激光推进光船构型与地基激光发射光船任务的分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对激光推进应用体系所涉及的关键问题和关键技术,采用理论分析与数值仿真相结合的方法,重点开展了光船推力室构型设计、光船自由飞行稳定性分析、光船发射方案设计和弹道优化设计等研究工作。研究结果可为发展我国光船技术提供一定的理论与方法支持,并为我国开展光船自由飞行演示及微小卫星发射技术的研究奠定一定的基础。
     论文针对具有塞式喷管构型的光船,研究了光船推力室内激光等离子体爆轰波的演化过程。建立了基于谢多夫柱爆轰理论和冲击波反射与衰减理论的光船推力计算模型。该模型克服了计算流体力学模型计算时间长、参数难于修改的缺点,可对爆轰波演化发展全过程进行计算,适应于推力室结构参数可变时的推力计算。应用该模型对推力室构型进行了优化设计,获得了冲量耦合系数最大的推力室构型。研究了推力室结构参数对推力的影响,认识到冲量主要来源于冲击波对塞式喷管壁面的压力,提出了延长推力室工作寿命的方法。
     发展了光船六自由度运动模型,实现了近地面自由飞行光船的运动模拟,掌握了近地面自由飞行光船的运动规律,揭示了光船自由飞行的自稳定机理。研究表明,光船高速自旋产生的陀螺效应使光船姿态保持稳定,侧力和气动力阻尼的共同作用使光船具有稳定于光束中心的能力。分析了多种力和力矩对光船稳定性的影响,指出倾斜力矩是破坏光船姿态稳定的主要因素。提出了增强光船飞行稳定性的方法,研究结果对提高光船近地面自由飞行高度具有很好的指导作用。分析了大气对强激光传输的影响,建立了强激光大气传输模型。对基于单台地基激光器的光船发射系统进行了系统分析和设计,提出了确定激光器输出功率、推力器比冲和光船接收镜半径等关键参数的原则和方法。初步建立了光船发射的系统框架,提出了三种基于单台地基激光器的光船发射方案。研究结果对我国发展基于激光推进的微小卫星发射技术具有一定的借鉴意义。
     根据光船发射过程的特点和发射方案要求,建立了光船质心动力学方程,发展了基于序列二次规划法和遗传算法的光船弹道优化设计,验证了激光推进系统可获得高有效载荷比。计算了三种发射方案下的最优弹道,比较发现,相对于地面发射方案,高空发射方案可降低激光大气传输损失,入轨质量有较大的提高。研究表明,激光器输出功率大小和激光传输衰减是影响光船运载能力的主要因素。阐明了在光船初始质量、比冲和推力之间综合平衡并采用合理的发射方案和飞行弹道是改进地基激光发射系统性能的有效途径。
Under the background of developing laser propulsion technology and applying it into launch of micro-satellites, this dissertation makes some investigation to such some special tasks as lightcraft’s thruster configuration, stability analysis on lightcraft’s free flight, trajectory optimization and launching scheme’s design by integrating theoretical analysis with simulation computation. The results can provide some theoretical and methodology’s support for developing lightcraft technology, and can lay an important foundation for the free flight of lightcraft and the ground-based laser launch missions in our country.
     For a lightcraft with plug nozzle, the process of laser supported detonation wave converting into impulse was investigated. A model for thrust calculation was set up by combining Sedov’s theory of self similarity solution for line explosion with shock wave theory of reflection and attenuation. The model can perform well for simulating the evolution process of blast wave when thruster’s structural parameters were variable. However, for the CFD model to simulating the same task, it’s very time-consuming and difficult to change the concerned parameters. A set of the optimum structural parameters of thruster’s configuration had been obtained with this model. The structural parameters’effect on impulse was also investigated. It’s found that the impulse mainly comes from the pressure on the plug nozzle. Some ways to extend the service time of the thruster were proposed.
     A six-degree of freedom model of lightcraft was developed and the simulation of motion process was performed for the lightcraft’s free flight. The movement of lightcraft’s free flight was analyzed and the mechanism of stability for lightcraft’s free flight was opened out. The results show that lightcraft’s attitude stabilization is achieved by gyroscopic effect, and that due to the side force and the aerodynamic damp, lightcraft has the ability to ride a laser beam. The impulsive reaction applied to the lightcraft and the aerodynamic force was examined. It’s found that the pitching angular impulse is the main factor that caused the change of attitude. To increase the height of free flight, some approaches to enhance the stability of lightcraft were also proposed.
