多腔充液晃动及其飞行器系统耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以火箭飞行器系统外弹道设计为背景,对携带几十个装填液体子腔体的非旋转多充液腔飞行器系统外弹道特性和腔内液体晃动特性进行了系统深入的研究。
     根据充液系统(液体-刚体)的数学模型,以圆柱形腔体为例,论述了非旋转充液系统腔内液体基本流动和复杂流动的理论、数值模拟与实验研究状况。主要取得了如下研究成果:
     (1)在单腔充液晃动等效力学模型基础上,建立了多腔充液晃动等效力学模型,得出了多充液腔对飞行器的反作用力和力矩计算公式。
     (2)建立了计算腔内液体小幅晃动固有频率和阻尼的有限元计算方法,对带球形底圆柱容器中不同液深情况下水平激励的液体小幅晃动进行了实验研究,获得了晃动第一阶固有频率和阻尼比,验证了有限元计算结果。
     (3)对半球形容器中不同液深情况下液体第一阶侧向晃动自由衰减过程进行了实验,初步发现其非线性大幅晃动表现出的软特性,且阻尼比随振幅的变化关系是复杂的。对带球形底的圆柱容器中竖直激励下的液体非线性晃动进行了实验观测,显示了液珠喷射与最大激励加速度的关系,表明了液珠喷射和激励频率、表面张力系数的关系,及其液面重力波和毛细波的作用机制。
     (4)对竖直和水平激励情形下的多充液腔晃动进行了实验研究。竖直和水平激励均可观察到超谐振动、共振晃动、马鞍型模态晃动、钟形模态共振和液珠喷射等现象。对竖直激励,当频率较低时,晃动幅度上层大下层小,当激励频率较高时,晃动幅度的层间差异反而不大。对水平激励,当频率较低时,晃动幅度层间差异不大,而当激励频率较高时,上层液体振动幅度普遍较下层液体大。
     (5)应用Rumjantsev部分变量理论,建立了充液飞行器系统的耦合动力学数学模型,证明腔内液体主要通过壁面压力的作用力、力矩和质量力、力矩影响系统行为。
     结合多腔充液火箭飞行器系统建立了飞行弹道仿真模型,对设计样机进行了仿真实验和计算。结果表明,对腔内所充液体量较小的飞行稳定飞行器,其飞行攻角小腔内液体的激励幅值小,因而液体晃动对飞行器弹道的影响也较小。而由于充液质心与飞行器质心不重合,却使液体质量力矩的影响变大。当充液质心与飞行器质心的距离较大时,对飞行器弹道的影响较严重,甚至导致飞行不稳定。相反减小充液质心与飞行器质心的距离,包括充液质量,可以减小腔内液体对飞行器弹道的影响。
In the dissertation, with the background of flight design to a rocket with several decade sub-cavities filled with liquid, the flight ballistic properties of rocket with liquid-filled multi-containers and liquid sloshing properties in container were investigated systemically.
     Based on the mathematical models of liquid-filled system (liquid-rigid container), to the situations that the shape of container is cylindrical, an overview of the theoretical, numerical and experimental investigations on the basic flow and complicated flow in non-rotating liquid-filled system were presented.
     Main results are as follows:
     (1) On the basis of equivalent mechanical models for liquid sloshing in a single tank, the equivalent mechanical models for liquid sloshing in multi-tank were proposed, and the calculating formulas for forces and moments acting on flight vehicle due to liquid sloshing of multi-tank were obtained.
     (2) A finite element method (FEM) for calculating eigenfrequencies and damping ratios of liquid sloshing with small amplitude was proposed. Some experiments on small amplitude liquid sloshing forced by horizontal excitations for different liquid depth in a circular cylindrical tank with spherical bottom were carried out. The first order eigenfrequency and damping ratio from experiments validated the calculating results by FEM.
     (3) By the experiments results about attenuation process of first order lateral free sloshing in a hemisphere container for different liquid depth, it was founded primarily that the nonlinear sloshing with large amplitude shows softening behavior and the relationships between damping ratios and amplitudes are complex. Based on the experimental observations on liquid nonlinear sloshing forced by vertical excitation in a circular cylindrical tank with spherical bottom, the relationships between liquid drop ejecting and maximum exciting accelerations are given. And it was also indicated that the mechanism of liquid drop ejecting depends on excited frequencies and surface tension coefficients relying on gravitational waves and capillary waves on liquid surface.
