液体晃动数值模拟及刚—液耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充液航天器在任务执行过程中,面临着大范围变轨机动、大角度姿态控制等指令,星载液体的晃动对控制精度、系统的稳定性都有不可忽视的影响。多年来,液体晃动的研究取得了丰富的理论和实验成果。鉴于理论研究进行了模型的简化而实验研究费用又十分高昂,本文采用有限元方法实现在多种形状贮箱内液体的大幅晃动数值仿真,并将充液航天器作为刚体与粘性液体组成的刚-液耦合系统进行数值研究。
     首先利用ALE有限元方法建立带自由液面的粘性液体晃动的计算模型。采用等阶插值函数完成速度和压力变量的有限元空间离散,以Crank-Nicolson二阶精度方法作为时间离散格式,结合稳定化分步法来减小因时间离散精度提高对压力计算的数值影响。该计算方案提高了对流项和粘性项的离散精度,改善了速度计算结果,在计算步中有选择地加入压力迭代,保证液体不可压约束条件的满足,提高计算效率。数值结果表明,它适用于模拟长时间的液体大幅晃动,具有很高的稳定性和很小的数值阻尼。
     其次,研究ALE描述下的动网格技术。结合上述数值方案,完成了弧形壁面贮箱内液体晃动计算。将ALE网格运动界面节点的速度定义为一个标量和形状向量的乘积,用它修正自由液面网格速度与流场速度关系式,以增加自由面网格节点运动的自由度。对内部网格用Laplace平滑技术计算运动速度,它将ALE有限元方法推广到计算非直壁运动边界的内流问题,如在轨贮箱的壁面形状多是弧形。数值算例表明使用该网格移动方法的计算结果与理论值吻合。
     最后,利用Jourdain变分原理,建立了充粘性液体的刚-液耦合系统的数学模型,采用交替积分格式完成计算。该数学模型的特点是:以充液系统的整体响应为研究对象,计算中实时地记入液体晃动带来的质量分布、转动惯量、晃动力、力矩等对系统动力学影响。比较不同充液比下,椭圆形腔内液体晃动对受俯仰激励系统的动力学影响;在水平激励下,椭圆形腔充液刚体的响应在液体晃动频率附近最强烈;在该频率的水平激励下系统呈现非线性的耦合特征。
Liquid-filled spacecraft will implement many commands, such as large-scale or-bit maneuver, a wide-angle attitude control during the mission. And on-board liquidsloshing will bring distinct in?uence to the accuracy of the instructions and the stabilityof the whole system. The rich theoretical results have been achieved from the study onliquid sloshing during these years. However, the theoretical results almost are stemmedfrom the simplified models, and the experiments cost are expensive. This paper adoptsfinite element method in the numerical simulation of the ?uid sloshing in tanks withvarious shapes, and studies the spacecraft as a rigid-?uid interaction coupled system,where the liquid-filled spacecraft is a rigid tank and the liquid is viscous.
     Firstly, the ALE finite element method is applied to model the free surface slosh-ing of viscous ?uid. Equal-order interpolation functions are used to discrete the finiteelement space. The Crank-Nicolson, a second order accuracy discrete method, is usedas the time discretion method. A stabilized fractional-step method is imposed to re-duce the in?uence of the pressure results driven by the improved discrete accuracy.
     This calculation procedure enhances the discrete precision of convection and viscousterms, and improves the velocity results. The pressure iteration procedure is chose toensure the incompressible constraint of ?uid, and it can also improve the computationale?ciency. Numerical experiments indicate that this method is very stable and can beused to simulate the ?uid sloshing in a long time. Moreover, this method has smallernumerical damping than other methods.
     Secondly, the moving mesh technology is studied under ALE description. Com-bined with the numerical method above, the sloshing in the tank with a variety ofcurved walls is completed. Defined the nodal velocity on the moving interface of theALE mesh as a product of a scalar and a shape vector, the kinematical boundary con-ditions on the free surface is modified to increase the freedom of the movements of thegrid on free interface. Then the interior nodes’velocities are smoothed by a Laplace technique. Numerical experiments indicate that this moving grid method does not af-fect the results of the sloshing, and can extend the ALE finite element method to theinterior ?ow computations with non-straight boundary. It is utility to simulation slosh-ing in the spacecraft tanks.
