硫化氢脱氢酶的分离纯化及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从来源于烟气生物脱硫系统的好氧产硫磁性稳态流化床反应器(aMSFB)中取磁性多孔珠固定化生物膜,采用排硫硫杆菌培养基在好氧条件下,经富集培养、反复分离纯化获得纯分离物。对分离物进行形态、生理生化分析,结果如下:呈短杆状,大小为0.3~0.5×1.1~1.5μm,最适生长温度为28℃,最适pH为7.0;革兰氏染色阴性,端生鞭毛;在硫代硫酸盐琼脂上的菌落为圆形,表面隆起,边缘完整,直径1mm-2mm左右;菌落开始透明,随后因硫沉淀而呈白色,进一步菌落中心变为褐色;液体长期培养pH值会下降,且有单质硫产生;液体静置培养时形成粘膜,粘膜具有下垂的纤丝;严格自养,通过氧化硫代硫酸盐、硫化物、连四硫酸盐获取能量,积累硫粒,缓慢氧化元素硫,以硝酸盐、铵盐作为氮源。对应伯杰氏细菌鉴定手册,初步鉴定该分离物为硫杆菌属(thiobacillus)的排硫硫杆菌(thiobacillus thioparus)。
     将反复纯化分离得到的排硫硫杆菌细胞经超声破碎后,采用四步工艺分离纯化出一种新型的膜结合型的硫化氢脱氢酶。光谱分析表明该酶含有1分子的血红素c和一分子的FAD; SDS-PAGE表明该酶由分子量42.6kDa和51.3 kDa的两个亚基构成;该酶属于氧还蛋白家族,其最适pH为8.5,最大反应速度为4.9±0.1μM cytc (mg蛋白) ~(-1)min~(-1),对马心细胞色素c和硫化物的表观Km分别为2.1±0.3μM和6.1±0.8μM;电子转移化学计量关系表明该酶的氧化产物为元素硫。
Isolation of the bacteria was performed from aerobic magnetic stabilized fluidized bed reactor of flue gas biodesulfurization system. The immobilized biofilm samples were cultured on Thiobacillus enrichment media under aerobic conditions. The isolated cultures were obtained through repeated separation and purification. The isolated bacteria was identified to find out that: the morphology of the bacteria was rod-shaped; the average size of the bacteria was 0.3~0.5×1.1~1.5μm; the optimum growth temperature was 28oC; the optimum PH was 7.0. The results of gram staining for the bacteria indicated that the bacteria were negative with flagella on its side. The colonies on Thiosulphate agar media were round-shaped with bump surface, integrated fringe and the diameter of them is about 1mm-2mm. The colony was transparent first, then it became white for the sulphur sediment and at last the centre of the colony turned brown. After the long-term culture, the media PH dropped and the elemental sulphur was yielded. The film with sag fibers was formed when the samples were cultured stably in the liquid. The bacteria were strictly autotrophic and they derived energy for growth from the oxidation of thiosulphate, sulphide, Na_2S_4O_6 with nitrate and ammonium as nitrogen source to accumulate elemental sulphur particles. Then elemental sulphur particles may be oxidated continually. According to Bergey's Manual of Determinative Bacteriology, the culture was elemently identified as Thiobacillus thioparus of Thiobacillus genus.
     A novel membrane-bound sulfide dehydrogenase enzyme was purified from the neutrophilic, obligately chemolithoautotrophic Thiobacillus thioparus by means of a four-step procedure. Spectral analysis revealed that the enzyme contains haem c and flavin. SDS-PAGE showed the presence of two types of subunit with molecular masses of 42.6 and 51.3 kDa. A combination of spectral analysis and the pyridine haemochrome test indicated that the sulfide dehydrogenase heterodimer contains one molecular of haem c and one molecular of flavin. It appeared that the sulfide dehydrogenase is a member of a small class of redox proteins. The pH optimum of the enzyme is 8.5. The Vmax was 4.9±0.1μmol cytochrome c(mg protein×min)~(-1), and the Km values for cytochromes and sulfide were 2.1±0.3μM and 6.1±0.8μM, respectively. On the basis of electron transfer stoichiometry, it seems likely that sulfur is the oxidation product.