     (4) The experiments on liquid sloshing excited by vertical and horizontal excitations in multi-tank were performed. The phenomena about super-harmonic oscillation, resonant mode sloshing, saddle mode sloshing, campaniform mode sloshing, liquid drop ejecting etc. were observed in vertical and horizontal excitations. In the vertical situation, if the exciting frequency is low, the amplitude of sloshing in tank on top-layer is larger than that on bottom-layer. If the exciting frequency is high, the differences among amplitudes of sloshing in any layer are slight. In the horizontal situation, the case is opposite, which is that if the exciting frequency being low, the differences among amplitudes of sloshing in any layer are not evident, otherwise if the exciting frequency being high, the amplitude of sloshing in tank on top-layer is larger than that on bottom-layer.
     (5) By applying the Rumjantsev's Partial Variable Theory (PVT), the mathematical models of coupling dynamics of liquid-filled flight vehicle were proposed. It was demonstrated that the behavior of flight system is mainly affected by the force and moment due to the pressure from the wall and the gravity of the liquid.
     Combining with the design of rocket with liquid-filled sub-cavities, the simulating models of flight ballistics were established, and simulation calculations for planning model projectiles were processed. Following conclusions were obtained. In a situation that the flight of rocket filled with small liquid mass is stable, because the attack angle and the excited amplitude to liquid within container are small, so the influences of liquid sloshing to rocket flight ballistics are also small. However, if the mass center of liquid is not coincided with that of flight vehicle, the influences of liquid gravity moment become large. When the distance between the mass center of liquid and the mass center of flight vehicle is large, the influences to rocket flight ballistics become serious, which even induce flight instability. In reverse, reducing the distance and the liquid mass, the influences to rocket flight ballistics may be decreased.
引文
[1]Ibrahim R A. Liquid Sloshing Dynamics:Theory and Applications[M]. London: Cambridge Pub.2005.
    [2]王为.考虑毛细效应的液体小幅晃动问题研究[D].清华大学博士学位论文.北京:2008.
    [3]王照林,刘延柱.充液系统动力学.北京:科学出版社,2002.
    [4]Moiseev N N and Rumjantsev V V. Dynamics of Bodies Containing Liquid[M]. Moscow,1965(in Rus.).
    [5]Mikishev G N and Dorozhkin N. Experimental Investigation of Free Oscillations of a Liquid in Tanks[M]. Translated into English by Kana D D. SWRI, June 1963.
    [6]Karpov B G and Wedemeyer H E. Engineering Design Handbook, Liquid-Filled Projectile Design[S].1969, AD853719.
    [7]刘儒勋,王志峰.数值模拟计算和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [8]Wedemeyer E H. The unsteady flow within a spinning cylinder[J].J.Fluid Mech.1964,20(3):383-399.
    [9]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展.1997,27(1):19-38.
    [10]Rumjantsev V V. Stability of Motion of Solid Bodies with Liquid-Filled Cavities by Lyapunov's Methods[J]. Advances in Applied Mechanics.1964,8:183-232.
    [11]Stewartson K. On the Stability of a Spinning Top Containing Liquid. J.Fluid Mech., 1959,5(4):577-592.
    [12]Murphy C H. Angular Motion of a Spinning Projectile with a Viscous Liquid Payload. J. Guidance, Control and Dynamics,1983,6(7-8):280-286.
    [13]Kitchens C W, Gerber J N and Sedney R. Oscillations of a Liquid in a Rotating Cylinder:Solid-Body Rotation. AD-A057759, June 1978.
    [14]Herbert Th and Li R H. Computational Study of the Flow in a Spinning and Nutating Cylinder. AIAA Journal.1990,28(9):1596-1604.
    [15]Selmi M, Li Rihua and Herbert T. Eigenfunction Expansion of the Flow in a Spinning and Nutating Cylinder. Phys. Fluids A,1992,4(9):1988-2007.
    [16]Vaughn H R, Oberkampf W L, Wolfe W P. Fluid Motion Inside a Spinning, Nutating, Fluid-Filled Cylinder. J.Fluid Mech.1985,150:121-138.
    [17]Hall P, Sedney R and Gerber N. High Reynolds Number Flows in Rotating and Nutating Cylinders:Spatial Eigenvalue Approach. AIAA Journal,1992,30(2):423-430.
