电子机箱气冷冷板的传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气冷冷板由于高效的换热性能以及紧凑的结构,已成为电子设备中一种很重要的散热器,使得近年来对于冷板的研究越来越多。以往国内外对冷板翅片的研究多以理论和实验为主,并通过大量的对比分析计算得出各种翅片的性能参数。现阶段,随着计算流体力学的应用日益广泛和深入,特别是对于各种实际问题的模拟计算,利用计算机数值模拟软件将会更快速、更直观地得到计算结果,使得仿真软件成为工程设计和研究的重要工具之一。因此,本文以三类不同翅片结构的气冷冷板作为研究对象,通过数值模拟仿真的方法,对其换热及流动的过程进行了分析研究。
     首先对矩形翅片冷板的传热和流动特性进行了数值模拟研究,得到预测冷板的传热及阻力性能的试验关联式,并对计算结果进行极差分析,获得冷板结构尺寸对换热特性的影响规律。其次对某电子设备机箱上的直排翅片冷板进行热特性的研究,并提出在仿真软件中建立等效模型代替冷板进行分析的方法。通过将等效的结果与冷板模型进行对比,证明了等效模型能够代替冷板进行热设计并且计算用时短。最后,在某雷达发射机散热通道内的热设计中,对冷板散热翅片进行结构优化分析,通过数值仿真方法确定出冷板翅片的最优结构尺寸。
Air cold plate because of the high heat transfer performance and compact structure, has became a very important radiator in electronic equipment, and make more and more the research for it in the recent years. Previously, the research of fin of air cold plate is mainly theoretical and experimental at home and abroad, by calculating performance parameters of various fins with a large number of comparative analyses. At present, with the computational fluid dynamics are applied widely and deeply, especially for the simulation of various practical problems. The numerical simulation software will be more quickly and more intuitively to get the calculation result. It makes simulation software to be one of important engineering design and research tools. Therefore, this article takes three different types of fin structure of air cold plate as the research object, and analyses the procession of heat transfer and fluid by the method of numerical simulation.
     Firstly, the heat transfer and flow of cold plate of rectangular fin is analyzed by numerical simulation, to get the experimental correlation which predict the heat transfer and pressure drop performance of cold plate. And obtain the effects of structure size of cold plate on heat transfer characteristic by range analysis of the calculation result. Secondly, the cold plate of vertical rectangle fin is researched for heat transfer characteristic on the electronic equipment cabinet. The method of equivalent model instead of cold plate is proposed in the simulation software. Comparing with cold plate, the results of equivalent model prove that can replace the cold plate in thermal design and reduce the calculation time. Finally, in the thermal design of a radar transmitter cooling channels, the fins of cold plate are analyzed for the structure optimization, and the optimal structure of cold plate is determined by numerical simulation methods.
引文
[1]赵惇殳.电子设备热设计[M].北京:电子工业出版社.2009.
    [2]刘道锦.电子设备冷却用液冷冷板的传热性能研究[D].南京航空航天大学,2001.
    [3]杨小龙.电子设备冷却用空芯冷板的理论与试验研究[D].南京航空航天大学,2000.
    [4] Kishimoto T , Osaki T . VLSI Packaging Technique Using Liquid-Cooled channels[J].IEEE Transactions on Component.Hybrids and Manufacturing Technology,1986,Vol.CHMT-9:328~335.
    [5] Tuckman D B,Pease R F.High Performance Heat Sinking for VLSI[J].IEEE Electronic Device Letters,1981,Vol.EDL-2:126~129.
    [6] Tuckman D B,Pease R F.Ultrahigh Thermal Conductance Microstructures for Cooling Integrated Circuits[J].IEEE Electronics Components Conference,1982,145~149.
    [7] Mahalingam M . Thermal Management in Semiconductor Device Packaging[J].IEEE,1985,Vol.73:1396~1404.
    [8] Kishimoto T , Osaki T . VLSI Packaging Technique Using Liquid Cooled channels[J].IEEE Transactions on Components.Hybrids and Manufacturing Technology,1986,Vol.CHMT-9:328~335.
    [9] Kishimoto T,Sasaki S.Optimal structure for microgrooved cooling fin for high power LSI devices[J].Electronics Letters,1986,Vol.22(25):1332~1334.
    [10] Kishimoto T , Andrews J . High Performance Air Cooling for Microelectronics[C].Proceedings of the International Symposium on Cooling Technology for Electronic Equipment,1987,Vol.17(21):608~625.
    [11] Bejan A,Morega A M.Optimal Arrays of Pin Fins and Plate Fins in Laminar Forced Convection[J].Joural of Heat Transfeer,1993,Vol.115:75~81.
    [12] DeJong N C , Zhang L W , Jacobi A M , Balachandar S , Tafti D K A.Complementary Experiment and Numerical Study of the Flow and Heat Transfer in Offset Strip-Fin Heat Exchangers[J].Transactions of the ASME,1998,Vol.120:690~698.
    [13] W M.Kays,A.L.London.Compact Heat Exchangers[M].Second Editoin,1964.
    [14] Luca Buzzoni,Roberto Dall’Olio,Marco Spiga.Efficiency of the unit cell inrectangular finned tube arrangements[J].Applied Thermal Engineering,1999,Vol.19(11):l147~1156.
