输电线路舞动分析及防舞技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆冰输电导线在一定风速下常发生舞动,它是一种低频率、大振幅的自激振动。舞动的振幅通常很大,对输电线路的安全运行具有很大的威胁。随着电力建设的大规模发展,对舞动的深入研究是一项十分紧迫的任务。本文从舞动响应的模拟及防舞技术两方面对舞动进行了研究,论文的主要研究内容和成果有:
     利用拉格朗日方程推导了装有压重或者失谐摆防舞器的覆冰导线统一的非线性运动微分方程组;利用Runge-Kutta方法求解该微分方程组,得到了导线舞动响应的数值解;将导线所受气动力用泰勒公式展开到第三阶,用平均法求解简化后的微分方程组,得到舞动响应的简化解析解。根据微分方程稳定性理论提出了舞动临界风速的计算方法。推导了分裂导线扭转刚度的计算公式。得到的主要结论有:扭转角小于90°时,分裂导线扭转刚度大致为常数,可用初始扭转刚度作为分裂导线的扭转刚度;单导线只有当风速位于某一范围时才舞动,而分裂导线只要风速超过临界风速就必定会舞动,不会出现风速过大舞动停止的现象;单导线和分裂导线舞动振幅与导线跨中垂度的关系是相似的,两者都存在一个最不利的跨中垂度使舞动振幅最大;单导线舞动振幅存在最不利的档距,而分裂导线的振幅则随着档距的增大而增大。
     推导了考虑导线扭转自由度的三节点索单元的单元质量矩阵以及刚度矩阵,编制了计算导线舞动响应的非线性有限元程序。建立了塔线耦联的有限元模型,研究了输电塔对舞动的影响。用谐波叠加法模拟了考虑空间相关性的人工风速时程,研究了风速脉动及空间相关性对舞动的影响。得到的主要结论有:非线性有限元方法模拟得到的横风向舞动向上振幅比线弹性方法向上舞动振幅略大,而向下舞动的振幅却略小;舞动时导线的最大动张力要大于导线的静张力,单导线的最大动张力随着风速增大先增大后减小,存在最大值;而分裂导线的最大动张力则随风速增大而增大;输电塔对舞动振幅略有影响,其影响的幅度与风速有关;考虑风速脉动后导线舞动振幅略有增大。
     研究了新型液体阻尼器的设计及其防舞效果,研究了压重防舞器及失谐摆在单导线和分裂导线上的防舞效果。得到的主要结论有:按照本文提出的方法设计的新型液体阻尼器的防舞效果较好,若设计参数不当,新型液体阻尼器的防舞效果则不太理想;压重防舞器在单导线上效果较好,在分裂导线上效果较差;失谐摆在单导线上非常有效,在分裂导线上效果甚微。
     利用风洞试验实测了新月形覆冰导线及装有不同直径的扰流防舞器覆冰导线的气动力系数曲线,利用CFD技术数值模拟了扰流防舞器的气动力系数曲线,研究了扰流防舞器覆盖率与舞动振幅的关系,得到的主要结论有:各种直径的扰流防舞器都具有一定的防舞效果,直径0.75D的扰流防舞器防舞效果最佳;当扰流防舞器的覆盖率达到30%以后,覆冰导线的舞动可以得到完全抑制。
Under certain wind velocity, iced transmission line often occurs galloping, which is a low frequency and large amplitude self-excited vibration.The galloping amplitude is usually large,which is a very big threat to the safe operation of the transmission line. With the construction of large-scale power development, studying deeply in galloping is a very urgent task.The galloping response simulation and galloping prevention was studied in this paper. The paper's main contents and results are:
     The uniform nonlinear dynamic differential equations of iced transmission line installed with weighting and detuning pendulum was derived using Lagrange Method. The differential equations were solved by Runge-Kutta Methods and the Average Method respectively to obtaine numerical and analytical solutions of galloping response.The formulas for critical wind speed and torsional stiffness of bundled transmission lines were presented. The main conclusion are:When the torsional angel is smaller than 90 degrees,the torsional stiffness of the bundled lines is constant,which can be used as the initial torsional stiffness.The single line can gallop in a certain range of wind speed,while the galloping amplitude of bundled lines increases with wind speed.The relationship between galloping amplitude of single line and bundled lines with sag are similar,both exist a worst sag to cause maximum galloping amplitude.The single line exist a worst span to cause maximum galloping amplitude,while the galloping amplitude of bundled lines increases with the span.