引文
[1] 王凯军,胡超. 生物硫循环及脱硫技术的新近展[J]. 环境保护,2006, (2): 71–74.
    [2] P. N. L. Lens, J. G. kuenen. The biological sulfur cycle: novel opportunities for environmental biotechlogy. Water Science﹠ Technology,2001, 44(8): 57–66.
    [3] Suzuki, I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. Biochim.Biophys.Acta, 1965, 122: 22–33.
    [4] Bacon M., and Ingledew W.J. The reductive reactions of Thiobacillus ferrooxidans on sulphur and selenium. FEMS Microbiol. Lett, 1989, 58: 189–194.
    [5] Suzuki, I. Sulfite: cytochrome c oxidoreductase of thiobacilli. Methods Enzymol, 1994, 243: 447–454.
    [6] Beffa, T., Berczy, M., and Aragno, M. Inhibition of respiratory oxidation of elemental sulfur (S0) and thiosulfate in Thiobacillus versutus and another sulfur-oxidizing bacterium. FEMS Microbiol. Lett, 1992a, 90: 123–128.
    [7] Suzuki, I., Chan, C.W., and Takeuchi, T.L. Oxidation of elemental sulfur to sulfite by Thiobacillus thiooxidans cells. Appl. Environ. Microbiol, 1992, 58: 3767–3769.
    [8] Chan, C.W., and Suzuki, I. Thiosulfate oxidation by sulfur grown Thiobacillus thiooxidans cells, cell-free extracts, and thiosulfate-oxidizing enzyme. Can. J. Microbiol, 1994, 40: 816–822.
    [9] Beffa, T., Fischer, C., and Aragno, M. Growth and respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus novellus (Type strain) grown on thiosulfate. Curr. Microbiol, 1993a, 26: 323–326.
    [10] Suzuki, I., Lee, D., MacKay, B., Harahuc, L., and Oh, J.K. Effect of vairous ions, pH, and osmotic pressure on oxidaiton of elemental sulfur by Thiobacillus thiooxidans. Appl. Environ. Microbiol, 1999, 65: 5163–5168.
    [11] 廖嘉陵,苏士军,丁桑岚. 微生物烟气脱硫技术研究进展[J]. 四川环境,2006,25(1):79–83.
    [12] Uisman C J N. Biotechnological sulfide removal from effiuent [J]. Wat Sci &Tech, 1991, 24(3-4):347–356.
    [13] 史家良,徐亚同,等. 非紫硫细菌分解高浓度有机废水的研究[J].微生物学通报, 1980, 7(5) :209-212.
    [14] 翁酥颖,戚蓓静,史家梁,等. 环境微生物学[M].北京:科学出版社,1985.
    [15] KUENEN J G, ROBERTSON L A. The use of natural bacterial populations for the treatment of sulfur containing wastewater [J].Biodegradation, 1992, (3): 239 –254.
    [16] 王家玲.环境微生物学[M].北京:高等教育出版社,1988.
    [17] SCHONHEIT P. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate [J]. Arch Microbiol, 1982, 132: 285–288.
    [18] ROBERTSON L A, KUENEN J G. The colorless sulfur bacteria [M]. New York: [s.n.], 1991.
    [19] KETL Y D P, HARRISON A P. Bergey’s manual of systematic bacteriology [M]. [s.l.]: Williams & Wilkins Baltimore, 1989.
    [20] KUENEN J G. Bergeys manual of systematic bacteriology [M]. [s.l.]: Williams & Wilkins Baltimore, 1989.
    [21] 王安, 张永奎, 陈华等. 微生物法烟气脱硫技术研究[J]. 重庆环境科学,2001,23(2):37–39.
    [22] Briand LE, Bonetto RD, Ladaga JL. Bulk and surface characterization of crystalline and plastic sulphur oxidized by Thiobacillus species [J]. Process Biochemistry, 1998, 34:249–256.