     Atmospheric propagation effects of high energy laser beam were discussed in detail. A propagation model of high energy laser beam was set up. The principle and method to choose some key parameters, such as laser power, specific impulse and the radius of nozzle, were discussed and proposed. The framework on lightcraft orbital launch system was analyzed and discussed. Three kinds of solution for lightcraft orbital launch were proposed. The investigation may provide some valuable suggestion for the realization of single laser orbital launch.
     A model for lightcraft’s flight process was developed based on the characteristics of lightcraft and the launch system. The optimal control problem on the maximum payload for launching lightcraft into LEO was solved by using sequential quadratic programming and genetic algorithm respectively. The trajectory optimization was performed by three kinds of solution for ground-laser-based lightcraft launching schemes. The results show that laser propulsion system’s payload ratio is very high. Compared with the lightcraft launch scheme from ground, the launch scheme from 30km altitude with a relay mirror can reduce the atmospheric propagation loss for high energy laser beam and increase the mass to orbit. The trajectory computation show that the laser power and the atmospheric propagation of high energy laser beam are such some crucial factors that they almostly restrict the ability of the launch system. A way to increase the ability of launch system is to make some trade-off among such some main parameters or factors as initial mass, specific impulse, thrust and employ an optimal trajectory.
引文
[1]黄敏超,胡小平,吴建军.空间科学与工程引论[M].长沙:国防科技大学出版社, 2006
    [2]王振国,罗世彬,吴建军.可重复使用运载器研究进展[M].长沙:国防科技大学出版社, 2004
    [3]任海峰.基于独立分量分析的液体火箭发动机故障诊断方法研究[D].国防科技大学研究生院工学硕士学位论文, 2003
    [4] Glumb R J, Krier H. Concept and Status of Laser Supported Rocket Propulsion[J]. Journal of Spacecraft and Rockets, 1984, 21(1): 70~79
    [5] Michaelis M M, Hey J D. Pioneers of Laser Propulsion: Saenger, Marx, Moeckel and Kantrowitz[R]. Proceedings of SPIE, 2002, 4760: 1~10
    [6] Kantrowitz A. Propulsion to Orbit by Ground-Based Lasers. Astronautics and Aeronautics[J], May 1972, 10(5): 74~76
    [7] Myrabo L N, Messitt D G, Mead F B, Jr. Ground and Flight Tests of a Laser Propelled Vehicle[R]. AIAA-98-1001
    [8] Mead F B, Jr. Myrabo L N, Messitt D G. Flight and Ground Tests of a Laser-Boosted Vehicle[R]. AIAA-98-3735
    [9] Mead F B, Jr. Squires S, Beairsto C, et al. Flights of a Laser-Powered Lightcraft during Laser Beam Hand-Off Experiments[R]. AIAA-2000-3484
    [10] Mead F B, Jr. Larson C W. Laser-Powered, Vertical Flight Experiments at the High Energy Laser System Test Facility[R]. AIAA-2001-3661
    [11] Myrabo L N. World Record Flights of Beam-Riding Rocket Lightcraft: Demonstration of“disruptive”Propulsion Technology[R]. AIAA-2001-3798
    [12] Keefer D, San-Mou Jeng, Welle R. Laser Thermal Propulsion Using Laser Sustained Plasma[J]. Acta Astronautica, 1987, 15(6/7): 367~376
    [13] Pirri A N, Monsler M J, Nebolsine P E. Propulsion by Absorption of Laser Radiation[J]. AIAA Journal, 1974, 12(9): 1254~1261
    [14] Black J, Krier H, Glumb R J. Laser Propulsion 10-kW Thruster Test Program Results[J]. Journal of Propulsion and Power, 1995, 11(6): 1307~1316
    [15] Jeng S M, Keefer D. Theoretical Evaluation of Laser-Sustained Plasma Thruster Performance[J]. J. Propulsion, 1989, 5(5): 577~581
    [16]吴刚,张育林,程谋森.微型卫星激光推进发射及其关键技术[J].上海航天,2002,2: 47~52
    [17]郑志远,鲁欣,张杰.激光等离子体推进技术的研究进展[J].物理学和高新技术, 2003, 32(8): 533~538
    [18] Weyl G, Rollins C, Resendes D. Ignition and Maintenance of Laser-SupportedDetonation Waves[J]. AIAA Journal, 1991, 29(5): 763~772