     The mass element matrix and stiffness element matrix of the three degrees cable element considered torsional degree was derived.The nonlinear finite element program to calculate galloping amplitude was designed.The coupled FEM model of tower and lines was set up.The impact of tower to line galloping was studied. The impact of velocity fluctuation and spatial correlation to galloping was researched.The main conclusions are:The upward tranverse galloping amplitude is larger by nonlinear FEM than by linear FEM,while the downward amplitude is reverse.The tension of galloping lines is larger than static lines.The tension is 15% more in galloping single line than in static line.The tension of bundled lines increase with wind speed,and when wind speed is 20m/s,the tension increases 25%.There is a slight impact of tower on galloping amplitude,and the impact is related with wind speed. The galloping amplitude increases slightly considering the velocity fluctuation.
     A new type of liquid damper was designed and its anti-galloping performance was studied.The effects of weight and detuning pendulum installed on single line and bundled lines were researched. The main conclusions are:If the new type of liquid damper was designed by the proposed method in this paper, its anti-galloping effect is good. If the design parameters are not appropriate, the anti-galloping effect is less satisfactory.The anti-galloping effect of weight is good for single line and less effective for bundled lines. The detuning pendulum is very effective in a single line, but little effective in bundled lines.
     The aerodynamic coefficient curves of iced transmission line, transmission line installed with air flow spoiler without ice and iced transmission lines installed with air flow spoiler were measured by wind tunnel test. The aerodynamic coefficient curve of air flow spoiler was simulated by CFD.The relationship between the air flow spoiler coverage with galloping amplitude was researched. The main conclusions are:All the air flow spoilers of different diameters have certain effects to prevent galloping and the air flow spoiler of 0.75D diameter has the best effect to prevent galloping.When the coverage of air flow spoiler is 30%, the galloping can be inhibited completely.
引文
[1]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34(2):215-219.
    [2]郑小尧,王新堂,王大尉等.2008年南方冰灾输电塔损毁原因调查与分析[J].宁波大学学报(理工版),2009,22(4):558-562.
    [3]郑玉琪.架空输电线微风振动[M].北京:中国水利水电出版社,1987.
    [4]孔德怡,李黎,龙晓鸿等.特高压架空输电线微风振动有限元分析[J].振动与冲击,2007,26(8):64-67.
    [5]马建国,傅军,丁一工等.高压架空线路导线微风振动的监测[J].湖北电力,2000,24(4):17-19.
    [6]梁政平,王乘,孔德怡等.特高压架空输电线微风振动影响因素分析[J].水电能源科学,2008,26(6):185-188.
    [7]郭勇,孙炳楠,叶尹.大跨越输电塔线体系风振响应的时域分析[J].土木工程学报,2006,39(12):12-17.
    [8]Momomura Y, Marukawa H, Okamura T, et al. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,72:241-252.
    [9]Diana G, Bruni S, Cheli F et al. Dynamic analysis of the transmission line crossing "Lago de Maracaibo". Journal of Wind Engineering and Industrial Aerodynamics [J],1998,74:977-986.
    [10]Yasui H, Marukawa H, Momomura Y et al. Analytical study on wind-induced vibration of power transmission towers [J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83:431-441.
    [11]邓洪洲,朱松晔,王肇民.大跨越输电塔线体系动力特性及风振响应[J].建筑结构,2004,34(7):25-28.
    [12]梁枢果,朱继华,顾明.输电塔线体系风振响应的风洞试验研究.第六届全国风工程及工业空气动力学学术会议论文集,2002:165-172.
    [13]埃米尔·希缪,罗伯特·H·斯坎伦.《风对结构的作用——风工程导论》[M].上海:同济大学出版社,1992.
    [14]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [15]陈文曲,任安禄,邓见.双圆柱绕流诱发振动的数值模拟(Part Ⅰ横向振动)[J].空气动力学学报,2005,23(4):442-448..
    [16]S.Tokoro, H.Komatsu, M.Nakasu,et al.A study on wake-galloping employing full aeroelastic twin cable model [J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,88:247-261.
    [17]A.L.Braun, A.M.Awruch. Aerodynamic and aeroelastic analysis of bundled cables by numerical simulation [J]. Journal of Sound and Vibration,2005,284:51-73.
    [18]R.Zdero, O.F.Turan,D.G.Havard.Toward understanding galloping:near-wake study of oscillating smooth and stranded circular cylinders in forced motion [J].Experiment Thermal and Fluid Science,1995,10: 28-43.
    [19]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社,2003.
    [20]郭应龙,恽俐丽,鲍务均.输电导线舞动研究[J].武汉水利电力大学学报,1995,28(5):506-509.
