考虑毛细效应的液体小幅晃动问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天工程的深入发展,航天器所携带的液体燃料以及液体载荷越来越多,而另一方面对其姿态保持和机动的要求也越来越高,这就需要对航天器中液体的晃动行为进行更为深入细致的研究。为此本文从航天工程应用的实际出发,从理论、计算和实验三方面对考虑毛细效应的液体小幅晃动问题进行了系统的研究。
     在理论方面,本文以改进的方式重新推导了考虑毛细效应的液体小幅晃动问题的方程和边界条件。对液体小幅晃动的阻尼理论进行了总结和发展,提出了计算接触线处以及表面活性物质带来的能量耗散的新方法,以便于工程应用。通过量纲分析的方法揭示了采用不考虑毛细效应的边界条件和零重力两种特殊情况下,晃动频率和阻尼随各特征量的变化关系,得到了一些有用和有趣的结论。
     在计算方面,本文对考虑毛细效应的液体小幅晃动的有限元模态分析方法进行了系统的研究,按照应用对象将研究分成两部分。一部分是在计算液体晃动频率和模态时不考虑毛细效应的影响,但在随后计算晃动阻尼时将毛细效应引入进来。在算得的晃动频率、模态和阻尼的基础上本文还进一步研究了建立液体小幅晃动等效力学模型的方法。值得一提的是,这部分的有限元计算曾成功地应用于我国某大型卫星燃料箱液体晃动的建模之中。另一部分是在晃动频率、模态、晃动阻尼比的计算中均考虑了毛细效应的影响。由于不同的接触线边界条件下液体小幅晃动的有限元分析方法也有所不同,因此本文分别对接触线为固定端、自由端和浸润边界条件三种情形,建立了相应的有限元计算方法。另外,还对表面活性物质引起能量耗散的精确计算方法进行了研究。
     本文对带有半球形底的圆柱容器中液体的小幅晃动和半球形容器中液体自由衰减晃动非线性效应进行了实验研究。测量了小幅晃动的频率、阻尼和自由衰减晃动的时间历程,验证了本文有限元模态分析方法的有效性,并观察到了一些有理论意义的非线性现象。
As the developing of aerospace engineering, spacecrafts bring more and more propellant and liquid charge, on the other hand the attitude keeping and maneuvering are required to be more and more accurate, so the liquid sloshing on spacecraft needs to be studied deeply. From the perspective of aerospace engineering, this thesis studys the liquid sloshing with small amplitude considering capillary effect by theoretical , numerical and experimental methods.
     In the part of theoretical research the equation and boundary conditions of liquid sloshing with small amplitude considering capillary effect are derived in a new way . The damping theory of liquid sloshing is summarized and developed, new methods of calculation the energy dissipation at contact line and surfactant are proposed. The relationship of characteristic parameters and sloshing frequency , damping in two special case is studied by demensional ananlysis method, some useful results are obtained.
     In the part of numerical research the FEM modal analysis method of liquid small amplitude sloshing considering capillary effect is studied systematically. According to the different application objects the study is composed of two parts. One is the FEM using boundary conditions without capillary effect. In this case the calculation of frequcies and modals doesn’t consider capillary effect, but the calculation of damping considers it. The numerical method of this part has been used in the slohing modeling of a Chinese large satellite successfully. The other part of numercal research is the FEM using boundary conditions with capillary effect. In this case the calculation of frequencies, modal and damping all take capillary effect into account. Because differete contact line boundary conditons make the numerical method different, the pin-end, free-end and wetting boundary conditions of contact line are dealt with separately. The accurate calculation of surfactant dissipation is also consider in this thesis.
     In the part of experimental research the small amplitude liquid sloshing in a cylindrical container with hemisphere bottom and the nonlinear effect of liquid freely sloshing in a hemisphere container are studied. The experiment results prove the effectiveness of the FEM modal analysis method and show some interesting nonlinear phenomenon.
引文
[1] Lamb H. Hydrodynamics. 1st ed.,Cambridge, 1879, 6th ed., 1932. Reprinted by Dover, New York, 1945.
    [2] Westergaad H M. Water pressure on dams during earth quakes. ASCE Trans, 1993, 98, 418-434.
