emerge absorption of Aircraft Structure as an Aspect of Crashworthiness. Luxembourg, 1988(6):1– 9.
    [7] Och F. Crashworthiness activities on MBB helicopters. AGARD, Proceedings of the 66th Meeting of the Structures and Material Panel—Emerge absorption of Aircraft Structure as an Aspect of Crashworthiness. Luxembourg, 1988(5):1– 22.
    [8] Fasanella EL, Boitnott RL, Lyle KY, Jackson KE. Full-scale crash test and simulation of a composite helicopter. Proceeding of the International Crashworthiness Conference ICRASH2000, London, UK, 2000.
    [9] Jackson, K. E., and Fasanella, E. L., A Survey of Research Performed at NASA Langley Research Center’s Impact Dynamics Research Facility. AIAA-2003-1896, Proceedings of the 44th AIAA Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, April 7-10, 2003.
    [10] Alfaro-Bou, E., and Vaughan, V. L. Jr., Light Airplane Crash Tests at Impact Velocities of 13 and 27 m/sec, NASA TP 1042, Nov. 1977.
    [11] Castle, C. B., and Alfaro-Bou, E., Light Airplane Crash Tests at Three Flight-Path Angles, NASA TP 1210, June 1978.
    [12] Hayduk, R. J., Comparative Analysis of PA-31-350 Chieftan (N44LV) Accident and NASA Crash Test Data, NASA TM 80102, Oct. 1979.
    [13] Castle, C. B., and Alfaro-Bou, E., Light Airplane Crash Tests at Three Roll Angles, NASA TP 1477, October 1979.
    [14] Vaughan, V. L., Jr., and Alfaro-Bou, E., Light Airplane Crash Tests at Three Pitch Angles, NASA TP 1481, November 1979.
    [15] Vaughan, V. L., Jr., and Hayduk, R. J., Crash Tests of Four Identical High-Wing Single-Engine Airplanes, NASA TP 1699, April 1980.
    [16] Williams, M. S., and Fasanella, E. L., Crash Tests of Four Low-Wing Twin-Engine Airplanes with Truss-Reinforced Fuselage Structure, NASA TP 2070, September 1982.
    [17] Carden, H. D., Correlation and Assessment of Structural Airplane Crash Data with Flight Parameters at Impact, NASA TP 2083, November 1982.
    [18] Carden, H. D., Impulse Analysis of Airplane Crash Data with Consideration Given toHuman Tolerance, SAE Paper 830748, April 1983.
    [19] Castle, C. B., and Alfaro-Bou, E., Crash Tests of Three Identical Low-Wing Single-Engine Airplanes, NASA TP 2190, Sept. 1983.
    [20] Hurley, T. R. and Vandenburg, J. M., editors, Small Airplane Crashworthiness Design Guide, AGATE Report Reference No. AGATE-WP3.4-034043-036, Simula Technologies Reference No. TR-98099, April 2002.
    [21] Hart-Smith, L. J., Design and Development of the First Lear Fan All-Composite Aircraft, McDonnell Douglas Paper 8184, Proceedings of the Institute of Mechanical Engineers, Conference on Design of Composite Materials, London, England, March 1989: 7-8.
    [22] Carden, H. D., and Kellas, S., Energy Absorbing-Beam Design for Composite Aircraft Subfloors, Proceedings of AIAA/ASME/ASCE/ASC 34th Structures, Structural Dynamics, and Materials Conference, La Jolla, CA, April 19-21, 1993.
    [23] Carden, H. D., and Kellas, S., Composite Energy-Absorbing Structure for Aircraft Subfloors, 10th DoD/NASA/FAA Conference on Fibrous Composites in Structural Design, Hilton Head, SC, Nov. 1993.
    [24] Jones, L. E., and Carden, H. D., Overview of Structural Behavior and Occupant Responses from a Crash Test of a Composite Airplane, SAE Paper 951168, May 1995.
    [25] Giri, J. and Hooper, E., Beech Starship Occupant Protection Evaluation in Emergency Landing Scenario, SAE Paper 891015, April 1989.
    [26] Terry, J. E., Hooper, S. J. and Nicholson, M., Design and Test of an Improved Crashworthiness Small Composite Airframe– Phase II Report, NASA SBIR Contract NAS1-20427, Terry Engineering, Andover, Kansas, October 1997.
