LD端泵固体激光器微通道冷却技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体激光器由于温度分布不均引起的热透镜效应、热致衍射损耗和热炸裂等热效应,已成为制约其向高功率、高光束质量、低功耗、小型化长寿命方向发展的瓶颈,因此,必须发展有效的冷却技术才能解决高热负荷激光器的冷却问题,而微通道热沉冷却由于体积小、换热系数高等优点,是一种很好的选择。
     本文概述了固体激光器的冷却技术,特别是近年来出现的新型独特的冷却技术。利用热分析的有限元法,在详细分析准三能级激光器热效应的基础上,结合对LD(Laser Diode)输出泵浦光的实验测量,考虑多模输出、近高斯分布等多种因素,较为准确地建立了块状激光晶体热传导的有限元模型,模拟了晶体在不同换热边界条件下的温度场、温度梯度场和热应力场分布,提出了改善激光晶体散热性能的有效措施。阐明了微通道热沉的设计原理,完成了微通道热沉的设计、加工和表面处理。基于微通道热沉进出口水温和晶体边界环境温度的理论分析和实验测量,指出了人们对晶体边界环境温度即为冷却剂温度的假定是不够准确的,通过微通道热沉与普通热沉散热的对比实验研究,验证了微通道热沉优良的散热性能。测量了微通道的流阻变化,为优化设计微通道结构和合理选择冷却水流量提供了依据。
     有限元分析结果表明,提高对流换热系数或降低晶体边界环境温度,可显著降低晶体整体温度,但温度梯度变化较小,且换热系数达到最大值后,继续强化外部换热几乎不改变晶体的温度和热应力场分布。
     本文设计、加工出了通道宽度为0.2mm,肋片厚度为0.8mm的微通道热沉。针对紫铜微通道在加工过程产生的污垢,开发了表面处理工艺,完成了组装,并成功应用于固体激光器的冷却上。
     利用微通道热沉散热,在LD端泵Nd:YVO4输出914nm激光实验中,相同实验条件下,与普通热沉相比,输出斜坡效率提高了14%,输出功率为6W时,光束质量因子M2由3.35改善为2.00,最高输出功率增加了1.5W,达到8.9W,据我们所知,这是目前有报道的最高水平。结果表明,微通道冷却技术可缓解晶体的热效应,有效提高激光器的激光输出功率和改善光束质量,且在高泵浦功率下,将体现出更明显的优势。
Thermal effect including thermal lens, diffraction loss, thermal fracture induced by inhomogeneous heating of the laser material in the solid state lasers has restricted the development of lasers to high output power, high beam quality, compact configuration, and long life. Therefore, effective cooling technologies will developed in order to solve the high thermal load in the lasers, and micro-channel cooling provides a good choice because of its compact geometry, high heat transfer coefficient.
     This paper summarizes the cooling technologies in solid state lasers, especially for novel and unique technologies. Considering the profile and the multi-mode of the pumped beam measured in the experiment, the finite-element modal of the heat conductive function in the laser crystal is developed on the basis of analysis of thermal effect in quasi-three level lasers to simulate the temperature field, the temperature grads field and thermal stress distribution. The schemes for heat removed in the laser crystal are advised. The principle of devising micro-channel geometry is illuminated. The design, machining, and the surface disposal of it is finished. The assumption of the boundary temperature on the crystal in some papers is found to be not quite correct by the measurement experiment. Micro-channel’s ability of heat removal is proved by the contrasting experiment between micro-channel heat sink and common heat sink.
     The finite-element analysis of thermal effect in the laser crystal indicated that the whole temperature dropped but the temperature grads decreased little by increasing the convective coefficient and decreasing the boundary temperature of the crystal. Additionally, the maximum convective coefficient is found and excess not contributed much to changes of the temperature field and thermal stress. The maximum stress emerged nearby the center pumped side and fraction occurs at this point when pump power increases.
     This paper finished the designing and machining of the copper micro-channel with channel width 0.2 mm and fin width 0.8 mm. The technique of surface disposal is explored and the installment into solid state lasers is accomplished.
     In LD end-pumped 914nm Nd:YVO4 quasi-three-level lasers, the slope efficiency of output laser rises 14% , M2 alters to 2.00 from 3.35, and maximum output power up to 8.9W, rises 1.5W, with the micro-channel heat sink for heat removed, comparing to the common heat sink. The result indicates that the output power of the laser can be enhanced and beam quality can also be improved because the thermal effect is alleviated by the schemes of micro-channel cooling..
引文
1 Li Yan, Chi H. Lee. Thermal Effects in End-pumped Nd:phosphate Glasses. Appl. phy. 1994, 75: 1286~1292
    2 D. B. Tuckmerman , R. FW. Pease. High-performance Heat Sinking for VLSI. Electron. Device Letter, 1981, Vol.EDL-2(5): 126-129.