    [3] Chawang A T. Nonlinear hydrodynamic pressure on an accelerating plate. The Physics of Fluids. 1983, 26(2):383-387.
    [4] Kobayashi. A Study on the Behavior of Cylinder Liquid Storage Tanks During Earthquakes, PhD Thesis, Univ of Tokyo, Dept Mechanical Eng, 1986.
    [5] Shimizu N. Advances and trends in design of liquid storage tanks. Trans JSME,1990, 49(438,C): 145.
    [6] Euler L. Principia motus fluidorum, Novi commentarii academicae scientiarum imperialis petro-politanae. Tom. VI, 1761:271-311.
    [7] Poisson S D. Memoire sur la theorie des ondes. Mem. Acad. Roy. Sci. Inst. France(2), 1816, 1:71-186.
    [8] Poisson S D, Sur les petites oscillations de l’eau continue dans un cylinder. Annales de Gergonne,1828,19:225.
    [9] Green G. On the motion of waves in a variable canal of small depth and width. Trans. Cambridge Philos.Soc.1838, 6:457-462.
    [10] Green G. Note on the motion of waves in canals. Trans. Cambridge Philos. Soc. 1842, 7:87-95.
    [11] Kelland P. On the theory of waves I, II. Trans. Roy. Soc. Edinburgh, 1840, 14: 497-545 and 1844, 15:101-144.
    [12] Airy G B. Tides and Waves. Encyclopaedia Metropolitana, 1845, Vol. 5, London:241-396
    [13] Stokes G G. Report on recent researches in hydrodynamics. Mathematical and Physical Papers, 1880, Vol. 1, Cambridge:197-229.
    [14] Ostrogradsky M A. Memoire sur la progagation des ondes dans une basin cylindrique. Mem Des Sav Etrang, 1862, 3.
    [15] Strutt J W, Lord Rayleigh. On waves. Philos Mag(5),1875,1:257-259, [Scientific Papers, Vol. 1,Cambridge, 1899-1920: 25.].
    [16] Strutt J W, Lord Rayleigh, Philos Mag(5), 1899,47: 556. [Scientific Papers, Vol. 4, Cambridge, 1899-1920: 407.].
    [17] Kirchhoff G. Uber stehende Schwingungen einer schweren Flussigkeit. Berl Monatsber,May 1879.[Gesammelte Abhandlungen, Barth, Leipzig, 1882:428].
    [18] Greenhill A G. Wave motion in hydrodynamics. Amer J Math,1887, 9:62-112.
    [19] Macdonald H M. Waves in canals. Proc London Math Soc, 1894, 25:101-111.
    [20] Macdonald H M. Waves in canals and on a sloping bank. Proc London Math Soc, 1896, 27:622-632.
    [21] Chrystal G. Some further results in the mathematical theory of seiches. Proc Roy Soc Edinburgh, 1905, 27:637-647.
    [22] Chrystal G. On the hydrodynamical theory of seiches, with bibliographic sketch. Trans Roy Soc Edinburgh, 1906, 41:599-649.
    [23] Poincare H. Lecons de mechanique celeste. Vol. 3, Gauthier-Villars, Paris, 1910.
    [24] Hadamard J. Sur les ondes liquids. C R Acad Sci Paris, 1910, 150:609-611, and 772-774.
    [25] Hadamard J. Sur les ondes liquids. Atti Accad Naz Lincei Rend Cl Sci Fis Mat Nat(5), 1916, 25:716-71.
    [26] Abramson H N ed. The dynamic behavior of liquids in moving containers. NASA Sp-106. Washington, 1966.
    [27] Moiseev N N. Introduction to the theory of oscillations of liquid-containing bodies. Advances in Appl Mech,1964, 8: 233-289 .
    [28] Moiseev N N, Petrov A A. The calculation of free oscillations of a liquid in a motionless container. Advances in Appl Mech, 1968, 9: 91-154.
    [29] Haberman W L, Jarski E J, and John J E A. A note on the sloshing motion in a triangular tank. Z angew Math Phys, 1974, 25:292-293.
    [30] Packham B A. Small-amplitude waves in a straight channel of uniform triangular cross-section. Quart. J Mech Appl Math, 1980, 33: 179-187.