    [27] Terry, J. E., Design and Test of an Improved Crashworthiness Small Composite Airplane, SAE Paper 2000-01-1673, Presented at the SAE General Aviation Technology Conference and Exposition, Wichita, KS, 2000: 9-11.
    [28] Hayduk, R. J., editor, Full-Scale Transport Controlled Impact Demonstration, NASA CP 2395, April 1985.
    [29] Fasanella, E. L., Alfaro-Bou, E., and Hayduk, R. J., Impact Data from a Transport Aircraft During a Controlled Impact Demonstration, NASA TP 2589, September 1986.
    [30] Singley, G. T., III, Full-Scale Crash Testing of a CH-47C Helicopter, Proceedings of the 32nd V/STOL Forum of the American Helicopter Society, Washington, D.C., May 1976.
    [31] Burrows, L., Lane, R., and McElhenney, J., CH-47 Crash Test (T-40) Structural, Cargo Restraint, and Aircrew Inflatable Restraint Experiments, USARTL-TR-78-22, April 1978.
    [32] Smith, K. F., Full-Scale Crash Test (T-41) of the YAH-63 Attack Helicopter, USAAVSCOM TR-86-D-2, April 1986.
    [33] Thomson, D. T., and Clarke, C.W., Advanced Composite Airframe Program (ACAP) Militarization Test and Evaluation (MT&E) Volume I- Landing Gear Drop Test, USAAVSCOM TR-88-D-22A, August 1989.
    [34] Pilati, B. P., and Jones, L. E., Active Crew Restraint Demonstration, Proceedings of the American Helicopter Society 50th Annual Forum and Technology Display, Washington, DC, May 11-13, 1994.
    [35] Perschbacher, J.P., Clarke, C., Furnes, K., and Carnell, B., Advanced CompositeAirframe Program (ACAP) Militarization Test and Evaluation (MT&E) Volume V- Airframe Drop Test, USAATCOM TR 88-D-22E, March 1996.
    [36] Boitnott, R. L.; Jackson, K. E.; Fasanella, E. L.; Kellas, S. Full-Scale Crash Test of the Sikorsky Advanced Composite Airframe Program Helicopter,”Proceedings of the American Helicopter Society Forum 56, Virginia Beach, VA, May 2-4, 2000.
    [37] Jackson, K. E., Fasanella, E. L., Boitnott, R. L., McEntire, J., and Lewis, A., Occupant Responses in a Full-Scale Crash Test of the Sikorsky ACAP Helicopter, Proceedings of the AHS Forum 58, Montreal, Canada, June 11-13, 2002.
    [38] Burrows, L. T., Verification Testing of a UH-1 Wire Strike Protection System (WSPS), USAAVRADCOM-TR-82-D-35, U.S. Army Applied Technology Laboratory, Ft. Eustis, VA, November 1982.
    [39] Boitnott, R. L., Crash Verification Test of Modified External Fuel Tanks, VTD Internal Report, VTD NR 00-03, June 2000.
    [40] Robertson, H., Banks, F., and Nolan, K., Development and Testing of a Crashworthy External Fuel System for the UH-60, AH-64, and RAH-66 Helicopters, Proceedings of the 59th AHS Forum, Phoenix, AZ, May 6-8, 2003.
    [41] Research for Crashworthiness of Aircraft Structures, National Aerospace Laboratory NLR, NLR Annual Report, 2000.
    [42] M. Mahé, H. Ribet, F. Le Page. Composite fuselage crash FE modeling dedicated to enhance the design in correlation with full scale drop test. Mec. Ind. 2001(2):5-17.
    [43] Brite-Euram project CRASURV, Commercial Aircraft - Design for Crash Survivability, CT96-0207, 1996-1999.
    [44] J.F.M. Wiggenraad, D. Santoro, F. Lepage, C. Kindervater and H. Climent Ma?ez, Development of a crashworthy composite fuselage concept for a commuter aircraft, NLR-TP-2001-108.
    [45] Kindervater C, Kohlgr.uber D, Johnson A. Composite vehicle structural crashworthiness—a status of design methodology and numerical simulation techniques. International Journal of Crashworthiness, 1999, 4(2):213–30.
