航空电子设备新型结构功能模块的热设计优化与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空电子系统结构越来越复杂,综合化程度越来越高。综合化和模块化是构造先进航空电子系统的两条重要设计原则,模块化又是综合化必要的物理基础。结构功能模块集成制造技术课题正是为了解决模块集成制造中的一系列问题,研制高性能模块而诞生的。
     未来的航空电子设备向综合化、模块化、小型化、多功能化、高可靠性的方向发展,这将必然导致如散热、电磁兼容和接口互联等问题的出现。同时,电子设备的功能、体积、重量、可靠性以及对各种环境的适应性等被纳入结构设计的范畴,这给结构设计提出了更高的要求。
     随着电路集成度的提高,热流密度的增大,温度是影响电子设备可靠性最为关键的因素,因此本文以热优化设计为主线,同时解决结构功能模块集成制造问题。本文介绍了前期工作状况,包括模块标准的选用、热设计思路及流程、模块结构设计思路、液冷冷板、锁紧装置、起拔器、盖板、屏蔽板等。
     通过对前期模块结构优化设计,对比分析模块加工工艺方案,成功解决结构功能模块的制造和冷板焊接问题,提出了结构功能模块集成制造的方法。文中建立了结构功能模块的热设计测试系统方案,对模块进行了耐压试验测试、流量测试、热测试,提出了热试验结果的处理方法和计算公式,对比分析了热测试结果和仿真结果的差异,为其后的热优化设计提供了依据。
     以测试数据为基础,从功率器件的热布局优化、导流柱群的优化、热阻优化设计三个角度对结构功能模块液冷冷板进行了热设计优化。功率器件的热布局优化以结构功能模块实物模型和铝基功率板模型为基础,对比分析了功率器件不同热布局对器件温度和冷板散热性能的影响,优化得到了适合本项目的功率器件布局结构,并总结适合S型流道的功率器件布局方法;导流柱群的优化以热测试结果分析为基础,对冷板流道中的导流柱群的概念及优化思路进行了介绍,通过热仿真对比分析优化导流柱群,使冷板的散热性能和流体的压降损失达到平衡;热阻优化设计以提高热传导效率为思路,对比分析各个模型结构的热阻状况,对功率器件的热量传导路径优化,提高热量传导的效率,并提出了一种高效传热方案。
     文中对结构功能模块的集成制造方法、热测试对比分析、热阻模型分析方法、及热优化设计方法和思路可用于军民电子设备的热设计,对电子设备结构设计有重要的借鉴意义。同时,结构功能模块的研制对国防的建设有重大的战略意义。
Avionics system architecture is becoming more and more complex, Integration degree is becoming more and more high. Modularization and Integration are two important design principles of advanced avionics system, modularization is the physical basis of the necessary integration. So the project of Integrated Manufacturing Technology of Multifunctional Structure is researched to solve problems and develop high performance module.
     The development of future avionics equipments and modules is to the integrated, modular, small, intelligent, multi-function, high reliability, easy maintenance and scalability direction. These will inevitably lead to many problems such as thermal, electromagnetic compatibility and interface connection. At the same time, the functions of electronic equipment, size, weight, reliability, and adaptability to various environments is included in the structural design. These present higher demand to structural designer.
     With the improvement of integrated circuit and the increased heat flux, temperature has become the main factor that affects the reliability of electronic equipment. So solving the problem of heat dissipation is the main thought to design the module in this paper and the project of Integrated Manufacturing Technology of Multifunctional Structure is researched to solve problems. The preliminary work is described in this paper, including the selection of standard modules, thermal design concept and process, the module structure of design ideas, liquid cooling cold plate, locking devices, insertion-extraction device and shielding board.
     To optimize the design of pre-module structure, comparative analysis module processing options for resolving the multifunctional module manufacturing and cold plate welding problem, Integrated Manufacturing Technology of Multifunctional Structure is researched. The thermal testing system program of structure and function module was established in this paper, Pressure testing、flow testing、thermal testing was done, the treatment of thermal testing results and formulas have been proposed, comparative analysis the differences of the thermal test results and simulation results,the basic of thermal designing optimization was provided.