    [15] R.S.Mators,T.A.Laursen,J.V.C.Vargas.Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection[J].International Journal of Thermal Sciences,2004,Vol.43(5):477~487.
    [16] Han-Taw Chen,Jen-Pin Song,Yi-Tong Wang.Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2005,Vol.48(13):2697~2707.
    [17] Giovanni Lozza,Umberto Merlo.An experimental investigation of heat transfer and friction losses of interrupted and wavy fins for fin·and·tube heat exchangers[J].International Journal of Refrigeration,2007,Vol.24(5):409~416.
    [18]杨春信,袁修干.穿透式冷板的传热分析[J].北京航空航天大学学报,1996,22(6):722-726.
    [19]杨小龙.电子设备冷却用空芯冷板的理论与试验研究[D].南京航空航天大学,2000.
    [20]余莉,蒋彦龙,李萍.电子设备用冷板散热特性的二维数值模拟[J].南京航空航天大学学报,2006,38(4):419-422.
    [21]吕倩,胡家渝.风冷冷板传热及流动特性研究[J].电子机械工程,2009,25(3):10-13.
    [22]李长生,马虎根,陈文奎.高翅片管传热及阻力特性实验研究[J].上海理工大学学报,2007,29(5):507-510.
    [23]刘相艳.翅片管换热器的换热性能分析和数值模拟[D].上海交通大学,2006.
    [24]时艳丽.基于ICEPAK软件SSPC的热设计[D].河北工业大学,2008.
    [25]邱成悌,赵惇殳,蒋全兴.电子设备结构设计原理[M].南京:东南大学出版社,2007.
    [26]余建祖,高红霞,谢永奇.电子设备热设计及分析技术[M].北京:北京航空航天大学出版社,2008.
    [27]龙昊.功率器件热设计及散热优化设计技术研究[D].北京航空航天大学,2003.
    [28]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [29]顾学岐,陈瑛.冷板的热工设计[J].北京工业大学学报,1997,23(4):43-48.
    [30]唐磊.液冷冷板流动和换热特性的研究[D].南京航空航天大学,2008.
    [31]杜雪伟.翅片管换热器传热及压降特性的测试方法与实验研究[D].上海交通大学,2008.
    [32]曾伟平.板式换热器换热和压降的性能研究[D].上海交通大学,2009.
    [33]张薇.典型换热单元流动与传热问题的数值仿真研究[D].浙江大学,2007.
    [34]寇磊.紧凑式换热器传热和流动特性的数值模拟[D].中南大学,2009.
    [35]张战.空调用错列翅片换热器表面传热与流动阻力特性的数值研究[D].江苏大学,2002.
    [36]任露泉.试验优化技术[M].北京:机械工业出版社,1987.
    [37] [日]奥野忠一,芳贺敏郎.试验设计方法[M].北京:机械工业出版社,1985.
    [38]《正交试验法》编写组.正交试验法[M].北京:国防工业出版社,1976.
    [39]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008.
    [40]刘占斌.翅片管换热过程的数值模拟及实验研究[D].西安理工大学.2008.
    [41]余建祖,高红霞,谢永奇.电子设备热设计及分析技术[M].北京:北京航空航天大学出版社.2008.
    [42]帕坦卡,S.V.著,张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [43]陶文铨.计算流体力学与传热学[M].中国建筑科技大学出版社,1991.
    [44]杨世铭.传热学第二版[M].北京:高等教育出版社,1987.
    [45]赵惇殳.电子设备结构设计原理[M].南京:东南大学出版社,2004.
    [46]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2001.
    [47]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004.
    [48]郭丽华.锯齿型错列翅片冷却器的传热、阻力及工艺特性的研究[D].上海交通大学.2008.
    [49]薛薇.SPSS统计分析方法及应用(第2版)[M].北京:电子工业出版社,2009.
    [50]梁烨,柏芳.Excel统计分析与应用[M].北京:机械工业出版社,2009.
    [51]徐晓婷,朱敏波,杨艳妮.电子设备热仿真分析及软件应用[J].电子工艺技术,2006,27(5):265-268.
    [52]陈国强,朱敏波.电子设备强迫风冷散热特性测试与数值仿真[J].计算机辅助工程,2008,17(2):24-26.
    [53]王卫华,周章洪,江元俊.一种高功率小型化T/R组件发射通道的设计[J].现代雷达,2005,27(7):54-57.
    [54]高玉良,万建岗,周艳.新一代有源相控阵雷达T/R组件热设计[J].武汉理工大学学报,2009,31(24):91-93.
    [55]曹良强,吴钢,王怀.相控阵雷达T/R组件冷却仿真研究[J].制冷技术,2008,36(8):37-40.
    [56]束峰涛,袁同山.某毫米波雷达发射机的热设计[J].电子机械工程,2008,24(4):7-10.
    [57]曹良强,吴钢.雷达发射机的冷却及热设计优化分析[J].制冷技术,2008,36(4):48-52.
    [58]张忠海.电子设备中高功率器件的强迫风冷散热设计[J].电子机械工程,2005,21(3):18-21.
    [59]李明东.利用CFD数值仿真技术确定电子设备风道特性[J].安全与电磁兼容,2002,21(3):16-18.
    [60]高新霞.大功率电子元器件及设备结构的热设计研究[D].华北电力大学.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700