    [46] Kindervater C, Georgi H, K.orber U. Crashworthy design of aircraft subfloor structural components. AGARD, Proceedings of the 66th Meeting of the Structures and Material Panel—Energy absorption of Aircraft Structure as an Aspect of Crashworthiness, Luxembourg, 1988, 12: 1–24.
    [47] Bisagni C. Crashworthiness of helicopter subfloor structural components. Aircr Eng Aerosp Technol, 1999, 71(1): 6–11.
    [48] Sotiris Kellas, Norman F. Knight. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft. NASA/CR-2002-212133, 2002.
    [49] H. M. Lankarani, M. G. Mirza. Parametric study of crashworthy bulkhead designs. DOT/FAA/AR-02/103, 2002.
    [50] Kecman, D. Bending collapse of rectangular and square section tubes. Int. J. Mech. Sci, 1983, 25: 623– 638.
    [51] Abramowicz, W. Simplified crushing analysis of thin-walled columns and beams. Engng Trans., 1983, 29: 3– 27.
    [52] S.A. Meguid, M.S. Attia, J.C. Stranart, W. Wang. Solution stability in the dynamic collapse of square aluminium columns. International Journal of Impact Engineering, 2007, 34(2): 348– 359.
    [53] K. Yamazaki. Maximization of the crushing energy absorption of tubes. Structural Optimization, 1998, 16: 37– 46.
    [54] G.M. Nagel, D.P. Thambiratnam. Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin-Walled Structures, 2005, 43: 1225–1242.
    [55] Chen, W., Nardini, D.: Experimental study of crush behavior of sheet aluminum foam-filled sections. Int. J. Crashworthiness, 2000, 5: 447– 468.
    [56] Santosa, S., Banhart, J., Wiezbicki, T., Bending crush resistance of partially foam filled sections, presented at the Int. Conf. on Metal Foams and Porous Metal Structures, Bremen, Germany, 1999: 14– 16.
    [57] Santosa, S., Banhart, J., Wierzbicki, T., Experimental and numerical analysis of bending of foamfilled sections, Acta Mech, 2001, 48: 199– 213.
    [58] W. Chen, T. Wierzbicki and S. Santosa, Bending collapse of thin-walled beams with ultralight filler: numerical simulation and weight optimization, Acta Mechanica, 2002, 153: 183– 206.
    [59] Alghamdi AAA, Aljawi AAN, Abu-Mansour TM-N. Modes of axial collapse of unconstrained capped frusta. Int J Mech Sci 2002, 44:1145–61.
    [60] Alghamdi AAA. Reinversion of aluminium frustra. Thin-Walled Struct 2002, 40(12):1037–49.
    [61] Alghamdi AAA. Folding-crumpling of thin-walled aluminium frusta. Int J Crash 2002, 7(1):67–78.
    [62] Singace AA, El-Sobky H, Petsios M. Influence of end constraints on the collapse of axially impacted frusta. Thin-Walled Struct 2001, 39(5):415–28.
    [63] Nagel GM, Thambiratnam DP. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. Int J Mech Sci 2004, 46(2):201–16.
    [64] Nagel G.M., Thambiratnam D.P. Dynamic simulation and energy absorption of tapered tubes under impact loading. Int J Crash 2004, 9(4):389–99.
    [65] G.M. Nagel, D.P. Thambiratnam. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading. International Journal of Impact Engineering, 2006, 32(10): 1595– 1620.
    [66]姚松,田红旗.车辆吸能部件的薄壁结构碰撞研究.中国铁道科学, 2001, 22(2): 55-60.
    [67] Mamalis A, Manolakos D, Ioannidis M, Papapostolou D, Kostazos P, Konstantinidis D. On the compression of hybrid sandwich composite panels reinforced with internal tube inserts: experimental. Compos Struct, 2002, 56(2):191–9.
    [68] Mamalis A, Manolakos D, Ioannidis M, Papapostolou D. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental. Compos Struct, 2003, 63:347–60.
    [69] A.G. Mamalis , D.E. Manolakos, M.B. Ioannidis, D.P. Papapostolou. On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental. Composite Structures, 2005, 69: 407–420.
    [70] Masuda T, Kobayashi T, Wang L, Toda H. Effects of strain rate on deformation behavior of A6061-T6. Materials Science Forum 2003, 426–432(1):285–90.