     Finally, the model of rigid-liquid coupled system in which liquid is viscous isestablished by using the Jourdain principle, the stagger algorithem is used in the inte-gral calculation of interaction system. The features of this mathematical model is thatit regards the liquid-filled system’s response as the research object, the in?uences tothe system dynamics including the mass distribution, the inertia moment, the sloshingforce, sloshing torque and others, which are brought by ?uid sloshing, are recordedreal-time during the calculation. Numerical experiments indicate that the response ofthe liquid-filled system is strongest near the resonance frequency of the liquid itself.The characteristics of the nonlinear response exist under this frequency.
引文
[1] Iannotta B. Slosh, Rattle and Roll. New Scientist, 2000, 27(3):32–35.
    [2] Abramson H. The Dynamic Behavior of Liquid in Moving Containers. Technical report,NASA SP-106, May, 1966.
    [3] Baucer H F. Theory of Fluid Oscillations in a Circular Cylindrical Ring Tank PartiallyFilled with Liquid. Technical report, NASA TN-D-557, December, 1960.
    [4] Baucer H F. Oscillations of Immiscible Liquids in a Rectangular Container: A New Damperfor Excited Structures. Journal of Sound and Vibration, 1984, 93(1):117–133.
    [5] Ibrahim R A, Pilipchuk V N. Recent Advanced in Liquid Sloshing Dynamics. AppliedMechanical Review, 2001, 54(2):133–199.
    [6]王照林,刘延柱.充液系统动力学.科学出版社, December, 2002.
    [7] Abramson H, Ransleben Jr G. Simulation of Fuel Sloshing Characteristics in Missile Tanksby use of Small Models. Technical report, DTIC Research Report AD0612784, July, 1959.
    [8] McCarty J L, Stephens D G. Investigation of the Natural Frequencies of Fluid in Sphericaland Cylindrical Tanks. Technical report, NASA TN D-252, May, 1960.
    [9] Bauer H F. Tables and Graphes od Zero of Cross Product Bessel Function. Technical report,MTP-AERO-63-50, April, 1963.
    [10] Lindstrom K, Kjellander H, Jonsson C. A New Instrument for the Measurement of LiquidLevel. Review Science Instrument, 1969, 4:1083–1087.
    [11] Dokuchaev L V. On the Solution of a Boundary Value Problem on the Sloshing of a Liquidin a Conical Cavities. Journal of Applied Mathimatics and Mechnical, 1964, 28(1):151–154.
    [12] Chu W H. Subharmonic Oscillations in an Arbitrary Axisymmetric Tank Resulting fromAxial Excitation. Journal of Applied Mechanics, 1968, 35(1):148–150.
    [13] Faltinsen O M. A Numerical Nonlinear Method of Sloshing in Tanks with Two-dimensionalFlow. Journal of Ship Research, 1978, 22(3):193–202.
    [14] Penney W G, Price A T. Part II. Finite Periodic Stationary Gravity Waves in a PerfectLiquid. Philosophical Transactions of the Royal Society of London. Series A, Mathematicaland Physical Sciences, 1952, 244(882):254–284.
    [15] Hutton, R E . An Investigation of Resonant, Nonlinear, Nonplaner Free Surface Oscillationsof a Fluids[D]. Washington: NASA Center, 1962.
    [16] Ibrihim R A, Soundarajan A. Non-linear Parametric Liquid Sloshing under Wide BandRandom Excitation. Journal of Sound and Vibration, 1983, 91(1):119–134.
    [17] Lawrence H R, Wang C J, Reddy R B. Variational Solution of Fuel Sloshing Modes. JetPropulsion, 1958, 28(11):728–736.
    [18] Barron R, Chang S W R. Dynamic Analysis and Measurement of Sloshing of Fluid inContainers. ASME, Transactions, Journal of Dynamic Systems, Measurement, and Control,1989, 111(1):83–90.
    [19] Bauer H F. Fluid Oscillations in a Circular Cylindrical Tank. Technical report, DA-TR-1-58,4, 1958.
    [20] Mcivor P. Sloshing Frequencies for Cylindrical and Spherical Containers Filled to an Arbi-trary Depth. Journal of Fluid Mechanics, 1989, 201:243–257.