    [18]Kobine J J. Inertial Wave Dynamics in a Rotating and Precessing Cylinder. J.Fluid Mech.1995,303:233-252.
    [19]Manasseh R. Breakdown Regimes of Inertial Waves in a Precessing Cylinder. J.Fluid Mech.,1992,243:261-296.
    [20]Kerswell R R. Elliptical Instability [J]. Annu. Rev. Fluid Mech.2002,34:83-113.
    [21]王照林,李磊.自由液面晃动对旋转充液腔体运动稳定性的影响。应用力学学报,1993,10(3):9-18.
    [22]王照林,李磊.章动角对旋转章动充液腔体运动稳定性的影响.应用力学学报.1993,10(4):1-7.
    [23]李磊,任业军,蔡斌,王照林.进动圆筒内液体流动不稳定的非线性特征.力学学报,2005,37(1)49-50.
    [24]夏恒新,李磊.充液系统腔内复杂流动与耦合动力学研究.力学与实践,2009,31(4):12-23.
    [25]Abramson H N.The Dynamic Behavior of Liquids in Moving Containers[S].NASA Sp-106. Washington,1966.
    [26]尹立中.工程中液体大幅晃动及贮箱类液固耦合动力学研究.哈尔滨工业大学博士学位论文,哈尔滨:1999.
    [27]Ibrahim R A, Pilipchuk V N and Ikeda T. Recent Advances in Liquid Sloshing Dynamics[J]. Appl. Mech. Rev.,2001,54(2):133-199.
    [28]Moiseev N N. On the Theory of Nonlinear Vibration of a Liquid of Finite Volume[J]. Prikl. Math. Mekh.,1958,22:612-621.
    [29]Penny W G and Price A T. Finite Periodic Stationary Waves in a Perfect Liquid-Part Ⅱ[J]. Phil. Trans. Royal Soc,1952:254-284.
    [30]Hutton R E. An Investigation of Resonance, Nonlinear and Nonplanar Free Surface Oscillations of Fluid[D]. PhD Diss., UCLA. TN-D-1870.1962.
    [31]Abramson H N,Chu W H, Dodge F T. Nonlinear effects in lateral sloshing[S]. In The Dynamic Behaviour of Liquids in Moving Containers (ed. H. N. Abramson). NASA 1966, TR SP-106:79-103.
    [32]马兴瑞,王本利,苟兴宇等.航天器动力学——若干问题进展与应用.北京:科学出版社,2001.
    [33]Miles J W. Nonlinear surface wayes in closed basins [J]. J. Fluid Mech.1976,75: 419-448.
    [34]Miles J W. Internally resonant surface waves in a circular cylinder[J]. J. Fluid Mech. 1984,149:1-14.
    [35]Miles J W. Resonantly forced surface waves in a circular cylinder[J]. J.Fluid Mech.1984,149:15-31.
    [36]Gollub J P and Meyer C W. Symmetry-Breaking Instabilities on a Fluid Surface[J]. Physica 6D,1983:337-346.
    [37]Jiang L, Perlin M, Schultz W W. Period tripling and energy dissipation of breaking standing waves[J]. J.Fluid Mech.1998,369:273-299.
    [38]Faltinsen O M, Rognebakke O F,Lukovsky I A,Timokha A N. Multidimensional modal analysis of nonlinear sloshing in rectangular tank with finite water depth[J]. J. Fluid Mech.2000,407:201-234.
    [39]Faltinsen O M, Rognebakke O F,Timokha AN. Resonant three-dimensional nonlinear sloshing in a square basin[J]. J.Fluid Mech.2003,487:1-42.
    [40]Royon-Lebeaud A, Hophinger E J, Cartellier A. Liquid sloshing and wave breaking in circular and square-base cylindrical containers [J]. J. Fluid Mech.2007,577:467-494.
    [41]Goodridge C L, Shi W T, Lathrop D P. Threshold Dynamics of Singular Gravity-Capillary Waves. Phys.Rev.Lett.1996,76(11):1824-1827.
    [42]Wright J, Yon S, Pozrikidis C. Numerical studies of two-dimensional Faraday oscillations of inviscid fluids[J]. J. Fluid Mech.2000,402:1-32.
    [43]王继海.二维非定常流和激波.北京:科学出版社,1994.
    [44]Hocking L M. The damping of capillary-gravity waves at a rigid boundary[J]. J. Fluid Mech.1987,179:253-266.