    [19] Phipps C R, Reilly J P, Campbell J W. Laser Launching a 5-kg Object into Low Earth Orbit[R]. Proceedings of SPIE, 2000, 4065: 502~510
    [20] Brandstein A, Levy Y. Laser Propulsion System for Space Vehicles[J]. Journal of Power and Propulsion, 1998, 14(2): 261~269
    [21] Feikema D. Analysis of the Laser Propelled Lightcraft Vehicle[R]. AIAA-2000-2348
    [22] Bohn W L, Schall W O. Laser Propulsion Activities in Germany[C]. CP664, Beamed Energy Propulsion: First International Symposium on Beamed Energy Propulsion, 2003: 79~91
    [23] Eckel H A, Schall W O. Concept for a Laser Propulsion Based Nanosat Launch System[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 263~273
    [24] Schall W O, Tegel J, Eckel H A. Ablation Performance Experiments with Metal Seeded Polymers[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 423~432
    [25] Eckel H A, Tegel J, Schall W O. CO2 Laser Absorption in Ablation Plasmas[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 272~283
    [26] Birkan M A. Laser Propulsion: Research Status and Needs[J]. Journal of Popuision and Power, 1992, 8(2): 354~360
    [27]许德胜,郭振华, Messaoud S,等.论光动力飞行器[J].激光技术, 1999, 23(2): 86~90
    [28] Masayuki Niino. Activities of Laser Propulsion in Japan[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 71~78
    [29] Horisawa H, Kimura I. Characterization of Novel Laser Particle Accelerators for Space Propulsion[R]. AIAA-2000-3487
    [30] Komurasaki K, Arakawa Y, Hosoda S, et al. Fundamental Researches on Laser Powered Propulsion[R]. AIAA-2002-2200
    [31] Sasoh A. In-Tube Laser Propulsion[R]. AIAA-2000-2344
    [32] Ohtani T, Mori K, Sasoh A. Impulse Characteristics of Laser-Driven In-Tube Accelerator (LITA)[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 179~182
    [33]龚平.大气呼吸模式激光推进的研究[D].中国科学技术大学工学博士学位论文, 2004
    [34]张兴强.激光等离子体火箭推动技术的研究[D].哈尔滨工业大学工学硕士学位论文, 2004
    [35]伍贤欣.激光供能换热器模式发动机性能及发射系统方案研究[D].国防科技大学研究生院工学硕士学位论文, 2005
    [36]杨昊.激光推进飞行器吸气式发动机特性与上升段动力学分析[D].国防科技大学研究生院工学硕士学位论文, 2006
    [37]张庆红.激光推力器的设计及研究[D].中国科学技术大学工学硕士学位论文, 2007
    [38]蔡建.激光微推进的原理和应用研究[D].中国科学技术大学工学博士学位论文, 2007
    [39] Myrabo L N. Brief History of the Lightcraft Technology Demonstrator (LTD) Project[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 49~60
    [40] Myrabo L N. Propulsion Systems Integration for a‘Tractor Beam’Mercury Lightcraft: Liftoff Engine[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 683~694
    [41] Myrabo L N, Rosa R J. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 544~558
    [42] Myrabo L N, Cassenti B N. Transient Structural Analysis of a 20-m Diameter, Hyper-Energetic Lightcraft: Part 1 Axisymmetric Model[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 320~333
    [43] Buckton T W, Myrabo L N. Mercury Lightcraft Project Update: 3-D Modeling, Systems Analysis and Integration[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 579~592
    [44] Chen Y S, Liu J, Wang T S. Numerical Modeling of Laser Supported Propulsion with an Aluminum Surface Breakdown Model[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 138~148
    [45] Golovachov Y P, Kurakin Y A, Rezunkov Y A, et al. Numerical Analysis of Gasdynamic Aspects of Laser Propulsion[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 149~159
    [46] Liu J, Chen Y S, Wang T S. Accurate Prediction of Radiative Heat Transfer in Laser Induced Air Plasmas[R]. AIAA-2000-2370
    [47] Wang T S, Chen Y S, Liu J, et al. Advanced Performance Modeling of Experimental Laser Lightcrafts[R]. AIAA-2001-0648
    [48] Wang T S, Mead F B, Jr. Analysis of the Effect of Pulse Width on Laser Lightcraft Performance[R]. AIAA-2001-3664