    [21] Miles J W, Troesch B A. Surface Oscillations of a Rotating Liquid. Journal of AppliedMechanics, 1961, 28:491–496.
    [22] Miles J. Free Surface Oscillations in a Rotating Liquid. Physics of Fluids, 2004, 2:297–305.
    [23] Pfei?er F. Ein Naherungsverfahren fur Flussigkeitgefiillte Kreisel. Ingenieur-Archiv, 1974,43(5):306–316.
    [24]包光伟.自旋液体晃动Pfei?er方法的分析.力学学报, 1993, 25(6):738–743.
    [25] Abramson H N. Theoretical and Experimental Studies of Liquid Sloshing in Rigid Cylin-drical Tanks. Technical report, Tech Report ,SWRI, May, 1961.
    [26] Abramson H N. Some Measurements of the E?ect of Ring Ba?es in Cylindrical Tanks.Journal of Spacecraft Rockets, 1964, 1(9):560–562.
    [27] Sumner I E. Experimental Investigation of Slosh Suppression E?ectiveness of AnnularRing Ba?e in Spheroidal Tanks. Technical report, NASA TN D-2519, 1964.
    [28] Abramson H N. Further Studies of Liquid Sloshing in Rocket Propellant Tanks. Technicalreport, Contract NASA-1555,SWRI, November, 1964.
    [29] Addington J W. Dynamics of Fuel in Tanks. Technical report, College of Aeronaut ,Cran-field ,England, November, 1960.
    [30] Schilling U, Siekmann J. Calculation of Free Surface Oscillations of a Heavy Incompress-ible Fluid in an Axially Symmetrical Vessel by Means of Panel Method. Israel Journal ofTech, 1980, 18(1-2):13–20.
    [31] Dodge F T, Garza L R. Experimental and Theoretical Studies of Liquid Sloshing at Simu-lated Low Gravity. Journal of Applied Mechanics, 1967, 37:555–562.
    [32] Yeh G C K. Free and Forced Oscillations of a Liquid in an Axisymmetric Tanks at LowGravity Environments. Journal of Applied Mechanics, 1967, 34(1):23–28.
    [33] Azima H, Yoshinara S. Three-dimensional Large-amplitude Drop Oscillations: Experimensand Theoretical Analysis. Journal of Fluid Mechanics, 1967, 39(3):309–332.
    [34] Concus P, Finn R, Weislogel M. Capillary Surfaces in an Exotic Container: Results fromSpace Experiments. Journal of Fluid Mechanics, 1999, 394:119–135.
    [35] Harlow F H, Welch J E. Numerical Calculation of Time-dependent Viscous IncompressibleFlow of Fluid with Free Surface. Physics of Fluids, 1965, 8(12):2182–2189.
    [36] Hughes T J R, Liu W K, Zimmermann T K. Proc Interdisplinary Finite ElementAnnual:Lagrangian-Eulerian Finite Element Formulation for Incompressible ViscousFlows, volume 1. JF Abel T Kawai and Sf Shen,Eds, Cornell University, 1981: 179–216.
    [37] Nakayama T, Washizu K. The Boundary Element Method Applied to the Analysis of Two-dimensional Nonlinear Sloshing Problem. International Journal for Numerical Methods inEngineering, 1981, 17(11):1631–1646.
    [38] Morand H J P, Ohayon R. Fluid Structure Interaction: Applied Numerical Methods. JohnWiley&Sons New York, March, 1995.
    [39] Ortiz J L, Barhorst A A. Large-Displacement Non-linear Sloshing in 2-D Circular RigidContainers-Prescribed Motion of the Container. International Journal for Numerical Meth-ods in Engineering, 1998, 41(2):195–210.
    [40] Papaspyrou S, Karamanos S, Valougeorgis D. Response of Half-Full Horizontal Cylindersunder Transverse Excitation. Journal of Fluids and Structures, 2004, 19(7):985–1003.
    [41] Guyan R, Uj ihara B, Welch P. Hydroelastic Analysis of Axisymmetric Systems by a FiniteElement Method. Proceedings of the 2nd Conference on Matrix Methods in StructuralMechanics, Air Force Flight Dynamics Lab, AFFDL-TR-68-150, 1968..
    [42] Luk C H. Finite Element Analysis for Liquid Sloshing Problems. Technical report, MITAeroelastic and Structure Research Lab,Tech Report TR-144-3, May, 1969.