    3陈登科.电子器件冷却技术.低温物理学报. 2005, 27 (3): 255~261
    4 W. Koechner. Solid-state Laser Engineering. Fifth Revised and Updated Edition. Springer-Verlag. 2005: 441~447
    5 R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, H. P. Weber. Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods. Quan. Electron. 1998, 34(6): 1046~1053
    6王军荣,闵敬春,宋耀祖.侧面抽运板状激光介质的热汇冷却.光学学报. 2005, 25(6), 829~834.
    7 Y. Tzuk, A. Tal, S. Goldring, Y. Glick, et al. Diamond Cooling of High-Power Diode-Pumped Solid-State Lasers. Quan. Electron. 2004, 40(3): 262~269
    8 H. P. Chou, Yu-Lin Wang, V. Hasson. Compact and Efficient DPSS Laser Using Diamond-cooled Technology. SPIE. (5448): 550~560
    9 T. P. Cotter. Principles and Prospects for Micro Heat Pipe. Proceedings of 5th International Heat Pipe Conference. 1984: 328~335
    10 L. Lin, R. Ponnappan. Heat Transfer Characteristics of Spray Cooling in a Closed Loop. International Journal of Heat and Mass Transfer. 2003, (l46): 3737~3746
    11 J. Yang, M. R. Pais, L. C. Chow. High Heat-flux Spray Cooling. SPIE. 1992, 1739: 29~40
    12何叶,李磊民,杨涛.基于MEMS技术的新型微冷却方式.仪表技术与传感器. 2004, (9): 43~45.
    13陶毓伽,淮秀兰,李志刚等大功率固体激光器冷却技术进展.激光杂志. 2007, 28(2): 11~12
    14徐德好.微通道液冷冷板设计与优化.电子机械工程, 2006, 2(2): 14~18
    15 X. F. Peng , B. X. Wang. Experimental Investigation of Heat Transfer in FlatPlates with Rectangular Microchannel. Heat Mass Transfer. 1995, 38(1): 127~138
    16 Pengxf, Petersongp, Wang B X. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels. Heat Mass Transfer. 1995, 38(1): 249~264
    17 Riddlera, contolinirj, bernhardtaf. Design Calculation for the Microchannel Heatsink. National Electronic Products Confercence, 1991: 161~171
    18 C. Hilbert, S. Sommerfeldt, D. J. Herrelln, O. Gupta. High Performance Air Cooled Heat Sink for Integrated Circuits. IEEE Trans. Component, Hybrids, Manuf. Tchnol. 1990, 14(4): 1022~1031
    19 R. Beach, W. J. Benett, B. L. Freitas, et al. Modular Microchannels Cooled Heatsinks for High Average Power Diode Arrays. IEEE J QE. 1992, 28(4): 966~969
    20 J. A. Skidmore. Silicon Monolithic Microchannel-Cooled Laser Diode Array. Applied Physics Letters. 2000, 77(1): 10~12
    21 N. Wiedman, A. Ostlender, et al. Packaging and Characterization of High Power Diode Lasers. SPIE, 2000, 3945:270~272.
    22刘云,寥新胜,秦丽.大功率半导体激光器叠层无氧铜微通道热沉.发光学报. 2005, 26(1): 109~114
    23喻世平.微通道传热的近似分析.电子机械工程. 1994,(3): 37~40.
    24刘焕玲,贾建援,邵晓东. MEMS微通道流动压力试验关联式仿真及修正.传感器技术. 2004, 23(10): 66~68
    25刘一兵.电子设备散热技术研究.电子工艺技术. 2007, 28(5): 286~289
    26阚前华. ANSYS高级工程应用实例分析与二次开发.电子工业出版社, 2006: 1~37
    27祝小华,余志祥等. ANSYS高级工程有限元分析范例精选.电子工业出版社, 2003: 1~19
    28 Daryl L. Logan. A First Course in the Finite Element Method.伍义生,吴永礼等译. Third Edition.电子工业出版社, 2003: 1~19
    29龚曙光. ANSYS基础应用及范例解析.机械工业出版社, 2004: 1~28
    30 J. P. Holman. Heat Transfer.第9版. China Machine Press, 2005:1~20
    31杨世铭,陶文铨.传热学.高等教育出版社.第4版, 2006:230~300
    32张国智,胡仁喜,陈继刚等. ANSYS10.0热力学有限元分析实例指导教程.机械工业出版社, 2007,第一版, 14~16
    33 Rui Zhou, Tieli Zhang, Enbang Li, et al. 8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm. Optics Express, 2005, Vol. 13(25): 10115~10119
    34 P. Zeller, P. Peuser.Efficient Multiwatt Continuous-wave Laser Operation on The 4F3/2-4I9/2 Transitions of Nd:YVO4 and Nd:YAG[j]. Optics Letters, 2000, 25(01): 34~36.