    [21]朱宽军,尤传永,赵渊如.输电线路的舞动研究与治理[J].电力建设,2004,25(12):18-21.
    [22]赵作利.输电线路导线舞动及其防治[J].高电压技术,2004,30(2):57-58.
    [23]张平.架空输电线路导线舞动原因分析及防舞措施[J].内蒙古电力技术,2009,27(5):11-13.
    [24]黄经亚.架空送电线路导线舞动的分析研究[J].中国电力,1995,2:21-25.
    [25]刘世新.导线舞动的起因分析及预防[J].东北电力技术,1996,2:36-38.
    [26]陈正华.输电线路导线舞动及其防治对策的综述[J].内蒙古石油化工,2007,4:36·37.
    [27]A.E.Davison.Dancing conductors [J].AIEE Transactions,1930, (49):1444-1449.
    [28]J.P.Den Hartog.Transmission line vibration due to sleet[J].AIEE Transactions,1932, (51):1074-1076.
    [29]J.P.Den Hartog.Mechanical vibrations (second edition)[M].New York:McGraw-Hill Book Company, 1940.
    [30]H.Glauert. The rotation of an aerofoil about a fixed axis[R].London:Advisory Committee for Aeronautics Reports and Memoranda,1919.
    [31]W.N.McDaniel. An analysis of galloping electric transmission lines[J]. AIEE Transactions,1960,113(5): 406-412.
    [32]J.G.Cassan, O. Nigol.Research on compact transmission lines in Ontario[R]. Ontario:CIGRE Report No. 31-07,1972.
    [33]O. Nigol, G. J. Clarke. Conductor galloping and control based on torsional mechanism[M]. New York: IEEE Power Engineering Society Winter Meeting,1974.
    [34]Nigol O,Buchan P G. Conductor Galloping Part I-Den Hardog Mechanism[J].IEEE Trans. On Power Apparatus and Systems,vol.PAS-100(5),1981:699~707.
    [35]Nigol O,Buchan P G. Conductor Galloping Part Ⅱ-Torsional Mechanism [J]. IEEE Trans. On Power Apparatus and Systems,vol.PAS-100(5),1981:708~720.
    [36]A.S. Richardson.Dynamic analysis of lightly iced conductor galloping in two degrees of freedom[J].IEE PROC.,1981,128(4):211-218.
    [37]P.Yu,A.H.Shah,N.Popplewell.Inertially coupled galloping of iced conductors[J]. Journal of Applied Mechanics-transactions of the ASME,1992,59(1):140~145.
    [38]徐中年.大气湍流对输电线舞动的影响[J].中国电力,1995,(11):51-54.
    [39]徐中年.输电线舞动时风洞试验研究[J].电力技术,1992(4):78-82.
    [40]M.Novak,H.Tanaka.Effect of tubulence on galloping instabitity[J].Journal of Engineering Mechanics, 1974(1):52-58.
    [41]D. A.Davis.Investigaion of conductor oscillation on the 275 kV crossing over the rivers Severn and Wye [J].Proc. IEEE,1963,125(11):1210-1215.
    [42]蔡廷湘.输电线舞动新机理研究[J].中国电力,1998,31(10):62-66.
    [43]T.Saito, M.Matsumoto, M.Kitazawa. Rain-wind excitation of cables on cable-stayed Higashi-Kobe Bridge and cable vibration control[C]. Deauville:Proceedings of the International Conference on Cable-stayed and Suspension Bridges,1994:507-514.
    [44]S.Cheng, G.L.Larose, M.G.Savage, et al. Aerodynamic behaviour of an inclined circular cylinder[J]. Wind Struct,2003(6):197-208.
    [45]H.G.John.Two-degree-of-freedom inclined cable galloping-Part 1:General formulation and solution for perfectly tuned system[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008(96):291-307.
    [46]唐校友.线路舞动的低阻尼共振激发机理[J].东北电力大学学报,2006,26(1):65-70.
    [47]闻邦椿,李以农,徐培民等.工程非线性振动[M].北京:科学出版社,2007.
    [48]P.Yu,N.Popplewell,A.H.Shah.Instability trends of inertially coupled galloping 2 periodic vibrations[J]. Journal of Sound and Vibration,1995,183(4):679~691.
    [49]G.S.Byun,R.I.Egbert.2-degree-of-freedom analysis of power-line galloping by describing function methods[J].Electric Power Systems Research,1991,21(3):187~193.