    [43] Hirt C W, Nichols B D. Volume of Fluid (VOF)Method for the Dynamics of Free Bound-aries. Journal of Computational Physics, 1981, 39(1):201–225.
    [44] Tokuda N, Sakurai N. Sloshing Analysis Method Using Existing FEM Structure AnalysisCodes. 1994, 60(572):1217–1222.
    [45] Shiojiri H, Hagiwara Y. Development of a Computational Method for Nonlinear Sloshingby BEM,in Flow-Structure Vibration and Sloshing. Proceedings of ASME Pressure Vesselsand Piping Conference PVP-vol 191, Venice, Italy, 1999.
    [46] Donea J, Giuliani S, Halleux J P. An Arbitrary Lagrangian-Eulerian Finite Element Methodfor Transient Dynamic Fluid-Structure Interactions. Computer Methods in Applied Me-chanics and Engineering, 1982, 33(1):689–723.
    [47] Ramaswamy B, Kawahara M. Lagrangian Finite-Element Analysis Applied to ViscousFree-Surface Fluid Flow. International Journal of Numerical method in Fluid, 1987, 7:953–984.
    [48] Soulaimani A, Saad Y. An Arbitrary Lagrangian-Eulerian Finite Element Method for Solv-ing Three-Dimensional Free Surface Flows. Computer Methods Applied in Mechanics andEngineering, 1998, 162(1-4):79–106.
    [49] Ushijima S. Three-Dimensional Arbitrary Lagrangian-Eulerian Numerical PredictionMethod for Non-linear Free Surface Oscillation. International Journal for Numerical Meth-ods in Fluids, 1998, 26(5):605–623.
    [50] Braess H, Wriggers P. Arbitrary Lagrangian Eulerian Finite Element Analysis of Free Sur-face Flow. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1-2):95–109.
    [51] Souli M, Zolesio J P. Arbitrary Lagrangian-Eulerian and Free Surface Methods in Fluid Me-chanics. Computer Methods in Applied Mechanics and Engineering, 2001, 191(3-5):451–466.
    [52] Uchiyama T. ALE Finite Element Method for Gas-Liquid Two-Phase Flow Including Mov-ing Boundary Based on an Incompressible Two-Fluid Model. Nuclear Engineering andDesign, 2001, 205(1):69–82.
    [53]岳宝增,刘延柱,王照林.三维液体非线性晃动动力学特性的数值模拟.应用力学学报, 2001, 18(1):110–115.
    [54]岳宝增.三俯仰激励下三维液体大幅晃动问题研究.力学学报, 2005, 37(2):199–203.
    [55] Longatte E, Bendjeddou E, Souli M. Application of Arbitrary Lagrange Euler Formula-tions to Flow-Induced Vibration Problems. Journal of Pressure Vessel Technology, 2003,125(4):411–417.
    [56]徐刚.大型薄壁结构与大晃动粘性流体的流固耦合数值研究[博士学位论文].北京:清华大学, 2003.
    [57] Tezduyar T, Behr M, Liou J. A New Strategy for Finite Element Computations InvolvingMoving Boundaries and Interfaces―The Deforming Spatial Domain/Space-Time Proce-dure: I.The Concept and the Preliminary Numerical Tests. Computer Methods in AppliedMechanics and Engineering, 1992, 94(1):339–351.
    [58] On`ate E, Idelsohn S R, Del Pin F, et al. The Particle Finite Element Method an Overview.International Journal of Computational Methods, 2004, 1(2):267–307.
    [59] Baucer H F. Coupled Oscillations of a Solidly Rotating Liquid Bridge. Acta Astron, 1982,9(20):547–563.
    [60] Schulkes R M. Eigenfrequencies of a Rotating, Viscous, Incompressible Fluid with a Cap-illary Free Boundary. Advances in Space Researc, 1991, 11(7):173–176.
    [61] Christiansen B, Alstrom P, Levinson M T. Ordered Capillary-wave states: Quasicrys-tals,Hexagons, and Radial Waves. Physics Review Letters, 1992, 68(14):2157–2160.
    [62] Chao L, Kamotani Y, Ostrach S. G-jitter E?ects on the Capillary Surface Motion in an OpenContainers under Weightless Condition. ASME WAM Symp Fluid mechanics Phenomenain Microgravity,AMD, 1992, 154(FED-vol 142):133–143.