    [49] Feikema D. Analysis of the Laser Propelled Lightcraft Vehicle[R]. AIAA-2000-2348
    [50] Wang T S, Cheng Y S, Liu J, et al. Performance Modeling of an Experimental Laser Propelled Lightcraft[C]. AIAA-2000-2347
    [51]徐珊姝,吴子牛,李倩,等.激光光船周围连续/稀薄混合流场的数值模拟[J].推进技术, 2007, 28(5): 495~500
    [52]李倩,文明,曹正蕊,等.来流对吸气式激光推力器冲量耦合系数的影响[J].推进技术, 2007, 28(5): 485~488
    [53] Myrabo L N, Libeau M A, Meloney E D, et al. Pulsed Laser Propulsion Performance of 11-cm Parabolic‘Bell’Engines Within the Atmosphere[R]. AIAA 2002-2732
    [54]文明,洪延姬,崔村燕,等.吸气式激光推进单脉冲性能实验研究[J].推进技术, 2007 28(5), pp: 522~525
    [55]龚平,唐志平.大气呼吸模式激光推进的机理分析及数值模拟[J].爆炸与冲击, 2003, 23(6): 501~508
    [56]鄢昌渝,吴建军,刘洪刚,等.抛物型激光推进光船构型设计与特性分析[J].推进技术, 2007, 28(5): 457~461
    [57]吴建军,鄢昌渝,刘洪刚,等.基于二维激光支持爆轰波模型的光船工作过程数值模拟[J].推进技术, 2007, 28(5): 509~512
    [58] Sasoh A, Kister M, Urabe N, et al. LITA (Laser-Driver in-Tube Accelerator) Operation Under Elevated Pressures[R]. AIAA-2001-3666
    [59] Sasoh A, Yu X, Ohtani T, et al. In-Tube Laser Propulsion; Performance and Application Prospects[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 61~67
    [60] Mori K, Komurasaki K, Katsurayama H, et al. A Far-Field Repetitive Pulse Laser Thruster[R]. AIAA-2001-0649
    [61] Sasoh A, Ohtani T, Yu X. Detailed Impulse Generation Mechanisms in the Laser-driven In-Tube Accelerator[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 178~182
    [62] Kare J T. Laser-Powered Heat Exchanger Rocker for Ground-to-Orbit Launch[J]. Journal of Propulsion and Power, 1995, 11(3): 535~543
    [63] Benford J, Benford G. Near-Term Beamed Sail Propulsion Missions: Cosmos-1 and Sun-Diver[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 358~366
    [64] Kare J T. Development Programs for the Heat Exchanger Thruster and HX Laser Launch System[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 251~262
    [65] Kare J T. Modular Laser Options for HX Laser Launch[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 128~139
    [66] Kare J T. Near-Term Laser Launch Capability: the Heat Exchanger Thruster[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 442~453
    [67] Ageichik A A, Egorov M S, Rezunkov Y A, et al. Experimental Study on Thrust Characteristics of Airspace Laser Propulsion Engine[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 49~60
    [68] Rezunkov Y A. Investigations of Propelling of Objects by Light Review of Russian Studies on Laser Propulsion[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 46~57
    [69] Ageichik A A, Egorov M A, Ostapenko S V, et al. Model Test of the Aerospace Laser Propulsion Engine[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 183~194
    [70] Rezunkov Y A, Safronov A L, Ageichik A A, et al. Performance Characteristics of Laser Propulsion Engine Operating both in CW and in Repetitively-Pulsed Modes[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 3~13
    [71] Rachuk V S, Guterman V Y, Ivanov A V, et al. Experimental Investigations of Laser Propulsion by Using Gas-Dynamic Laser[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 48~57
    [72] Libeau M A, Myrabo L N, Filippelli M, et al. Combined Theoretical and Experimental Flight Dynamics Investigation of a Laser-Propelled Vehicle[R]. AIAA 2002-3781
    [73] Libeau M A, Myrabo L N, Filippelli M, et al. Combined Theoretical and Experimental Flight Dynamics Investigation of a Laser-Propelled Vehicle[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 125~137
    [74] Libeau M, Myrabo L. Off-Axis and Angular Impulse Measurements on a Lightcraft Engine[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 166~177
    [75] Humble W E, Pierson B L. Maximum-Payload Trajectories for a Laser-Propelled Launch Vehicle[J]. Journal of Guidance, Control and Dynamics, 1995, 18(6): 1259~1266