    35 Changhwan Lim and Yasukazu Izawa. Modeling of End-Pumped CW Quasi-Three-Level Lasers. Quantum Electronics, 2002, 38(3): 306~311
    36 Tso Yee Fan, Robert L. Byer. Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser. Quantum Electron, 1987, 23(5): 605~611
    37 Z. Xiong, Zhigang G. Li, Nicholas Moore et al. Detailed Investigation of Thermal Effects in Longitudinally Diode-Pumped Nd:YVO4 Lasers. Quantum Electronics, 2003, 39(8): 979~986
    38 Xiaoyuan Peng, Lei Xu and Anand Asundi. Power Scaling of Diode-Pumped Nd:YVO4 Lasers. Quantum Electronics, 2002, 38(9): 1291~1298
    39 Z. Xiong, Zhigang G, et al. Detailed Investigation of Thermal Effects in Longitudinally Diode-Pumped Nd:YVO4 Lasers. IEEE Quantum Electronics. 2003, 39(8): 979~986
    40 Xiaoyuan Peng, Anand Asundi, Yihong Chen et al. Study of the Mechanical Properties of Nd:YVO4 Crystal by Use of Laser Interfermetry and Finite-element Analysis. Applied Optics,2001, 40(9): 1396~1403
    41 Yoichi Sato and Takunori Taira. The studies of thermal conductivity in GdVO4 ,YVO4, and Y3Al5O12 measured by quasi-onedimensional flash method. Optics Express, 2006, 14(22): 10528~10536
    42 Junko MorikawamCeelia Leong, Toshimasa Hashimoto et al. Thermal Conductity/Diffusivity of Nd+3 Doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by Temperature Wave Analysis. Applied Optics,2008, 103: 063522.
    43 T. Y. Fan. Heat Generation in Nd:YAG and Yb:YAG. Quantum Electronics. 1993, 29(6): 1457~1459
    44 Y. F. Chen and H. J. Kuo. Determination of the Thermal Loading of Diode-pumped Nd:YVO4 by Use of Thermally induced Second-harmonic OutputDepolarization. Opt. Lett, 1998, (23): 846~848.
    45姚建铨,徐德刚.全固态激光级非线性光学频率变换技术.科学出版社, 2007, 185~231
    46 Y. F. Chen, T. M. Huang, C. F. Kao, et al. Optimization in Scaling Fiber-coupled Laser-diode End-pumped Lasers to Higher power: Influence of Thermal effect. Quantum Electron. 1997, 33(8): 1424~1429
    47 B. Neuenschwander, R. Weber and H. Weber. Determination of the thermal lens in solid-state lasers with stable cavities. IEEE J. Quantum Electron. 1995, 31(6): 1082~1087
    48 W A Clarkson. Thermal Effects and Their Mitigation in End-pumped Solid-state lasers. Journal of Physic D. 2001, (34): 2381~2395
    49 M. E. Innocenzi, H. T. Yura, C. L. Fincher et al. Thermal modeling of continuous-wave end-pumped solid-state lasers. Appl. Phys. Lett, 1990, 56(19): 1831~1833
    50 Jan ?ulc, Helena Jel?nková, Václav Kube?ek, et al. Comparison of Different Composite Nd:YAG rods thermal properties under diode pumping. Proc. SPIE2002, (4630): 128~134.
    51 S. C. Tidwell, J. F. Seamans, M. S. Bowers, et al.“Scaling CW Diode-end-pumped Nd:YAG Lasers to High Average Powers. Quantum Electron, 1992, 28: 997~1009,
    52 A. K. Cousins, Temperature and Thermal Stress Scaling in Finite-length End-pumped Laser Rods. Quantum Electron, 1992, 28(4): 1057–1069.
    53 Y. F. Chen. Design Criteria for Concentration Optimization in Scaling Diode End-Pumped Lasers to High Powers: Influence of Thermal Fracture. Quantum Electronics, 1999, 35(2): 234~239
    54苟文选.材料力学.科学出版社, 2005, 35~40
    55夏泰淳.工程流体力学.上海交通大学出版社, 2006, 181~193
    56 Gnielinski V. New Equations for Heat Mass Transfer in Turbulent Pipe and Channel Flows. Int Chem Eng, 1976, (16): 359~368
    57陈卓如.工程流体力学.高等教育出版社, 2004,第二版, 267~269
    58李导.金属表面清洗技术.化学工业出版社. 2007,49~171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700