    [63] Hung R J, Pan H L, Long Y T. Peculiar Behavior of He II Disturbances due to SloshingDynamics Driven by Jitter Accelerations Associated with Slew Motion in Microgravity.Cryogenics, 1994, 8(2):641–648.
    [64] Hung R J, Long Y T, Zu G J. Coupling of Gravity-Gradient-Dominated Acceleration-Induced Slosh Reaction Torques with Spacecraft Orbital Dynamics. Control EngineeringPractice, 1996, 4(7):939–949.
    [65] Hung R J, Long Y T, Zu G J. Slosh Dynamics Coupled with Spacecraft Attitude DynamicsPart I:Formulation and Theory. Journal of Spacecraft and Rockets, 1996, 33(4):575–581.
    [66] Snyder H A. Sloshing in Microgravity. Cryogenics, 1999, 39(12):1047–1055.
    [67] Snyder H A. E?ect of Rotation on Sloshing in Low-gravity. Cryogenics, 2004, 44(6-8):525–536.
    [68] Yue B Z, Wang Z L. Nonlinear Phenomena of Three-Dimensional Liquid Sloshing in Mi-crogravity Environment. Chinese Science Bulletin, 2006, 51(20):2425–2431.
    [69] Gerrits J. Dynamics of Liquid-Filled Spacecraft: Numerical Simulation of Coupled Solid-Liquid Dynamics[D]. Groningen: Rijks universiteit Groningen, 2001.
    [70] Gerrits J, Veldman A E P. Dynamics of Liquid-filled Spacecraft. Journal of EngineeringMathematics, 2003, 45(1):21–38.
    [71] Arthur E P V. The Simulation of Violent Free-surface Dynamics at Sea and in Space. Pro-ceedings of European Conference on Computational Fluid Dynamics, TU Delft, Nether-land, 2006.
    [72] Luppes R, Helder J A, Veldman A E P. The Numerical Simulation of Liquid Sloshing inMicrogravity. Proceedings of European Conference on Computational Fluid Dynamics, TUDelft, Netherland, 2006.
    [73] Rumold W. Modeling and Simulation of Vehicles Carrying Liquid Cargo. Multibody Sys-tem Dynamics, 2001, 5(4):351–374.
    [74] He P, Salcudean M. Multigrid Calculation of Fluid Flows in Complex 3D Geometries usingCurvilinear Grids. Computers & Fluids, 1996, 25(4):395–419.
    [75] Morinishi K. A Finite Di?erence Solution of the Euler Equations on Non-body FittedCartesian Grids. Computers & Fluids, 1992, 21(3):331–344.
    [76] Verstappen R, Dro¨ge M. A Symmetry-Preserving Cartesian Grid Method for Computing aViscous Flow Past a Circular Cylinder. Comptes Rendus Me′canique, 2005, 333(3):51–57.
    [77]张兆顺,崔桂香.流体力学.清华大学出版社, February, 1999.
    [78]王勖成,邵敏.有限单元法基本原理和数值方法.清华大学出版社, December, 1995.
    [79]刘儒勋,王志峰.数值模拟方法和运动界面追踪.中国科学技术大学出版社, October,2001.
    [80] Sussman M, Smereka P, Osher S. A Level Set Approach for Computing Solutions to In-compressible Two-Phase Flow. Journal of Computational Physics, 1994, 114(1):146–159.
    [81] Sussman M, Fatemi E, Smereka P, et al. An Improved Level-Set Method for IncompressibleTwo-Phase Flows. Computers and Fluids, 1998, 27(1):663–680.
    [82] Guey?er D, Li J, Nadim A, et al. Volume-of-Fluid Interface Tracking with SmoothedSurface Stress Methods for Three-Dimensional Flows. Journal of Computational Physics,1999, 152(2):423–456.
    [83] Ubbink O, Issa R I. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes.Journal of Computational Physics, 1999, 153(1):26–50.
    [84] Kleefsman K, Veldman A E P. An Improved Volume-of-Fluid(IVOF) Method for WaveImpact Type Problems. Proceedings of Proceedings of OMAE-FPSO, Houston USA, 2004.