    [23] Strous M, Kuenen J G,et al1. Ammonium removal from concentrated waste streams with the anaerobic ammoniumoxidation (Anammox) process in different reactor configurations [J]. Water Reseach, 1997, 31(8) :1955–1962.
    [24] Kuenen J G. Plant Soil, 1975, 43:49.
    [25] Van Niel C. On the morphology and physiology of the purple and sulfur bacteria. Arch Microbiol, 1932, 3:1.
    [26] Larsen HJ. Becterial, 1952, 64:187.
    [27] 刘如林,刁虎欣,梁风来等. 光合细菌及应用. 北京:中国农业科技出版社,1991.
    [28] 朱章玉,俞吉安,林志新等. 光合细菌的研究及应用. 上海:上海交通大学出版社,1991.
    [29] Kelly DJ. Microbiol Sci, 1985, 2(4):105.
    [30] Moriarty DJ, Nicholas DJ. Biochem Biophys Acta, 1970, 197:143.
    [31] Suzuki, I. Mechanism of inorganic oxidation and energy coupling. Ann. Rev. Microbiol, 1974, 28: 85–101.
    [32] Suzuki, I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions. Can. J. Microbiol, 1999, 45: 97–105.
    [33] Kelly, D.P, and Wood, A.P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov. , Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol, 2000, 50: 511–516.
    [34] Chan, C.W., and Suzuki, I. Thiosulfate oxidation by sulfurgrown Thiobacillus thiooxidans cells, cell-free extracts, and thiosulfate-oxidizing enzyme. Can. J. Microbiol, 1994, 40: 816–822.
    [35] Tano, T., Ito, T., Takesue, H., Sugio, T., and Imai, K. B-type cytochrome, an electron carrier in the sulfite-oxidation system of Thiobacillus thiooxidans. J. Ferment. Technol, 1982, 60: 181–187.
    [36] Nakamura, K., Yoshikawa, H., Okubo, S., Kurosawa, H., and Amano, Y. Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM 7814. Biosci. Biotechnol. Biochem, 1995, 59: 11–15.
    [37] Kelly, D.P., McDonald, I.R., and Wood, A.P. Proposal for reclassification of Thiobacillus novellus as Starkeya novella gen. nov. comb. nov., in theα-subclass of the Proteobacteria. Int. J. Syst. Evol. Microbiol, 2000, 50: 1797–1802.
    [38] Yamanaka, T. Mechanism of oxidation of inorganic electron donors in autotrophic bacteria. PlantCell Physiol, 1996, 37: 569–574.
    [39] Kelly, D.P., and Wood, A.P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol, 2000, 50: 511–516.
    [40] Buisman, C.J.N.Biotechnological Sulphicde Removal with Oxygen, Ph.D.Thesis. The Netherlands: WAU, 1989.
    [41] DENOME S A, OLSON E S, YOUNG K D. Appl environ [J]. Microbial, 1994, 59 (9): 2837–2843.
    [42] 何正国,李亚勤,周培瑾. 氧化亚铁硫杆菌的铁和硫氧化系统及其分子遗传等[J]. 微生物学报, 2000 ,40(5):563-566.
    [43] Suzuki I. Oxidation of elemental sulfur by an enzyme system from Thiobacillus thiooxidans. Biochim Biophys Acta, 1965, 104:359–371.
    [44] Suzuki I. Sulfur-oxidizing enzymes. Methods Enzymol, 1994, 243:455–462.
    [45] Suzuki I, Silver M. The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli. Biochim Biophys Acta, 1966, 122:22–33.
    [46] Kletzin A. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase/reductase from the facultatively anaerobic archaebacteium Desulfurolobus ambivalens. J Bacteriol, 1989, 171:1638–1643.
    [47] Bruser, T., Selmer, T. and Dahl, C. ‘ADP sulfurylase’from Thiobacillus denitrificans is an adenylylsulfate: phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases. J. Biol. Chem, 2000, 275:1691–1698.
    [48] Brune DC. Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic, Dordrecht, 1995, pp 847–870.
    [49] Kelly DP, Shergill JK, Lu W-P, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek, 1997, 71:95–107.