    [71] Oosterkamp L, Djapic, Ivankovic A, Venizelos G. High strain rate properties of selected aluminium alloys. J Mater Sci Eng 2000, A278:225–35.
    [72] R. Smerda, S. Winklera, C. Salisburya, M. Worswicka, D. Lloydb, M. Finnb. High strain rate tensile testing of automotive aluminum alloy sheet. International Journal of Impact Engineering, 2005, 32: 541–560.
    [73] M. Alves, Material constitutive law for large strains and strain rates, Journal of Engineering Mechanics, February, 2000: 215-218.
    [74] Stief, P. S. A Model for Kinking in Fiber Composites-I. Fiber Breakage Via Micro-buckling. International Journal of Solids and Structures, 1990, 26(5/6):549-561.
    [75]魏悦广,杨卫.单向纤维增强复合材料的压缩弹塑性微屈曲.航空学报,1992,13(7):388-393.
    [76]魏悦广,杨卫.纤维复合材料后微屈曲的理论和实验.中国科学(A),1994,24(7):768-777.
    [77] S.A. Meguid, J.C. Stranart, J. Heyerman. On the layered micromechanical three-dimensional finite element modeling of foam-filled columns. Finite Elements in Analysis and Design, 2004(40):1035-1057.
    [78] Th. Kermanidis, G. Labeas, C. Apostolopous, Louis Michielsen. Numerical simulation of composite structures under impact. Structures Under Shock and Impact, 1998:591-600.
    [79] Farley L, Jones M. Crushing characteristics of continuous fiber-reinforced composites tubes. Journal of Composite Materials.1992, 26(1):37-50.
    [80] Mamalis AG, Manolakos D, Ioannidis M, Papapostolou D, Kostazos P, Konstantinidis D. On the compression of hybrid sandwich composite panels reinforced with internal tube inserts: experimental. Composite Structures, 2002, 56(2):191-199.
    [81] C.Weeks, C. Sun, Non-linear rate dependence of thick-section composite laminates, in:Y.D.S. Rajapakse, J.R. Vinson (Eds.), High Strain Rate Effects on Polymer Metal and Ceramic Matrix Composites and Other Advanced Materials, AS-vol.48, ASME, 1995, pp. 81–95.
    [82] R. Goldberg. Strain rate dependent deformation and strength modeling of a polymer matrix composite utilizing a micromechanics approach. NASA/TM-1999-209768, 1999.
    [83] R. Goldberg. Implementation of fiber substructuring into strain rate dependent micro-mechanics analysis of polymer matrix composites. NASA/TM-2001-210822, 2001.
    [84] Ala Tabiei,WeitaoYi, Robert Goldberg. Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation. International Journal of Non-Linear Mechanics, 2005, 40: 957– 970.
    [85] Jennifer L.Knack, Anthony J.Vizzini. Energy absorption of truncated Kevlar epoxy cones under side loads. AIAA-94-1354-CP: 2831-2837.
    [86] N.K. Gupta, R. Velmurugan, S.K. Gupta. Analysis of axial crushing of composite tubes. Journal of composite material. 1997, 31(13):1262-1286.
    [87] P.A. Du Bois, S. Kolling, M. Koesters, T. Frank. Material behaviour of polymers underimpact loading. International Journal of Impact Engineering, 2006, 32: 725–740.
    [88] Edwin L. Fasanella. Impact Testing and Simulation of a Crashworthy Composite Fuselage Section With Energy-Absorbing Seats and Dummies. NASA/TM-2002-211731, ARL-TR-2734, 2002.
    [89] Noor, A., and Carden, H. D., editors, Computational Methods for Crashworthiness, NASA Conference Publication 3223, October 1993.
    [90] Pifko, A. B., Winter, R. and Ogilvie, P. L., DYCAST- A Finite Element Program for the Crash Analysis of Structures, NASA CR 4040, Jan. 1987.
    [91] Fasanella, E. L, Widmayer, E., and Robinson, M. P., Structural Analysis of the Controlled Impact Demonstration of a Jet Transport Airplane, Journal of Aircraft, 1987, 24(4): 274– 280.
    [92] Fasanella, E. L., Carden, H. C., Boitnott, R. L., and Hayduk, R. J., A Review of the Analytical Simulation of Aircraft Crash Dynamics, NASA Technical Memorandum (TM) 102595, January 1990.