    [76] Hong Z C, Liu J M. Overall Payload Ratio of a Combined Laser and Chemical Propulsion System for GEO Launch[J]. Acta Astronautica, 2002, 50(7): 417~426
    [77] Richard J C, Morales C, Smith W L, et al. Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 564~575
    [78] Knecht S D, Mead F B, Micci M M, et al. Trajectory Simulations, Qualitative Analyses and Parametric Studies of a Laser-Launched Micro-Satellite Using OTIS[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 522~533
    [79] Baturin Y M. Lightcraft and Laser Beam Mutual Orientation and Motion ControlSystem Using Quaternions[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 513~521
    [80] Resendes D P, Mota S, Mendonca J T, et al. Laser Propulsion for ESA Missions: Ground to Orbit Launch Project Overview-Part 1[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 576~587
    [81] Koppel C R, Duchemin O, Valentian D. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options[R]. CP813, Space Technology and Applications International Forum, 2006: 484~493
    [82] Katsurayama H, Ushio M, Komurasaki K, et al. Analytical Study on Flight Performance of a RP Laser Launcher[R]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 117~127
    [83] Kennedy W C, Laak P V, Scarton H A, et al. Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle[R]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 240~253
    [84] Hasson V, Mead, Jr. F B, Larson C W, et al. Launching of Micro-Satellites Using Ground-Based High-Power Pulsed Lasers[R]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 32~45
    [85]曹正蕊,洪延姬,佘金虎.两种约束构型对激光推力器推进性能的影响[J].装备指挥技术学院学报, 2005, 16(6): 114~117
    [86] Resendes D P, Mota S, Mendonca J T, et al. Laser Propulsion for Ground Launch[J]. Journal of Propulsion and Power, 2007, 23(1): 73~80
    [87]郑志远,张杰,郝作强,等.靶结构对激光等离子体动量耦合系数的影响[J].物理学报, 2006, 55(1): 326~330
    [88]童慧峰,唐志平,胡晓军,等.“烧蚀模式”激光推进的实验研究[J].强激光与粒子束, 2004, 16(11): 1380~1384
    [89]郑义军,龚平,谭荣清,等. TEA CO2激光推进耦合系数的实验研究[J].光电子·激光, 2005, 16(5): 624~628
    [90]赵学庆,刘晶儒,姜宗福,等.不同激光参数与真空中铝的冲量耦合[J].量子电子学报, 2006, 23(2): 213~216
    [91]文明,洪延姬,王军,等.冲击摆运动特性的数值研究[J].装备指挥学院学报, 2005, 16(1): 108~111
    [92]李倩,洪延姬,曹正蕊,等.粗糙度与激光强度分布对光船聚焦性能的影响[J].装备指挥学院学报, 2004, 15(4): 94~97
    [93]郑义军,龚平,谭荣清,等.大气模式激光推进耦合系数的实验研究[J].中国激光, 2005, 32(7): 889~893
    [94]唐志平,龚平,胡晓军,等.大气吸气模式激光推进的实验研究[J].航空学报, 2005, 26(1): 13~17
    [95]曹正蕊,洪延姬,李倩,等.单脉冲能量对光船推进性能的影响[J].热科学与技术, 2005, 4(2): 183~187
    [96]郑志远,鲁欣,张杰,等.激光等离子体动量转换效率的实验研究[J].物理学报, 2005, 54(1): 192~196
    [97]郑义军,谭荣清,王东蕾,等.激光脉冲重复频率对冲量耦合系数的影响[J].强激光与粒子束, 2005, 17(7): 979~982
    [98]金星,洪延姬,崔村燕,等.激光推进冲量耦合系数的测量方法[J].强激光与粒子束, 2004, 16(7): 861~864
    [99]王海兴,陈熙.激光推进的初步数值模拟研究[J].工程热物理学报, 2004, 25(增刊): 83~86
    [100]胡少六,李波,龙华,等.激光推进技术的现状及发展[J].激光与电子学进展, 2003, 40(10): 1~4
    [101]朱定强,郑力铭,蔡国飚.激光推进技术中激光与工质相互作用[J].北京航空航天大学学报, 2004, 30(7): 635~639
    [102]李修乾,洪延姬,何国强,等.激光推进器概念设计研究现状及发展趋势, 2005, 17(3): 363~368
    [103]郑义军,谭荣清,张阔海,等.激光推进自由飞行实验[J].中国激光, 2006, 33(2): 171~174
    [104]翟冰洁,左都罗,卢宏,等.空气呼吸模式激光推进实验研究[J].光学与光电技术, 2005, 3(1): 14~17
    [105]崔村燕,洪延姬,文明,等.脉冲激光作用下光船所受推力的测试[J].装备指挥技术学院学报, 2004, 15(5): 103~106
    [106]崔村燕,洪延姬,何国强,等.线性喷管构型对激光推力器冲量耦合系数的影响[J].强激光与粒子束, 2006, 18(2): 193~196
    [107] Mead F B Jr., Larson C W, Knecht S D. An Overview of the Experimental 50-cm Laser Ramjet(X-50LR) Program[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 543~552
    [108] Myrabo L N, Borkowski C A, Kaminski D A. Analytical Investigation of an Airbreathing, Repetitively Pulsed LSC-Wave Thruster: Part 1[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 58~71