    [50] Friedrich CG. Physiology and genetics of bacterial sulfur oxidation. Adv Microb Physiol, 1998, 39:236–289.
    [51] Cohen Y, Jorgensen BB, Padan E, Shilo M. Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature, 1975, 257: 489–492.
    [52] Shahak Y, Klughammer C, Schreiber U, Padan E, Herrmann I, Hauska G. Sulfide-quinone and sulfide-cytochrome reduction in Rhodobacter capsulatus. Photosynthesis Res, 1994, 39:175–181.
    [53] Shahak Y, Arieli B, Binder B, Padan E. Sulfide-dependent photosynthetic electron flow coupled to proton translocation in thylakoids of the cyanobacterium Oscillatoria limnetica. ArchBiochem Biophys, 1987, 259: 605–615.
    [54] Klughammer C et al. Reduction of cytochromes with menaquinol and sulfide in membranes from green sulfur bacteria. Photosynthesis Res, 1995, 43:27–34.
    [55] Shahak Y, Klughammer C, Schreiber U, Padan E, Herrmann I,Hauska G. Sulfide-quinone andsulfide-cytochrome reduction in Rhodobacter capsulatus. Photosynthesis Res, 1994, 39: 175–181.
    [56] Van Driessche G, Koh M, Chen Z-W, Mathews SF, Meyer TE, Bartsch RG, Cusanovich MA, van Beeumen JJ. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Protein Sci, 1996, 5:1753–1764.
    [57] Wodara C, Bardischewsky F, Friedrich CG. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol, 1997, 179:5014–5023.
    [58] JM. Visser, GAH. de Jong, LA. Robertson. A novel membrane-bond flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp [J]. W5. Arch Microbiol, 1997, 167:295–301.
    [59] LaneDJ, Harrison AP, Stahl D, Pace B etal. Evalutionary relationships among sulfur- and iron-oxidizing eubacteria [J]. J Bacteriol, 1992, 174:269–278.
    [60] Kuenen JG, Robertson LA, Tuovinen OH. The genra Thiobacillus, Thiomicrospira and Thiosphaera. In: Balows A, Truper HG, Dworkin M, Harder H, Schleifer KH. The prokaryotes, vol.3 [M]. Springer, Berlin Heidelberg New York, pp2636–2657.
    [61] Kelly DP. Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autrophic bacteria [M]. Science Tech Publishers, Madison, Wis., pp 93–218.
    [62] Schedel M, Truper HG. Purification of thiobacillus denetrificans siroheme sulfite reductase and investigation of molecular and catalytic properties [J]. Biochim Biophy Acta, 1979, 568:454.
    [63] Toghrol F, Souhland WM. Purification of thiobacillus novellas sulfite oxidase [J]. J Biol Chem, 1983, 258:6762–6766.
    [64] Meulenberg R, Pronk JT, Hazeu W. Purification and partial characterizstion of thiosulfate dehydrogenase from thiobacillus acidophilus [J]. J Gen Microbiol, 1993, 139:2033–2039.
    [65] Lyric M, Suzuki I. Enzymes involved in the metabolism of thiosulfate by thiobacillus thioparus Ⅲ. Properties of thiosulfate-oxidizing enzyme and proposed pathway of thiosulfate oxidization [J]. Can J Biochem, 1970, 48:344.
    [66] Oh JK, Suzuki. Resolution of a membrane-associated thiosulfate-oxidizing complex of thiobacillus novellas [J]. J Gen Microbiol, 1977, 99:413–423.
    [67] Lu W-P, Kelly DP. Partial purification of two principal enzymes of the thiosulfate-oxidizing multi-enzyme system from thiobacillus A2 [J]. J Gen Microbiol, 1983, 129:3549–3564.
    [68] Chen K-Y, Morris JC. Kinetics of oxidization of aqueous sulfide by O2 [J]. Eviron Sci Technol, 1972, 6:529–537.
    [69] Buisman CJA.etal.Biotechnological Process for Suphide Removal with Sulphur Reclamation[J], Acta Biotechnol, 1989,9(3):255–267.
