连续造斜绳索取心钻具设计理论研究及研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质钻探的目的是为了通过采取岩样、水样来获取矿体形态、产状、埋深、品位、储量以及围岩性质、水文地质资料等。为了达到不同的目的,有的可采用垂直钻孔,而有的更适宜采用受控定向孔。然而在国内的地质钻探行业,由于没有专门的定向钻进造斜段取心钻具,定向钻进造斜段基本采用不取心或者通过特殊钻头获取小岩芯的钻进方式。论文选择“连续造斜绳索取心钻具设计理论研究及研制”,具有很强的创新性和实用价值。
     首先,文章在众多学者研究的基础上,作者选择纵横弯曲梁理论进行连续造斜绳索取心钻具的井底力学分析,并介绍了三种钻具造斜能力的预测方法。在钻具的生产试验中,通过现场实测数据,证明了纵横弯曲梁理论计算连续造斜绳索取心钻具造斜能力的可行性,拓展了纵横弯曲理论的使用范围;
     其次,在连续造斜绳索取心的整体设计中,作者通过理论分析确定了该钻具的造斜能力不超过0.5°/m,钻具总长4-6m。并通过分析认为整个钻具应包括绳索取心系统、连续造斜系统、分离和卡固系统、井底测量系统四大组成部分。在随后的章节里,作者进一步分析了绳索取心系统对造斜井段的适宜性及提高岩心收获率的措施、连续造斜系统的结构等关键技术问题。并在国内首次明确了环状小空间设计连续造斜机构的可行性,提出了具有创新性的环状薄壁偏心造斜机构,认为偏心机构的偏心量1.5mm时,即可以满足连续造斜绳索取心钻具的造斜能力要求。同时,为保证井底造斜的可靠性,作者还提出了使用橡胶材料的连续造斜绳索取心钻具的井底卡固机构,这在国内地质取心钻具的设计中尚属首次;
     第三,作者将造斜机构分为带卡固块的造斜机构和无卡固块的造斜机构两类,并通过室内试验,得到带单一卡固块的造斜机构,要保证达到顺利切削孔壁的侧向切削力,钻具内液体的工作压力不小于5MPa,得出在钻具设计中不选用单一卡固块式的造斜机构的结论;作者通过生产试验证明设计的连续造斜绳索取心钻具结构合理,操作方便,性能可靠;钻具使用过程中通过更换不同的偏心套来改变钻具的最大造斜强度,根据井身设计情况,实际使用的造斜强度可以在0到最大造斜率之间选择。
The purpose of geological exploration is to acquire mineral shape, occurrence, cover depth, reserves and host rocks property through the sample of rock and water. In order to achieve different purposes, some adopts vertical hole, and the others adopts controllable directional hole are better. However, in the domestic geological drilling industry, it only use full-scale drilling or special bit to acquire small size core due to lack of specific drilling tool for the build-rate part of direction hole. The thesis choose“analysis of design theory research and manufacture of continuous deflecting wire-line coring tools assembly”has strong innovative and value.
     Firstly, the thesis is based on the research of many scholars, the author choose beam theory to analyze down-hole mechanics of continuous deflecting wire-line coring tool, and introduced 2 methods to forecast deflecting ability of this tool assembly. In the field test of drilling tool, the results show the feasibility of calculating deflecting rate.
     Secondly, in the whole design of continuous deflecting wire-line coring tool assembly, the author confirmed the defecting ability of this drilling tool is not over 0.5°/m, the total length of drilling tool is 4-6m. And the whole drilling includes 4 parts: wire-line coring system, continuous deflecting system, opening and locking system, down-hole measurement system. In the following chapters, the author further analyzed the key technology problems ,such as the feasibility of using wire-line coring in deflecting hole、the methods to improve the recovery of coring rate and the construction of continuous deflecting system. The author fist confirms the possibility of continuous deflecting set design in small ring space in China, and raised an innovative thin eccentric set. When the eccentric value is 1.5mm, it satisfied the deflecting requirements for this tool. In order to guarantee the reliability of build rate, the author suggest use rubber tube as locking set, it is also the first time in geological drilling industry of China.