     By the testing data, from thermal layout optimization of power device, optimization of diversion column groups, optimization of thermal resistance three perspectives on the multifunctional modules for liquid cooling cold plate thermal design optimization. The multifunctional modules and aluminum plate model was the basis of thermal layout optimization of power device, comparative analysis of the power devices with different layout of the device temperature and the thermal cooling performance cold plate, were optimized for the layout of the project's power devices structure, and summarizes the flow for S-type power device layout method; The thermal testing results was the basis of diversion column groups optimization, Cold plate flow channel in the diversion column group concept and optimization of being introduced. The thermal simulation optimization of diversion column groups was to balance the thermal performance of cold plate and the pressure drop of fluid; The Purpose of optimization of thermal resistance was to Improve the efficiency of heat conduction, comparative analysis of the thermal resistance status of each model structure, the heat conduction of the power device path optimization to improve the efficiency of heat transfer, An efficient heat transfer scheme is proposed.
     The integrated manufacturing approach of the multifunctional modules, comparative analysis of thermal testing, thermal resistance model analysis, and thermal design optimization methods and ideas can be used for military and civilian equipment design in this paper, and has an important reference for structure design of electronic equipments. And it has a great strategic significance for national defense.
引文
[1]姚拱元,吴建民等.航空电子系统综合技术的发展与模块化趋势[J].航空电子技术,2002,33(1):1-10.
    [2]霍曼.邓中卫.国外军用飞机航空电子系统发展趋势[J].航空电子技术,2004,35(4):5-10.
    [3]何志强.综合化航空电子系统发展历程及重要支撑技术[J].电讯技术,2004(4):1-5.
    [4]Charlotte Adams. JSF Integrated Avionics Par Excellence [J]. Avionics Magazine,2003,9: 18-24.
    [5]毕国楦.模块化是航空电子综合化发展的基础[J].航空标准化与质量,1996(4):10-13.
    [6]周旭.电子设备结构与工艺[M].北京:北京航空航天大学出版社.2004,7.
    [7]徐德好,平丽浩.军用航空电子LRM模块结构设计[J].电子机械工程,2001,2(1):16-18
    [8]李东来.LRM现场可更换模块结构研究[J].电子机械工程,2008,24(5).
    [9]平丽浩,钱吉裕等.电子装备热控新技术综述(上)[J].电子机械工程,2008,24(1):1-10.
    [10]Michael Ohadi. Thermal management of next generation low volume complex electronics. www.vita.com/cool/pres/0845-Ohadi.pdf.
    [11]于慈远,于湘珍,杨为民.电子设备热分析/热设计/热测试技术初步研究[J].微电子学,2000,30(05):334-337.
    [12]赵春林.电子设备的热设计[J].电子机械工程,2002,18(5).
    [13]Colgan, E.G.; Furman B, Gaynes M, Graham W S. A Practical Implementation of Silicon Microchannel Coolers for High Power Chips[J]. Components and Packaging Technologies, IEEE,2007,30(2):218-225.
    [14]Karmalkar S, Mohan P V, Kumar B P.A unified compact model of electrical and thermal 3-D spreading resistance between eccentric rectangular and circular contacts[J]. Electro Device Letters, IEEE,2005,26(12):909-912.
    [15]杨维生.雷达用特种印制电路板制造技术研究[J].电子工艺技术,2004,25(5):208-212.
    [16]过增元.对流换热的物理机制及其控制[J]:速度场与热流场的协同.科学通报,2000,45(19):2118-2122.
    [17]吴宗泽.机械设计实用手册[M].北京:化学工业出版社,1999,1.
    [18]张建刚.航空电子设备新型结构功能模块的设计开发与研究[D].电子科技大学,2009,1.
    [19]邱成悌,赵悖殳,蒋全兴.电子设备结构设计原理[M].南京:东南大学出版社,2005,1.
    [20]NATO.STANAG4626(DRAFT 1)-Modular and open avionics architectures[C], PART IV: Packaing. Military Agency for Standardization,2005.
    [21]闰迎军.综合模块化航空电子设备结构设计[D].西安电子科技大学,2006,1.
    [22]曹义信,宋立存.楔形锁紧装置的研制[J].电子机械工程,2001,90(2):14-15.
    [23]杨维生.铝基印制电路板制造工艺研究[J].印制电路信息,2004(6):3942,68.