    [93] Lyle, K. H., Jackson, K. E. and Fasanella, E. L., Simulation of Aircraft Landing Gears with a Nonlinear Transient Dynamic Finite Element Code, Journal of Aircraft, 2002, 39(1): 142– 147.
    [94] Lyle, K. H., Jackson, K.E. and Fasanella, E. L., Development of an ACAP Helicopter Impact Model, Journal of the American Helicopter Society, 2000, 45(2): 137– 142.
    [95] Fasanella, E. L., Boitnott, R. L., Lyle, K. H. and Jackson, K. E., Full-Scale Crash Test and Simulation of a Composite Helicopter, International Journal of Crashworthiness, 2001, 6(4): 485– 498.
    [96] Jackson, K. E. Fasanella, E. L., Boitnott, R. L., and Lyle, K. H., Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter, NASA/TP-2003-212641, ARL-TR-2824, August 2003.
    [97] Stockwell, A. E., Simulation of an Impact Test of the All-Composite Lear Fan Aircraft, NASA CR 2002-211458, June 2002.
    [98] M. Bossak , J. Kaczkowski. Global/local analysis of composite light aircraft crash landing. Computers and Structures, 2003, 81: 503–514.
    [99] A Adams, H M Lankarani. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. International Journal of Crash, 2003, 8(4): 401–413.
    [100] Yang D, Jung D, Song I, Yoo D, Lee J. Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes. J Mater Process Technol 1995, 50:39–53.
    [101] Jung D, Yang D. Step-wise combined implicit–explicit finite-element simulation of autobody stamping process. J Mater Process Technol 1998, 83:245–60.
    [102] Noels L, Stainier L, Ponthot J-P. Combined implicit/explicit time integration algorithms for the numerical simulation of sheet metal forming. J Comput Appl Math, 2004, 168: 331– 339.
    [103] L. Noels, L. Stainier, J. P. Ponthot. Combined implicit/explicit algorithms for crashworthiness analysis. International Journal of Impact Engineering, 2004, 30:1161–1177.
    [104] L. Noels, L. Stainier, J. P. Ponthot. Simulation of crashworthiness problems withimproved contact algorithms for implicit time integration. International Journal of Impact Engineering, 2006, 32:799–825.
    [105]钟志华,汽车耐撞性分析的有限元法.汽车工程, 1994, 16(1):1-11.
    [106] Li K. P., Cescotto S. An 8-node Brick Element with Mixed Formulation for Large Deformation Analysis. Comp. Computer Methods in Applied Mechanics and Engineering, 1997, 141:157-204.
    [107] H Y. K. Nagy L. I. One-point Quadrature Eight-node Brick Element with Hourglass Control. Computer and Structures. 1997, 65(6):893-902.
    [108] Zhu Y. Y., Cescotto S. Unified and Mixed Formulation of the 8-node Hexahedral Element by Assumed Strain Method. Computer Methods in Applied Mechanics and Engineering, 1996, 129(1-2):177-209.
    [109] C.B.W. Pedersen. Topology optimization design of crushed2D-frames for desired energy absorption history. Structural and Multidisciplinary Optimization, 2003, 25(5–6): 368–382.
    [110] C.B.W. Pedersen. Topology optimization for crashworthiness of frame structures. International Journal of Crashworthiness, 2003, 8(1): 29–39.
    [111] Claus B.W. Pedersen. Crashworthiness design of transient frame structures using topology optimization. Comput. Methods Appl. Mech. Engrg., 2004, 193: 653–678.
    [112] Jin R, Chen W, Simpson TW. Comparative studies of metamodelling techniques under multiple modeling criteria. Struct Multidiscip Optim, 2001, 23:1–13.
    [113] Rais-Rohani M, Singh MN. Comparison of global and local response surface techniques in reliability-based optimization of composite structures. Struct Multidiscip Optim, 2003, 26:333–345.
    [114] Alexandrov NM, Dennis JE, Lewis RM, Torczon V. A trust region framework for managing the use of approximation models in optimization. Struct Multidiscip Optim, 1998,15:16–23.
    [115] H. Fang, M. Rais-Rohani, Z. Liu, M.F. Horstemeyer. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers and Structures, 2005, 83:2121–2136.