    [85] Frederic J B. A Monolithical Fluid-Structure Interaction Algorithm Applied to the PistonProblem. Computer Methods in Applied Mechanics and Engineering, 1998, 167(3):369–391.
    [86] Chu W H. Low gravity Fuel Sloshing in an Arbitrary Axisymmetric Rigid Tank. Journal ofApplied Mechanics, 1970, 37(1):828–837.
    [87]吕敬.充液挠性航天器非线性动力学研究[博士学位论文].北京:清华大学, 2006.
    [88]苟兴宇.航天工程中的贮箱类液固耦合动力学研究[博士学位论文].哈尔滨:哈尔滨工业大学, 1998.
    [89]尹立中.航天工程中液体大幅晃动及贮箱类液固耦合动力学研究[博士学位论文].哈尔滨:哈尔滨工业大学, 1999.
    [90] Nomura T. ALE Finite Element Computations of Fluid-Structure Interaction Problems.Computer Methods in Applied Mechanics and Engineering, 1994, 1(12):291–308.
    [91] Babu S S, Bhattacharyya S. Finite Element Analysis of Fluid-Structure Interaction E?ect onLiquid Retaining Structures due to Sloshing. Computers and Structures, 1996, 59(6):1165–1171.
    [92] Ortiz J L, Barhorst A A, Robinett R. Flexible Multibody Systems-Fluid Interaction. Inter-national Journal for Numerical Methods in Engineering, 1998, 41(3):409–433.
    [93] Sarrate J, Huerta A, Donea J. Arbitrary Lagrangian-Eulerian Formulation for Fluid-RigidBody Interaction. Computer Methods in Applied Mechanics and Engineering, 2001,190(24-25):3171–3188.
    [94] Rumold W. Modeling and Simulation of Vehicles Carrying Liquid Cargo. Multibody Sys-tem Dynamics, 2001, 5(3):351–374.
    [95] Kuhl E, Hulsho S, de Borst R. An Arbitrary Lagrangian Eulerian Finite-Element Approachfor Fluid-Structure Interaction Phenomena. International Journal of Numerical Methods inEngineering, 2003, 157(1):117–142.
    [96]陈建平,周儒荣,虞伟建.充液系统液体-多体耦合动力响应分析.力学学报, 2004,36(6):724–731.
    [97] Mustafa A. Finite Element Analysis of Sloshing in Liquid-Filled Containers. Journal ofSound and Vibration, 2005, 279(2):217–235.
    [98] Hung R J, Pan H L. Mathematical Model of Bubble Sloshing Dynamics for CryogenicLiquid Helium in Orbital Spacecraft Dewar Container. Applied Mathematical Modeling,1995, 19(8):483–498.
    [99] Hung R J, Long Y T, Zu G J. Slosh Dynamics Coupled with Spacecraft Attitude Dy-namics Part II:Orbital Environment Application. Journal of Spacecraft and Rockets, 1996,33(4):582–593.
    [100] Veldman A E P, Gerrits J, Luppes R. The Numerical Simulation of Liquid Sloshing onBoard Spacecraft. Journal of Computational Physics, 2007, 224(1):82–99.
    [101] Celic′A, Zilliac G G. Computational Study of Surface Tension and Wall Adhesion E?ectson an Oil Film Flow Underneath an Air Boundary Layer. Technical report, NASA AmesResearch Center, August, 1997.
    [102] Dodge F T. The New”the Dynamic Behavior of Liquid in Moving Containers”. Technicalreport, Southwest Research Institute, May, 2000.
    [103] Hirt C W, Amsden A A, Cook J L. An Arbitrary Lagrangian-Eulerian Computing Methodfor all Flow Speeds. Journal of Computational Physics, 1974, 14(3):227–253.
    [104] Kennedy J M, Belytschko T B. Theory and Application of a Finite Element Method forArbitrary Lagrangian-Eulerian Fluids and Structures. 1981, 68(2):129–146.
    [105] Donea J, Huerta A. Finite Element Methods for Flow Problems, volume 1. Chichester:Wiley, 2003: 265–317.
    [106] Guermond J L, Quartapelle L. On Stability and Convergence of Projection Methods basedon Pressure Poisson Equation. International Journal Numerical Methods in Fluids, 1998,26(9):1039–1053.