    [24]周麟彦.数控铣床加工工艺与编程操作[M].北京:机械工业出版社.2009.08.
    [25]段慧明,翟秀贞.液体流量标准装置技术指标评定[C].全国计量测试学术大会,1998.
    [26]傅龙珠.测试系统的热分析与设计[J].电子机械工程,2004,20(05):8-10.
    [27]徐德好.电子设备热测试系统自动化研究[J].电子科学技术评论,2005(01):33-36.
    [28]赵红梅,米启超.WZP型铂电阻温度传感器Pt1000信号的线性化处理[J].现代电子技术,2008,31(5).
    [29]吕永超,杨双根.电子设备热分析、热设计及热测试技术综述及最新进展[J].电子机械工程,2007,23(01):5-10.
    [30]John, Males. F-22 Radar development[C]. Aerospace and Electronics Conference, IEEE,1997, 12:831-839.
    [31]梁德文.战斗机航空电子系统最新的发展趋势—网络化[J].电视技求,2008,48(6).
    [32]陈水桥,陈洪山,张训生.红外热成像法研究电路板热分布特性[J].物理实验,2001,21(06):8-11.
    [33]郑兆平,曾汉生,丁翠娇等.红外热成像测温技术及其应用[J].红外技术,2003,25(01):96-98.
    [34]李国华,吴立新,吴淼等.红外热像技术及其应用的研究进展[J].红外与激光工程,2004,33(03):227-230.
    [35]谢德任.电子设备热设计[M].南京:东南大学出版社,1989,12.
    [36]张也影.流体力学[M].北京:高等教育出版社,1986.
    [37]陈晓霞.ANSYS 7.0高级分析[M].北京:机械工业出版社,2004,6.
    [38]梅启元.热仿真分析技术在相控阵雷达天线散热设计中的运用[J].电子机械工程,2007,23(3):11-13
    [39]曾锐,平丽浩等.LRM模块及其相关标准[J].电子机械工程,2007,23(4):1-5.
    [40]邱宣怀,郭可谦.机械设计[M].北京:高等教育出版社,1997,4.
    [41]杜平安,有限元法—原理、建模及应用[M].北京:国防工业出版社,2004,1.
    [42]Banton R, Donald W. A VITA-Based framework for ruggedized COTS electronics with emphasis on liquid cooling-VITA 48(REDI)[C].www.me.com/literature/literature_files /VITA-48-REDI_whitepaper.pdf.
    [43]Karmalkar S, Mohan P V, Kumar B P.A unified compact model of electrical and thermal 3-D spreading resistance between eccentric rectangular and circular contacts[J]. Electro Device Letters, IEEE,2005,26(12):909-912.
    [44]Prasher R. Thermal Interface Materials:Historical Perspective, Status, and Future Directions. Proceedings, IEEE,2006,94(8):1571-1583.
    [45]Colgan E G, Furman B, Gaynes M, Graham W S. A Practical Implementation of Silicon Microchannel Coolers for High Power Chips[J]. Components and Packaging Technologies, IEEE,2007,30(2):218-225.
    [46]Kevin A, Moores, Yogendra K, Joshi, Gerhard H. Schiroky. Thermal Characterization of a Liquid Cooled AlSiC Base Plate with Integral Pin Fins[J]. Transactions on Components and Packaging Technologies, IEEE,2001,24(2):213:219.
    [47]Zhang H Y, Pinjala D, Wong T N and Yogendra K, Joshi. Development of Liquid Cooling Techniques for Flip Chip Ball Grid Array Packages With High Heat Flux Dissipations. Transactions on Components and Packaging Technologies[J], IEEE,2005,28(1):127:135.
    [48]Kim J S, Cha W H, Rainey K N, Lee S and You S M. Liquid cooling module using FC-72 for Electronics cooling. Thermal and Thermomechanical Phenomena in Electronics Systems [C], ITHERM'06. The Tenth Intersociety Conference,2006:604-611.
    [49]Devin W, Hersey. Thin Liquid Flow-Through Core with Machined Flow Channels[J]. Semiconductor Thermal Measurement and Management Symposium,2004. Twentieth Annual IEEE9-11 Mar 2004:213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700