    [109] Borkowski C A, Kaminski D A, Myrabo L N. Analytical Investigation of an Airbreathing, Repetitively Pulsed LSC-Wave Thruster: Part 2[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 72~80
    [110] Shiraishi H. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 142~150
    [111] Sasoh A, Mori K, Ohtani T, et al. Physical Processes of the Interaction BetweenLaser-Generated Plasma and Blast Wave Appearing in Laser-Driven In-Tube Accelerator Configuration[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 175~178
    [112] Gross D A, Myrabo L N. Metal Matrix Superconductor Composites for SMES-Driven, Ultra High Power BEP Applications: Part 1[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 411~424
    [113] Gross D A, Myrabo L N. Metal Matrix Superconductor Composites for SMES-Driven, Ultra High Power BEP Applications: Part 2[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 425~436
    [114] Li X, Hong Y, Chen J, et al. Primary Experimental Study on Liquid Ablatant for Laser Propulsion[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 319~325
    [115] Myrabo L N.‘Horizon Mission’: 2025 Space Command’s Ultra-Energetic Lightcraft with Super-Pressure Airship Structure[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 86~99
    [116] Richard J C, Myrabo L N. Analysis of Laser-Generated Impulse in an Airbreathing Pulsed Detonation Engine: Part 1[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 265~278
    [117] Richard J C, Myrabo L N. Analysis of Laser-Generated Impulse in an Airbreathing Pulsed Detonation Engine: Part 2[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 279~291
    [118] Irtuganov V M, Kalinin V P, Sergeev V V, et al. Experimental Investigation of Air-breathing Mode of Laser Propulsion with Elongate Cylindrical Models and CO2 Lasers of Different Pulse Durations[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 195~204
    [119] Apollonov V V, Tishchenko V N. Stable Generation and Merging of Shock Waves for“Lightcraft”Applications: Part 1[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 205~215
    [120] Apollonov V V, Tishchenko V N. Stable Generation and Merging of Shock Waves for“Lightcraft”Applications: Part 2[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005: 216~229
    [121] Nebolsin P E, Pirri A N. Laser Propulsion: the Early Years[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 11~21
    [122] Kare J T. Laser Launch-the Second Wave[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 22~36
    [123] Rather J D G. Ground to Space Laser Power Beaming: Missions, Technologies, and Economic Advantages[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 37~48
    [124] Mori K, Katsurayama H, Hirooka Y. Conversion of Blast Wave to Impulse in aPulsed-laser Thruster[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 95~104
    [125] Uchida S, Bato M. Characterization of Liquid Propellant for Improved LOTV Mission[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 214~222
    [126] Nakai S. Progress of Power Laser and Its Application to Space[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 3~19
    [127] Mori K, Hirooka Y, Katsurayama H, et al. Effect of the Refilling Processes on the Thrust Generation of a Laser Pulsejet[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 40~48
    [128] Fujiwara T, Miyasaka T. Laser-Supported Detonation Concept as a Space Thruster[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 80~91
    [129] Nakano M, Fujita K, Uchida S, et al. Fundamental Experiments on Glycerin Propellant Laser Thruster[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 139~145
    [130] Rosenberg B A. Beamed Energy Propulsion by Means of Target Ablation[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 152~161