    [107] Guermond J L, Quartapelle L. On the Approximation of the Unsteady Navier-Stokes Equa-tion by Finite Element Projection Method. Numerische Mathematik, 1998, 80(2):207–238.
    [108] Minev P D. A Stabilized Incremental Projection Scheme for the Incompressible Navier-Stokes Equations. International Journal Numerical Methods in Fluids, 2001, 36(4):441–464.
    [109] Shikhmurzaev Y D. The Moving Contact Line on a Smooth Solid Surface. InternationalJournal Multiphase Flow, 1993, 19:589–610.
    [110] Shikhmurzaev Y D. Moving Contact Lines in LiquidLiquidSolid Systems. Journal of FluidMechanics, 1997, 334:211–249.
    [111] Martin J C, Moyce W J. Part IV. An Experimental Study of the Collapse of Liquid Columnson a Rigid Horizontal Plane. Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, 1952, 244(882):312–324.
    [112] Muto K, Kasai Y, Nakahara M, et al. Experimental Tests on Sloshing Response of a WaterPool with Submerged Blocks. Fluid-Structure Dynamics, 1985, 98(7):209–214.
    [113] Huerta A, Liu W K. Viscous Flow with Large Free Surface Motion. Computer Methods inApplied Mechanics and Engineering, 1988, 69(3):277–324.
    [114]曾江红.多腔充液自旋系统动力学与液体晃动三维非线性数值研究[博士学位论文].北京:清华大学, 1996.
    [115]王建军.快中子增值堆主容器流固耦合非线性数值分析[博士学位论文].北京:清华大学, 1996.
    [116] Chiandussi G, Bugeda G, Onate E. A Simple Method for Automatic Update of FiniteElement Meshes. Communications in Numerical Methods in Engineering, 2000, 16(1):1–19.
    [117] Sarrate J, Huerta A. An Improved Algorithm to Smooth Graded Quadrilateral MeshesPreserving the Prescribed Element Size. Communications in Numerical Methods in Engi-neering, 2001, 17(2):89–99.
    [118] Wells B V, Baines M J, Glaister P. Generation of Arbitrary Lagrangian-Eulerian (ALE)velocities, based on monitor functions, for the solution of compressible ?uid equations.International Journal of Numerical Methods in Fluids, 2005, 47:1375–1381.
    [119] Lo¨hner R, Yang C. Improved ALE Mesh Velocities for Moving Bodies. Communicationsin Numerical Methods in Engineering, 1996, 12(10):599–608.
    [120] Jonhnson A A, Tezduyar T E. Mesh Update Strategies in Parallel Finite Element Compu-tations of Flow Problems with Moving Boundaries and Interfaces. Computer Methods inApplied Mechanics and Engineering, 1994, 119(1-2):73–94.
    [121] Stein K, Tezduyar T E, Benney R. Automatic Mesh Update with the Solid-extension MeshMoving Technique. Computer Methods in Applied Mechanics and Engineering, 2004,193(21-22):2019–2032.
    [122] Knupp P, Margolin L G, Shashkov M. Reference Jacobian optimization-based rezone strate-gies for arbitrary Lagrangian Eulerian methods. Journal of Computational Physic, 2002,176(1):93–128.
    [123] Nithiarasu P. An Arbitrary Lagrangian-Eulerian (ALE) Formulation for Free Surface Flowsusing the Characteristic-based Split (CBS) Scheme. International Journal for NumericalMethods in Fluids, 2005, 48(1):1415–1428.
    [124] Wall W A, Ekkehard R. Fluid–Structure Interaction Based upon a Stabilized (ALE) FiniteElement Method. Proceedings of Proceedings of the WCCM IV Conference on Computa-tional Mechanics, CIMNE, Barcelona, 1998.
    [125] Farhat C. Parallel and Distributed Solution of Coupled non-linear Dynamic AeroelasticResponse Problems, volume 1. John Wiley:New York, 1989: 243–301.
    [126] Lo¨hner A A, Yang C, On?ate E I. An Unstructured Grid Based Parallel Free Surface Solver.Proceedings of 28th AIAA ?uid dynamics conference, CIMNE, Barcelona, 1997.
    [127] Teixeira P R F, Awruch A M. Numerical Simulation of Fluid-Structure Interaction usingthe Finite Element Method. Computers and Fluids, 2005, 34(2):249–273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700