    [116]王勖成.有限单元法,北京:清华大学出版社, 2003.
    [117] Kosloff D., Frazier G.A., Treatment of Hourglass Patterns in Low Order Finite Element Codes, Int I. Num. Anal. Meth. GeoMech., 1978, 2:57-72.
    [118] Karen H. Lyle, Lindley W. Bark, Karen E. Jackson. Evaluation of Test/Analysis Correlation Methods for Crash Applications. Proceedings of the 57th American Helicopter Society Annual Forum, Washington D.C., May 9-11,2001.
    [119] Edwin L. Fasanella, Karen E. Jackson. Best Practices for Crash Modeling and Simulation. NASA/TM-2002-211944-ARL-TR-2849.
    [120]胡广书.数字信号处理.北京:清华大学出版社, 2003.
    [121] Alan E. Stockwell. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft. NASA/CR-2002-211458.
    [122] L. Lanzi , L.M.L. Castelletti, M. Anghileri. Multi-objective optimisation of composite absorber shape under crashworthiness requirements. Composite Structures, 2004(65):433-441.
    [123]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构件耐撞性优化设计.应用力学学报, 2003, 20(3): 61–65.
    [124]张立新,隋允康,杜家政.基于响应面方法的结构耐撞性优化.北京工业大学学报, 2007, 33(2): 129–133.
    [125] J. Forsberg, L. Nilsson. Evaluation of response surface methodologies used in crashworthiness optimization. International Journal of Impact Engineering, 2006, 32: 759–777.
    [126]刘克龙.面向MDO的结构形状优化方法研究, [硕士学位论文].南京:南京航空航天大学, 2004.
    [127] Sotiris Kellas, Energy Absorbing Seat System for an Agricultural Aircraft. NASA/CR-2002-212132.
    [128] R. R. Craig Jr and M. C. C. Bampton, Coupling of substructures for dynamic analyses, AIAA Journal 7 (1968) 1313–1319.
    [129] Hasselman, T. K. and Kaplan, A., Dynamic analysis of large systems by complex mode synthesis, ASME Journal of Dynamic systems, Measurement, and Control 96 (1974) 327–333.
    [130] Craig, R. R. Jr. and Chung, Y.–T., A generalized substructure coupling procedure for damped systems, AIAA paper 81-0506.
    [131] Craig, R. R. Jr. and Chung, Y.– T., Generalized substructure coupling procedure for damped systems, AIAA Journal 20 (1982) 442–444.
    [132]陈国平.粘性阻尼结构振动系统的实空间解耦和迭代求解.振动工程学报, 2000, 13(4):559-566.
    [133]陈国平,韦勇.有阻尼结构线性振动系统的模态综合.振动工程学报,2003, 16(4):442-445.
    [134] Harris FD, Kasper EF, Iseler LE. US Civil Rotorcraft Accidents, 1963 Through 1997. NASA STI Program, NASA/TM-2000-209597, USAAMCOM-TR-00-A -006, 2000.
    [135] Abromowitz, Allan, Smith, T. G., Vu, Tong, Vertical Drop Test of a Narrow-Body Transport Section with a Conformable Auxiliary Fuel Tank Onboard. DOT/FAA/AR-00/56, October 2000.
    [136] Fasanella EL, Jackson KE. Crash simulation of a vertical drop test of a Boeing 737 fuselage section with auxiliary fuel tank. Third Triennial International Fire & Cabin Safety Research Conference, Atlantic City, New Jersey, October, 2001, 22–25.
    [137] Marco Anghileri, Luigi-M.L. Castelletti, Maurizio Tirelli, Fluid–structure interaction of water filled tanks during the impact with the ground. International Journal of Impact Engineering, 2005, 31: 235–254.
    [138] M. Souli, A. Ouahsine, L. Lewin. ALE formulation for Fluid - structure interaction problems, Computational Methods in Applied Mechanics and Engineering, 2000, 190: 659-675.
    [139]张奇,张若京. ALE方法在爆炸数值模拟中的应用,力学季刊, 2005, 26(4): 639-642.
    [140] Jr. Rasmussen RR, Kaleps I. The USAF advanced dynamic anthropomorphic manikin: ADAM. In: SAFE Association, ed. Proceedings of 24th annual symposium SAFE Association, San Antonio, Texas, 1986. Van Nuys, CA: SAFE Association, 1986, 88– 91.