    [31] Levin E. Oscillations of a fluid in a rectilinear conical container. J IAAA, 1963, 1:1447
    [32] Troesch B A. Free oscillations of a fluid in a container. Boundary Problems in Differential Equations. Univ Wisc Madison,1960:279-299.
    [33] Troesch B A, Weidman P D. Containers with isochronus fluid oscillations. Siam J Appl Math, 1972,23:477-489.
    [34] Sen B M. Waves in canals and basins. Proc London Math Soc (2), 1927, 26:363-376.
    [35] Storchi E. Legame fra la forma del pelo libero e quella del recipiente nelle oscillazioni di un liquido. 1st. Lombardo Accad Sci Lett Rend C1 Sci Mat Nat (3),1949,13: 95-112.
    [36] Storchi E. Piccole oscillazioni dell’acqua contenuta da pareti piane. Atti Accad Naz Lincei Rend C1 Sci Fis Mat Nat (8),1952, 12:544-52 .
    [37] Budiansky B. Sloshing of liquids in circular canals and spherical tanks. J AerospaceSci,1960, 27:161-173 .
    [38] Davis A M J. Two-dimensional oscillations in a canal of arbitrary depth. J IAA 2, 1964:1972-1979.
    [39] Chu W H. Fuel sloshing in a spherical tank filled to an arbitrary depth. J IAA 2, 1964:1972-1979.
    [40] Henrici P, Troesch B A, Wuytack L. Sloshing frequencies for a half-space with circular or strip-like aperture. Z angew Math Phys, 1970, 21:285-318.
    [41] Troesch B A, Troesch H R. A remark on the sloshing frequencies for a half-space. Z angew Math Phys, 1972, 23:703-711.
    [42] Miles J W. On the eigenvalue problem for fluid sloshing in a half-space. Z angew Math. Phys, 1972, 23:861-869.
    [43] Troesch B A. Sloshing frequencies in a half-space by Kelvin inversion. Pacific J Math, 1973, 47:539-552.
    [44] Troesch B A. Proof of a conjecture on sloshing frequencies in a half-space. Z angew Math Phys, 1974, 25: 655-657.
    [45] Davis A M J. Waves in the presence of an infinite dock with gap. J Inst Math Appl, 1970, 6: 141-156.
    [46] Fox D W, Kuttler J R. Upper and lower bounds for sloshing frequencies by intermediate problems. Tom VI, 1761:271-311.
    [47] Fox D W, Kuttler J R. Sloshing frequencies. Journal of Applied Mathematics and Physics (ZAMP). Vol. 34. Sep, 1983:668-696.
    [48] Case K, Parkinson W. On the motion of a vessel containing Fluid with a Free Surface. Space Tech Lab, Memo Feb 1956.
    [49] Case K and Parkinson W. The Damping of Liquid in a Right Circular Cylindrical Tank, Memo GM45-75, Space Technology Laboratories, 17 Sep 1956.
    [50] Case K and Parkinson W. Damping of surface waves in an incompressible liquid, J Fluid Mech, 1957, 2(2): 172-184.
    [51] Henderson D M, Miles J W. Surface-wave damping in a circular cylinder with a fixed contact line. J Fluid Mech, 1994,275: 285-299.
    [52] Carlos Martel, Jose A Nicolas,Jose M Vega. Surface-wave damping in a brimful circular cylinder. J Fluid Mech, 1998.vol.360:213-228.
    [53] Miles J W, Henderson D M. A note on interior vs. boundary-layer damping of surface waves in a circular cylinder. J Fluid Mech, 1998, 364:319-323.
    [54] Raouf A Ibrahim, Pilipchuk V N. Recent advances in liquid sloshing dynamics. Applied Mechanics Review, 2001,54:133–199.
    [55] Dutu S, Laha M K. Analysis of the small amplitude sloshing of a liquid in rigid container of arbitrary shape using a low-order boundary element method. Int J Numer Meth Engng, 2000,47:1633-1648.
    [56] Gedikli A, Erguven M E. Evaluation of sloshing problem by variational boundary element method. Engineering Analysis with Boundary Elements, 2003,27:935-943.
    [57] Guyan R J, Ujihara B H, Welch P W. Hydroelastic analysis of axisymmetric systems by a finite element method, Proc 2nd Conf on Matrix Methods in Struct Mechanics, Wright-Patterson AFB, Ohio,1968.