    [45]Henderson D M, Miles J W. Surface-wave damping in a circular cylinder with a fixed contact line[J]. J. Fluid Mech.1994,275:285-299.
    [46]Miles J W,Henderson D M. A note on interior vs. boundary-layer damping of surface waves in a circular cylinder[J]. J. Fluid Mech.1998,364:319-323.
    [47]Perlin M, Schultz W W. Capillary Effects on Surface Waves[J]. Annu. Rev. Fluid Mech.2000,32:241-274.
    [48]Shikhmurzaev Y D. Moving contact lines in liquid/liquid/solid systems[J]. J. Fluid Mech.1997,334:211-249.
    [49]Boettinger W J, Warren J A, Bechermann C. Phase-Fluid Simulation of Solidification[J]. Annu.Rev.Mater.Res.2002,32:163-194,
    [50]Pomeau Y. Recent progress in the moving contact line problem:a review[J]. C. R. Mecanique 2002,330:207-222.
    [51]Jacqmin D. Contact-line dynamics of a diffuse fluid interface[J]. J. Fluid Mech.2000,402:57-88.
    [52]Liu C, Shen J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method[J]. Physica D.2003,179:211-228.
    [53]Qian T-Z, Wang X-P, Sheng P. Molecular scale contact line hydrodynamics of immiscible flows[J]. Phys.Rev. E.2003,68:016306.
    [54]罗雄平.先驱膜的连续流体动力学模型[J].力学学报.2007,39(4):455-459.
    [55]全斌.复杂腔体内液体晃动抑制动力学与非线性瞬态流动的并行数值模拟[D].清华大学工程力学系博士学位论文.北京:1990.
    [56]曾江红,王照林.黏性流体大幅晃动的ALE有限元模拟[J].强度与环境.1996,(3):25-30.
    [57]岳宝增.三俯仰激励下三维液体大幅晃动问题研究[J].力学学报.2005,37(2):199-203.
    [58]Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S. Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows [J]. Journal of Computational Physics 152,423-456 (1999)
    [59]Scardovelli R, Zaleski S. Direct Numerical Simulation of Free-Surface and Interfacial Flow[J]. Annu. Rev. Fluid Mech.1999.31:567-603.
    [60]Osher S, Fedkiwy R P. Level Set Methods:An Overview and Some Recent Results[1]. J.Comput.Phys.2001,169:463-502.
    [61]Sethian J A, Smereka P. Level Set Methods For Fluid Interfaces [J]. Annu. Rev. Fluid Mech.2003,35:341-72.
    [62]Onate E, Garcia J, Idelsohn S R, Del Pin F. Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches[J]. Comput. Methods Appl. Mech. Engrg.2006,195:3001-3037.
    [63]Monaghan J J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physcis. 2005,68(8):1703-1759.
    [64]Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D.The lattice Boltzmann equation method:theoretical interpretation, numerics and implications [J]. Int. J. Multi. Flow.2003,29:117-169.
    [65]Onate E, Idelsohn S R, Del Pin F, Aubry R. The Particle Finite Element Method -An Overview[J]. Int. J. Comput.2004, 1(2):267-307.
    [66]Thiirey N, Pohl T, Rude U, Ochsner M, Korner C. Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization. Computers &Fluids,2006,35: 934-939.
    [67]Souli M, Zolesio J P. Arbitrary Lagrangian-Eulerian and Free Surface Methods in Fluid Mechanics[J]. Comput. Methods. Appl. Engrg.2001,191:451-466.
    [68]Nithiarasu P. An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split(CBS) scheme[J]. Int. J. Numer. Meth. Fluids. 2005,48:1415-1428.
    [69]Sussman M, Puckett EG.2000. A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput.Phys. 2000,162:301-337.
    [70]Sussman M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys.2003, 187:110-136.
    [71]Olsson E, Kreiss G. A conservative level set method for two phase flow. J. Comput. Phys.2005,210:225-246.
    [72]Nourgaliev R R, Theofanous T G. High-fidelity interface tracking in compressible flows:unlimited anchored adaptive level set. J. Comput. Phys.2007,224:836-866.
    [73]Herrmann M. Refined level set grid method for tracking interfaces. In Annual Research Briefs 2005, pp.3-18. Stanford, CA:Cent. Turbul. Res.
    [74]Herrmann M. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. In Annual Research Briefs 2006, pp.167-184. Stanford, CA:Cent. Turbul. Res.