    [141] White RP, Bartol AM. ADAM: The next step in the development of the true human analog. Safe J, 1987, 17(1):50– 57.
    [142] Frisch PH. Design and development of an enhanced biodynamic manikin. AD-A284725, 1994.
    [143]柳松杨.标准动态仿真假人的研究,航空军医, 2004, 32(5): 197– 200.
    [144]马红磊,刘炳坤,姜世忠,王涛,杨鸿慧,姜俊成. SZM510与Hybrid III假人着陆冲击响应特性的比较研究,航天医学与医学工程, 2005, 18(5): 344– 346.
    [145] A. Noureddine, A. Eskandarian, K. Digges. Computer modeling and validation of a hybrid III dummy for crashworthiness simulation, Mathematical and computer modelling, 2002, 35: 885– 893.
    [146] TNO Road Vehicle Research Institute. MADYMO V5.2 User's Manual 3D. Netherlands: TNO RVRI, 1996.
    [147] Huaining Cheng, Annette L. Rizer. Articulated Total Body Model Version V User’s Manual, Biodynamics and Protection Division, Human Effectiveness Directorate, Air Force Research Laboratory, 1998.
    [148] Obergefell, L.A., Gardner, T.R., Kaleps, I., Fleck, J.T. Articulated Total Body Model Enhancements, Volume 2: User’s Guide, January 1988, AAMRL-TR-88-043 (NTIS No. A203-566).
    [149]刘延柱.高等动力学,北京:高等教育出版社, 2001.
    [150]裘新,黄存军,张金换,黄世霖.汽车正撞的数值模拟及实验验证.清华大学学报(自然科学版),1999(2):102~105.
    [151] J.K. Foster, J.O. Kortge, M.J. Wolanin, Hybrid III– a biomechanically based crash test dummy, presented at 21st Stapp Car Crash Conference, 1977.
    [152] J. Davidsoon, BioRID II Final Report, Crash Safety Division, Departement of Machine and Vehicle Design, Chalmers University of Technology, G?teborg, Sweden, 1999.
    [153] H. Cappon, M. Philippens, V. Ratingen, J. Wismans, Development and evaluation of a new rear-impact crash dummy, the RID2, 45th Stapp Car Crash Conference, 2001, 45: 225–238.
    [154] C.E. Clauser, J.T. McConville, J.W. Young, Weight, volume and center of mass of segments of the human body, Wright Patterson Air Force Base, Ohio AMRL-TR-69–70, 1969.
    [155]刘宝善,郭小朝,马雪松.中国男性飞行员人体尺寸测量资料分析.人类工效学, 2003, 9(2): 1– 6.
    [156]王黎静,袁修干,李银霞,贾鑫,王永庆,郭文瑾.基于2003年标准数据的中国飞行员人体模型.计算机应用研究, 2005: 194– 195.
    [157]戢敏,袁中凡,林大全.仿真假人人体参数的计算和分析.中国测试技术, 2003, 4: 37– 39.
    [158] S. Kitazaki, M.J. Griffin, Resonance behavior of the seated human body and effects of posture, Journal of Biomechanics, 1998, 31: 143–149.
    [159] R. Nightingale, D. Camacho, A. Armstrong, J. Robinette, S. Myers, Inertial properties and loading rates affect buckling modes and injury mechanisms in the cervical spine, Journal of Biomechanics, 2000, 33: 191–197.
    [160]郝霆,王雍.汽车碰撞试验及Hybrid III(假人)应用分析.城市车辆, 2003, 1: 21– 23.
    [161]杨嘉陵,吴卫华,赵岩,涂展春,郭光海,胡茂和.跪式起落架在武装直升机坠毁过程中能量吸收能力研究(I)——数值仿真计算.航空学报, 2002, 23(1): 23– 27.
    [162]杨嘉陵,吴卫华,赵岩,涂展春,郭光海,胡茂和.跪式起落架在武装直升机坠毁过程中能量吸收能力研究(II)——理论模型分析方法.航空学报, 2002, 23(1): 28– 32.
    [163]罗漳平,向锦武.直升机起落架抗坠毁性能的有限元仿真评估.航空学报, 2003, 24(3): 216– 219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700