    [58] Aslam M. Finite element analysis of earthquake induced sloshing in axisymmetric tank. Int J Number Meth Engng .1981, 17:59-170.
    [59]包光伟. Dewar瓶内液体晃动的近似计算方法.力学季刊,2002,23(4):311-314.
    [60]包光伟,王政伟.液体三维晃动特征问题的有限元数值计算方法.力学季刊,2003,24(2):185-190.
    [61]丁遂亮,包光伟.任意三维贮箱内液体晃动的模态分析及其等效力学模型.力学季刊,2004,25(1): 63-68.
    [62] Satterlee H M, Reynolds W C. The Dynamics of the Free Liquid Surface in Cylindrical Containers Under Strong Capillary and Weak Gravity Conditions. Tech Rept No LG-2, Dept of Mech Eng, Stanford Univ, May 1, 1964.
    [63] Utsumi M. Low-gravity propellant slosh analysis using spherical coordinates. Journal of Fluid and Structures, 1998, 12:57-83.
    [64] Utsumi M. Low-gravity sloshing in axisymmetrical container excited in the axial direction. Transactions of the ASME, June 2000, Vol.67:344-354.
    [65]程绪铎,王照林.微重状态下旋转椭球容器内液体晃动的等效力学模型.力学与实践,1995,5:42-45.
    [66]包光伟.全失重液体晃动的固有频率.宇航学报,1994,15(4):65-70.
    [67] Hocking L M. The damping of capillary-gravity waves at a rigid boundary. J Fluid Mech, 1987, vol.179: 253-266.
    [68] Miles J W. The capillary boundary layer for standing waves. J Fluid Mech, 1991, vol. 222: 197-205.
    [69] Mile J W. Surface-wave damping in closed basins. Proc. R. Soc. Lond. 1967, Volume 297, Issue 1451:459-475.
    [70] Cocciaro B, Faetti S, Festa C. Experimental investigation of capillarity effect on surface gravity waves: non-wetting boundary conditions. J Fluid Mech, 1993, vol.246: 43-66.
    [71] Henderson D M. Effect of surfactants on Faraday-wave dynamics. J Fluid Mech,1998,vol.365:89-107.
    [72] Cocciaro B, Faetti S, Festa C. Capillarity effect on surface gravity waves in a cylindrical container: wetting boundary conditions. J Fluid Mech, 1991, vol.231: 325-343.
    [73] Nicolas J A, J M Vega. A note on the effect of surface contamination in water wave damping. J Fluid Mech,2000, vol. 410: 367-373.
    [74] Salzman J A, Masica W J. Lateral sloshing in cylinders under low gravitational conditions, 1969, NASA TN D-5058.
    [75] Salzman J A, Coney T A, Masica W J. Effects of liquid depth on lateral sloshing under weightless conditions, 1968, NASA TN D-4458.
    [76] Labus T L. Natural Frequency of Liquids in Annular Cylinders Under Low Gravitational Conditions, NASA TN D-5412.
    [77] Schoor M C, Crawley E F. Nonlinear Forced-Response Characteristics of Contained Fluids in Microgravity. Journal of Spacecraft and Rockets, 1995, 32 (3):521-532.
    [78] Yue B Z, Liu Y Z , Wang Z L. Simulation of nonlinear liquid sloshing under low-gravity environment. Acta Mechanica, 2001, 148: 231-237.
    [79] Yue B Z, Wang Z L. Numerical study of three-dimensional free surface dynamics. Acta Mech Sinica,2006, 22 (2): 120-12 .
    [80] Veldman A E P, Gerrits J, Luppes R, Helder J A, Vreeburg J P B: The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys. 2007, 224: 82-99.
    [81] Mourik S, Veldman A E P, Dreyer M. Simulation of capillary flow with a dynamic contact angle. Microgravity Sci Technol. 2005, 17(3):87-94.
    [82] Concus P, Crane G E, Satterlee H M. Small Amplitude Lateral Sloshing in a Cylindrical Tank with a Hemispherical Bottom Under Low Gravitational Conditions, NASA CR-54700.
    [83] Concus P, Grane G, Satterlee H. Small amplitude lateral sloshing in Spheroidal Containers Under Low Gravitational Conditions, NASA CR-72500.