    [75]Enright D, Fedkiw R, Ferziger J, Mitchell I. A Hybrid Particle Level Set Method for Improved Interface Capturing[J]. J.Comput Phys.2002,183:83-116.
    [76]Wang S M, Wang Z L. A New Numerical Method for Instantaneous Fluid Flow with Free Surface[J]. Adv. In Astronautical Sci.1996,91:299-308.
    [77]周宏.液体晃动数值模拟及刚-液耦合动力学研究[D].清华大学工学博士学位论文.北京,2008.
    [78]汤波.带自由面粘性流体运动的数值模拟及其应用[D].清华大学工学博士学位论文.北京,2008.
    [79]王照林,曾凡才.大系统方法与部分充液系统的三轴稳定性分析[J].力学学报.1988,20(1):49-57.
    [80]王士敏.充液系统的Hamilton结构与液体大幅晃动的数值模拟[D].博士学位论文,清华大学工程力学系,北京:1991.
    [81]朱如曾.充液腔体旋转运动的稳定性理论[J].中国科学 A辑.1984,7:624-633.
    [82]Pfeiffer F. Ein Naherungsverfahren fur Flussigkeitsgefullte Kreisel[J]. Ingenieur-Archiv.1974,43:306-316.
    [83]Miles J W. Resonant Motion of a Spherical Pendulum[J]. Physica D.1984,11:309-323.
    [84]Wang W, Li JF and Wang TS. Damping Computation of Liquid Sloshing with Small Amplitude in Rigid Container Using FEM[J]. Acta Mech. Sinica.2006,22(1):93-98.
    [85]Murphy C H. A Sympton of Payload-Induced Flight Instability[S].Sep 1990,AD-A227515.
    [86]Weber D J. Simplified Method for Evaluating the Flight Stability of Liquid-Filled Projectiles[J]. Journal of Spacecraft and Rockets.1994,31(1):130-134.
    [87]李磊,王照林,曾江红.旋转充液系统非线性稳定性和动力学分析[J].清华大学学报(自然科学版).1995,35(2):41-47.
    [88]李磊,任业军,蔡斌,王照林.自旋充液系统章动角运动参数激励振动模型的非线性分析[J].非线性动力学报,2001,8(3):191-198.
    [89]朱金林,岳宝增.部分充液卫星的非线性稳定性和动力学分析[J].动力学与控制.2004,2(3):1-5.
    [90]Vaughn H R, Wolfe W P, Oberkampf W L. Six Degree of Freedom Simulation of Fluid Payload Projectiles Using Numerically Computed Fluid Moments[S]. 1985,SAND85-1166.
    [91]李磊,任业军,蔡斌,王照林.旋转充液系统全飞行过程非线性动力学仿真.宇航学报,2001,23(4):4-11.
    [92]Veldman A E P, Gerrits J, Luppes R, Helder J A, Vreeburg J P B. The numerical simulation of liquid sloshing on board spacecraft [J]. J.Comput.Phys.2007,224:82-99.
    [93]Gerrits J, Veldman A E P. Dynamics of liquid-filled spacecraft [J]. J. Eng. Math.2003, 45:21-38.
    [94]王照林,廖敏,邓重平.部分充液球形偏置贮箱的旋转卫星系统的运动分析.力学学报,1989,21(3):336-343.
    [95]屠善澄等,卫星姿态动力学与控制(1),北京,中国宇航出版社,2005.
    [96]Graham E W, and Rodriguez A M. The characteristics of fuel motion which affect airplane dynamics, ASME Journal of Applied Mechanics,1952, Vol.19, No.3, pp.381-388.
    [97]Baoyin Hexi, LI Junfeng et al. Damping computation of liquid sloshing in containers aboard spacecraft, Acta Mechanica Sinica,2003, Vol.19, No.12, pp.189-192.
    [98]Wei Wang, Junfeng Li, and Tianshu Wang, Damping computation of liquid sloshing with small amplitude in rigid container using FEM, Acta Mechanica Sinica,2006, Vol.22, No.1,pp.93-98.
    [99]Martel C, Nicolas J A, Vega J M. Surface-wave damping in a brimful circular cylinder, Journal Fluid Mechanics,1998, vol.360, pp.213-228.
    [100]Miles J W, Surface wave damping in closed basins, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 297, Issue 1451, pp.459-475.
    [101]徐明友,火箭外弹道学.北京:兵器工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700