    [70] 陈天寿主编.微生物培养基的制造与应用[M].北京:中国农业出版社 1995:182–184.
    [71] 沈萍 范秀容 李广武主编. 微生物学实验(第三版)[M].北京:高等教育出版社,1981:26–46.
    [72] 买文宁主编.生物化工废水生物处理技术及工程实例[M].北京:化学工业出版社,2002:546–573.
    [73] 刘晶,张灼,韩秀芳.硫杆菌的分离培养及其生长特性的研究(J),云南大学学报(自然科学版),1996,18(2):118–121.
    [74] Jan M Visser, Glvardus A.H.de Jong, Lesley A.Robertson. A novel membrane-bound flavocytochome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5. Arch Microbiol, 1997, 167:295–301.
    [75] 李建武,余瑞元,袁明秀等.生物化学实验原理和方法[M].北京大学出版社出 1999,171–176.
    [76] Stefess GC, Torremans RAM, De Schrijver R, Robertson LA etal. Quentitative measurement of sulfur formation by stedy-state and transient-state continuous cultures of autotrophic thiobacillus species. Appl Microbiol Biotechnol, 1996, 45:169–175.
    [77] 汪家政,范明.蛋白质技术手册[M].科学出版社,2000:38–46.
    [78] Bartsch RG, Kamen MD. Isolation and properties of two soluble heme proteins in extracts of the photoanaerobic Chromatium. J Biol Chem, 1960, 235:825–831.
    [79] Visser JM, De Jong GAH, Robertson LA, Kuenen JG. Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5. Arch Microbiol, 1996, 166:372–378.
    [80] Jorg Fischer, Armin Quentmeier, Susanne Kostka. Purification and characterization of hydrogenase from Thiobacillus ferrooxidans. Arch Microbiol, 1996, 165: 289–296.
    [81] Hatchikian EC, Bruschi M, LeGall J. Characterization of the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Commun, 1978, 82: 451–461.
    [82] Kostanjevecki, V., Brige′, A., Meyer, T. E., Cusanovich, M. A., Guisez, Y., and Van Beeumen, J. J. A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospira Vacuolata. J. Bacteriol, 2000, 182: 3097–3103.
    [83] Visser, J. M., de Jong, G. A. H., Robertson, L. A., and Kuenen, J. G. A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5, Arch. Microbiol, 1997, 167: 295–301.
    [84] Shahak Y, Arieli B, Padan E, Hauska G. Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett, 1992, 299:127–130.
    [85] Meyer TE, Bartsh RG. The reaction of flavocytochromes c of the phototrophic sulfur bacteria with thiosulfate, sulfite, cyanide and mercaptans [M]. In: Singer TP Flavins and flavoproteins. Elsevier, Amsterdam, pp 312–317.
    [86] Kusai A, Yamanaka T. Cytochrome c is a sulfide-cytochrome c reductase [J]. FEBS Lett, 1973, 34:235–237.
    [87] Yamanka T, Fukumori Y. A biochemical comparison between Chlorobium and Chromatium flavocytochromes c [M]. In: Yagi K, Yamano T (eds) Flavins and flavoproteins. Japan ScientificSocieties Press, Tokyo, pp 631–639.
    [88] Yamanka T, Kusai A. The function and some molecular features of cytochrome c-553 derived from chlorbium thiosulfatophilum[M]. In: Singer TP (ed) Flavins and flavoproteins. Elsevier, Amsterdam, pp292–301.
    [89] Suzuki I. Mechanisms of inorganic oxidation and energy coupling [J]. Annu Rev Microbiol, 1974, 28:85–105.
    [90] Dimitry Yu, Govardus AH de Jong, Lesely A Robertson. Purification and characterization of sulfide dehydrogenase from alkaliphilic chemolithoautotrophic sulfur-oxidizing bacteria [J]. FEBS Letters, 1998, 427:11–14.
    [91] Lane DJ, Harrison AP, Stahl D etal. Evolutionary relationships among sulfur- and ion-oxidizing eubacteria [J].J Bacteriol, 1992, 174:269–278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700