    [50]樊社新,何国金,廖小平等.结冰导线舞动机制分析[J].中国电机工程学报,2006,26(14):131-133.
    [51]P.Yu,Y.M.Desai,A.H.Shah et al.3-degree-of-freedom model for galloping.l. formulation [J] Journal of Engineering Mechanics-ASCE,1993,119(12):2404-2425.
    [52]P.Yu,Y.M.Desai,N.Popplewell et al.3-degree-of-freedom model for galloping.2.solutions[J].Journal of Engineering Mechanics-ASCE,1993,119(12):2426~2448.
    [53]J.W.Wang,J.L.Lilien.A new theory for torsional stiffness of multi-span bundle overhead transmission Lines[J].IEEE Transactions on Power Delivery,1998,13(4):1405~1411.
    [54]J.W.Wang,J.L.Lilien. Overhead electrical transmission line galloping a full multi-span 3-DOF model, some applications and design recommendations [J].IEEE Transactions on Power Delivery,1998,13(4): 1405~1411.
    [55]陈晓明,邓洪洲,王肇民.大跨越输电线路舞动稳定性研究[J].工程力学,2004,21(1):56-60.
    [56]陈晓明.大跨越输电线舞动及其控制研究[D].上海:同济大学,2002.
    [57]樊社新,廖小平,朱江新等.Den Hartog判据的修正[J].水电能源科学,2006,24(4):68-69.
    [58]钟玉泉.复变函数论[M].北京:人民教育出版社,1979.
    [59]W.N.White Jr,An analysis of the influence of support stiffness on transmission line galloping amplitudes[D].New Orleans:Tulane University,1985.
    [60]J. C. Lee.Suppression of transmission line galloping by support compliance design[D]. New Orleans: Tulane University,1987.
    [61]J.H.Zhang, Y.H.Shi, G.X.Liu,et al. Simulation of Transmission Line Galloping Using Finite Element Method [C]. Hong Kong:IEE 2nd International Conference on Advances in Power System Control, Operation and Management,1993.
    [62]Y.M.Desai, P.Yu, N.Popplewell et al. Finite-element modeling of transimission-line galloping[J]. Computers & Structures,1995,57(3):407-420
    [63]Q.Zhang,N.Popplewell,A.H.Shah.Galloping of bundled conductor[J].Journal of Sound and Vibration,2000, 234(1):115-137
    [64]于俊清,郭应龙,肖晓晖.输电导线舞动的计算机仿真[J].武汉大学学报(工学版),2002,35(1):39-43.
    [65]郭应龙.输电导线舞动机理及计算方法讨论[J].超高压输变电运行技术,1990(7):164-179.
    [66]郭应龙.输电导线舞动及治理[J].武汉水利电力大学学报,1991,24(振动工程专辑):15-23.
    [67]于俊清,郭应龙.虚拟现实技术及其在输电导线舞动模拟中的应用[J].计算机应用,2001,21(1):6-7.
    [68]赵高煜,何锃.安装失谐摆的大跨越分裂导线自由振动计算[J].中国电机工程学报,2003,23(2):63-66.
    [69]Gaoyu Zhao,Zeng He.Modes computation and analysis for long multi-span bundle conductors of power Transmission lines with galloping control devices[J].Chinese Journal of Solid Mechanics,2002,15 (4): 350-357.
    [70]何锃,李国兴.中山口大跨越导线舞动的分析计算[J].High Voltage Engineering,1997,23(4):12-14.
    [71]王丽新,杨文兵,杨新华等.输电线路舞动的有限元分析[J].华中科技大学学报(城市科学版),2004,21(1):76-80.
    [72]朱宽军,刘超群,任西春.架空输电线路舞动时导线动态张力分析[J].中国电力,2005,38(10):40-4.
    [73]O. Chabart, J.L. Lilien.Galloping of electrical lines in wind tunnel facilities[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,(74-76):967-976.
    [74]李万平,杨新祥,张立志.覆冰导线群的静气动力特征[J].空气动力学学报,1995,13(4):427-433.
    [75]李万平,黄河,何锃.覆冰导线群的动态气动力特性[J].空气动力学学报,2001,18(4):413-420.
    [76]李万平,黄河,何锃.特大覆冰导线气动力特性测试[J].华中科技大学学报,2001,29(8):84-86.
    [77]樊社新,何国金,廖小平等.结冰输电线的初始扭转角[J].水电能源科学,2006,24(3):69-70.
    [78]O. Nigol,G. J. Clarke, D. G. Havard.Torsional stability of bundle conductors[J].IEEE Transactions on Power Apparatus and Systems,1977,96(5):1666-1676.