    [84] Dodge F T. The New "Dynamic Behavior of Liquids in Moving Containers", http://snap.lbl.gov/pub/nj_bscw.cgi/d87835/SwRI_SLOSH_Update.pdf.
    [85] Pomeau Y. Recent progress in the moving contact line problem: a review. Comptes Rendus Mecanique 2002, 330:207-222.
    [86] Case K M, Parkinson W C. Damping of surface waves in an incompressible liquid. J Fluid Mech, 1957,2:172-184.
    [87] Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums. Transaction of the Cambridge Philosophical Society, Vol.IX:8.
    [88] Of the Stilling of Waves by means of Oil. Extracted from Sundry Letters between Benjamin Franklin, LL. D. F. R. S. William Brownrigg, M. D. F. R. S. and the Reverend Mr. Farish, by Benjamin Franklin; William Brownrigg; Mr. Farish.
    [89] Anderson J G, Turan O F. Experiments to control sloshing in cylindrical containers. J Sound Vib, 2001, 240(2):398-404.
    [90] Biswal K C, Bhattacharyya S K, Sinha P K. Dynamic response analysis of a liquid-filled cylindrical tank with annular baffle. J Sound Vib, 2004, 274:13-37.
    [91] Baoyin H X ,Li J F, Gao Y F, Wang Z L. Damping computation of liquid sloshing in containers aboard spacecraft. Acta Mech Sinica 2003, 19(2): 189-192.
    [92] Warnitchai P, Pinkaew T. Modeling of liquid sloshing in rectangular tanks with flow-dampening devices. Engineering Structures. 1998, 20(7):593-600.
    [93]王照林,刘延柱.充液系统动力学.北京:科学出版社, 2002.
    [94]岳宝增,刘延柱.低重环境下三维液体非线性晃动的数值模拟.宇航学报,2000,21(4):25-30.
    [95]岳宝增.微重力环境下轴对称贮腔类液刚耦合动力学.北京理工大学学报,2007,27(11):941-944.
    [96]王照林,全斌.带有网孔隔板的球形贮箱内液体的晃动问题.空间科学学报,1989,9(2):136-147.
    [97]王照林,陈绪铎.微重状态下带有隔板的球形贮箱内液体晃动特性的研究.空间科学学报,1990,10(2):107-118.
    [98]吕敬,李俊峰,王天舒.充液挠性航天器俯仰运动非线性动力学分析.清华学报:自然科学版,2007,47(8):1366-1369.
    [99]吕敬,李俊峰,王天舒.带弹性附件充液矩形贮箱俯仰运动动态响应.应用数学和力学,28(3):317-327.
    [100]苟兴宇,王本利,马兴瑞,黄怀德,李铁寿.小Bond数条件下圆柱贮箱中液体晃动的模部分析.应用数学和力学,20(9):913-918.
    [101]尹立中,王本利,邹经湘.俯仰运动矩形贮箱中液体的非线性晃动.强度与环境,1999,3:40-49.
    [102]周叮,丁文镜.微重力状态下旋转对称刚性容器中液体晃动研究.上海力学,1987,1:31-41.
    [103]王照林,匡金炉.微重状态下任意旋转对称容器内液体晃动特性研究.宇航学报,1992,7:65-71.
    [104]刘延柱,金峰.微重力场中液体在带隔板球腔内的晃动.应用力学学报,1990,9(3):17-25.
    [105]菅永军,鄂学金.刚性充液容器内竖直激励表面波研究进展.力学进展,2004,34(1):61-76.
    [106]杨蔓,李俊峰,王天舒,王为.带环形隔板的圆柱贮箱内液体晃动阻尼分析.力学学报,2006,38(5):660-667.
    [107] Gavrilyuk I, Lukovsky I, Trotsenko, Timokha A. Sloshing in a vertical circular cylindrical tank with an annular baffle. Part1. Linear fundamental solutions. J Eng Math, 2006, 57(1):58-78
    [108] Gavrilyuk I, Lukovsky I, Trotsenko, Timokha A. Sloshing in a vertical circular cylindrical tank with an annular baffle. Part2. Nonlinear resonant waves. J Eng Math, 2007, 54(1):71-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700