    [131] Pakhomov A V, Cohen T, Lin J. Ablative Laser Propulsion: an Update, Part 1[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 166~177
    [132] Pakhomov A V, Lin J, Thompson M S. Ablative Laser Propulsion: an Update, Part 2[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 178~189
    [133] Larson C W, Mead F B Jr., Knecht S D. Laser Propulsion and the Constant Momentum Mission[C]. CP702, Second International Symposium on Beamed Energy Propulsion, 2004: 216~227
    [134] Pirri A N. Theory for Momentum Transfer to a Surface with a High-power Laser[J]. the physics of fluids, 1973 16(9): 1435~1440
    [135] Pirri A N, Root R G, Wu P K S. Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers[J]. AIAA Journal, 1978, 16(12): 1296~1304
    [136] Jones R A, Myrabo L N, Nagamatsu H T, et al. Experimental Investigation of an Axisymmetric Hypersonic Scramjet Inlet for Laser Propulsion[J]. Journal of Propulsion and Power, 1992, 8(6): 1232~1238
    [137] Keefer D, Peters C, Crowder H. a Re-examination of the Laser-supported Combustion Wave[J]. AIAA Journal, 1985, 23: 1208~1212
    [138] Ageev V P, Barchukov A I, Bunkin F V, et al. Experimental and Theoretical Modeling of Laser Propulsion[J]. Acta Astronautica, 1980, 7: 79~90
    [139] Mertogul A, Zerkle D, Krier H. Investigation of CO2 Laser-Sustained Hydrogen Plasmas[J]. Journal of Propulsion and Power, 1992, 8(5): 1123~1125
    [140]谢多夫.力学中的相似方法与量纲理论[M].北京:科学出版社, 1982
    [141]孙承纬,卫玉章,周之奎.应用爆轰物理[M].北京:国防工业出版社, 2000
    [142] W. E.贝克.空中爆炸[M].北京:原子能出版社, 1982
    [143]邵开金,梁仕发,李世民,肖玲.真实空气冲击波反射计算[J].防护工程, 2004, 22:1~11
    [144] Ushio M, Kawamura K, Komurasaki K, et al. Energy Conversion Process in Laser Supported Detonation Waves Induced by a Line-Focusing Laser[C]. CP830, Fourth International Symposium on Beamed Energy Propulsion, 2006: 133~141
    [145]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004
    [146]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004
    [147]王中原,周卫平.外弹道设计理论与方法[M].北京:科学出版社, 2004
    [148]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004
    [149]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社, 2007
    [150]刘传超,张彬乾,孙静,等.大型载货车气动阻力计算与流场分析[J].汽车科技, 2005, 4: 24~26
    [151]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社, 2004
    [152]林德福,祁载康,宋锦武.相近弹形气动参数的确定方法[J].北京理工大学学报, 2006, 26(11): 941~944
    [153]安连生.应用光学[M].北京:北京理工大学出版社,2002
    [154]吕百达.强激光的传输与控制[M].北京:国防工业出版社, 1999
    [155]吴健,杨春平,刘建斌.大气中的光传输理论[M].北京:北京邮电大学出版社, 1999
    [156]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2004
    [157] Cook J. R. Atmospheric Propagation of High Energy Lasers and Applications[C]. CP766, Third International Symposium on Beamed Energy Propulsion, 2005:58~72
    [158]翁宁泉.大气光学湍流测量方法与统计特征研究[D].中国科学院安徽光学精密机械研究所工学博士学位论文, 2004
    [159]刘炎焱.强激光大气传播效应的研究[D].电子科技大学工学博士学位论文, 1993
    [160]黄印博.高能激光近地面稠密大气传输及其相位校正的若干分析[D].中国科学院安徽光学精密机械研究所工学博士学位论文, 2005
    [161] Phipps C R, Reilly J P, Campbell J W. Optimum Parameters for Laser-Launching Objects into Low Earth Orbit[R]. LPB, February 10, 2001
    [162] Pakhomov A V, Thompson M S, Gregory D A. Ablative Laser Propulsion: A Study of Specific Impulse, Thrust and Efficiency[C]. CP664, First International Symposium on Beamed Energy Propulsion, 2003: 194~205
    [163]徐德康.美国气球和飞艇的军事开发[J].国际航空杂志, 2004
    [164]王中原,周卫平.外弹道设计理论与方法[M].北京:科学出版社, 2004
    [165]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993
    [166]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社, 2004
    [167]雷英杰,张善文,李继武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005
    [168]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社, 2004
    [169]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700