    [79]R.Keutgen,J.L.Lilien,T.Yukino.Transmission line torsional stiffness,confrontation of field-tests line and finite element simulations[J].IEEE Transactions on Power Delivery,1999,14(2):567-577.
    [80]刘斌,陆盛叶,黄豪士.架空导线的舞动与舞动试验机[J].电线电缆,2007(4):42-44.
    [81]E.L. Tornquist, C. Becker.Galloping conductors and a method for studying them [J].AIEE Transactions Paper,1947(66):1154-1164.
    [82]A. T. Edwards, A. Madeyski.Progress report on the investigation of galloping of transmission Line conductors[J]. Transactions of the AIEE,1956(75):666-686.
    [83]P.V.Dykea, A.Laneville.Galloping of a single conductor covered with a D-section on a high-voltage overhead test line[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008(96):1141-1151.
    [84]S.Morishita,K.Tsujimoto,M.Yasui,et al. galloping phenomena of large bundle conductors experiment results of the field test lines[J].CIGRE,1984,22(04):1015-1025.
    [85]肖晓晖,郭应龙,吴晶.压重防舞器配置方案有效性的仿真计算[J].电力建设,1998(6):25-28.
    [86]D.G. Havard,J.C. Pohlman.Five year's field trials of detuning pendulums for galloping control [J]. IEEE Transactions on Power Apparatus and Systems,1984,13(2):318-327.
    [87]李国兴,杨肇成,李奠川等.中山口大跨越舞动的防治与研究[J].中国电力,1995,(5):56-61.
    [88]尤传永.导线舞动稳定性机理及其在输电线路上的应用[J].电力设备,2004,5(6):13-17.
    [89]朱宽军,刘彬,刘超群等.特高压输电线路防舞动研究[J].中国电机工程学报,2008,28(34):12-20.
    [90]朱宽军,刘超群,任西春等.特高压输电线路放舞动研究[J].高电压技术,2007,33(11):61-65.
    [91]恽俐丽,郭应龙,王建坤.扰流防舞器机理的理论研究[J].武汉水利电力大学学报,1996,29(1):38-43.
    [92]楼文娟,孙珍茂,吕翼等.扰流防舞器与气动力阻尼片的防舞效果[J]电网技术,2010,34(2):200-204.
    [93]樊社新,何国金,廖小平等.一种控制架空输电线舞动的方法与实验研究[J].噪声与振动控制,2006(8):90-92.
    [94]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002.
    [95]郑雄舫,胡基才.输电导线舞动模型及仿真研究[J].中国农村水利水电,2007(10):138-140.
    [96]王珂晟,唐国金.架空电线在悬链状态下的非线性振动响应分析[J].振动与冲击,2003(2):69-72.
    [97]都长清等.常微分方程[M].北京:首都师范大学出版社,2001.
    [98]沈祖炎,陈扬骥,陈以一.钢结构基本原理[M].北京:中国建筑出版社,2000.
    [99]金问鲁.悬索结构计算理论[M].浙江科学技术出版社,1981.
    [100]颜庆津.数值分析[M].北京:北京航空航天大学出版社,2000.
    [101]褚亦清,李翠英.非线性振动分析[M].北京:北京理工大学出版社,1996.
    [102]K. E. Gawronski.Nonlinear galloping of bundle conductor transmission lines[D].Clarkson College of Technolorv,1977.
    [103]龚景海,邱国志著.空间结构计算机辅助设计[M].北京:中国建筑工业出版社,2002.
    [104]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [105]R.W.Clough,J.Penzien.Dynamics of structures[M].Berkeley:Computers and Structures Inc,1995.
    [106]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [107]王肇民.高耸结构振动控制[M].上海:同济大学出版社,1997.
    [108]刘锡良,周颖.风荷载的几种模拟方法[J].工业建筑,2005,35(5):81-84.
    [109]M. L. Lu, N. Popplewell, A. H. Shah.Hybrid nutation damper for controlling galloping power lines [J]. IEEE TRANSACTIONS ON POWER DELIVERY,2007,22(1):450-456.
    [110]王照林,刘延柱著.充液系统动力学[M].北京:科学出版社,2002.
    [111]刘文杰.架空输电导线舞动动态仿真与扰流防舞器的研究[D].武汉:武汉大学,2005.
    [112]黄河,刘建军,李万平.覆冰导线气动力特性的数值模拟[J],工程力学,2003(增刊):201-204.
    [113]王福军.计算流体动力学分析[M].北京:清华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700