     Thirdly, There are two types of the deflecting set: with locking block and without locking block. The experiment shows that pressure in tool is not less than 5MPa, if we want to cut hole wall effectively. So, it is concluded that single-locking-block set can not be chose in design. The field test proved the continuous deflecting wire-line coring tool with reasonable construction、easy operation and credible performance. The maximum deflecting rate can be changed by different eccentric house. According to the design of drilling hole, the deflecting rate can be chose between 0 to maximum.
引文
Berger,P.E. and Sele, R., Improving wellbore position Accuracy of Horizontal wells by Using A Continuous Inclination Measurement From A Near Bit Inclination Mud Sensor. Paper SPE 50378 presented at the 1998 SPE International Conference on Horizontal well Technology, 1998.11:1-4;
    Bradley, W.B., Factors Affecting the Control of Borehole Angle in Straight and Directional Wells, Journal of Petroleum Technology, 1975.27(6):679-688;
    Brett, J.F. et al., A Method of Modeling the Directional Behavior of Bottomhole Assemblies Including Those with Bent Subs and Downhole Motors, SPE/IADC Drilling Conf., 1986.2:9-12;
    Calderoni,A,et al,“Automated Steering Systems Applied to Complex Horizontal well in South Italy,”paper 50379 presented at the 1998SPE International Conference on Horizontal well Technology Calgary ,Alberta, Canada, 1998.11:1-4;
    Devico directional core drilling instruction,http://www.devico.com,2007; F.Akgun, A finite element model for analyzing horizontal well BHA behavior, Journal of Petroleum Science and Engineering 2004.42:121-132;
    Fischer, F.J., Analysis of DrillStrings in Curved Boreholes, Fall Meeting of the Society of Petroleum Engineers of AIME. 1974.10:6-9;
    G.C.Downton, D.Carrington. Rotary Steerable Drilling System for the 6-in Hole, SPE/IADC Drilling Conference, 2003.2:19-21;
    H Wolter, K Gjerding, M Reeves, etc. The First Offshore Use of an Ultra High Speed Drillstring Telemetry Network Involving a Full LWD Logging Suite and Rotary Steerable Drilling System. SPE Annual Technical Conference and Exhibition, 2007.11:11-14;
    Hoch, R.S,. A Review of the Crooked-Hole Problem and an Analysis of Packed Bottomhole Drill-collar Assemblies. Drilling And Products Practice, 1962:27;
    John H.Cohen, High-power Drilling Moter Field Test, world oil, 2001.5:1-7;
    Johnstone, John A, Allan. Realizing True Value From Rotary Steerable DrillingSystems. Offshore Europe Oil and Gas Exhibition and Conference, 1999.9:7-10;
    Karlsson H, et al. Performance Drilling Optimization. SPE/IADC Drilling Conference, 1985.3:5-8;
    Lubinski,A., A Study of the Bucking of Rotary Drilling String, API, 1950:178-214;
    Lubinski,A., Woods, H.B.,Factors Affecting the Angle of Inclination and Dog-Legging in Rotary Bore Holes, Drill. And Prod. Prac., API,1953:222-242;
    Merphey, C.E., Cheatham, J.B., Hole Deviation and Drill String Behavior, SPEJ., 1966.5:44-54;
    Millheim, K.K. et al., Bottomhole Assembly Analysis Using the Finite Element Method, Jour. Of Pressure Vessel Technology, 1978.2:265-274;
    Millheim, K.K. et al., Side Cutting Characteristics of Rock Bits and Stabilizers While Drilling, SPE 7518,1978.10:1-3;
    M.Moody, S.Jones, P.Leonard. Development and Field-Testing of a Cost Effective Rotary Steerable System, SPE Annual Technical conference an Exhibition,2004.9:26-29;
    O.Hjelmeland B.G.Tjetland et al,A new method for stabilization of friable and unconsolidated core samples at well-site , Journal of Petroleum Science and Engineering 1998.19:7-19;
    Rifie, S., Ho, H.S., and Chandra, U., Applications of a BHA Analysis Program in Directional Drilling, SPE /IADC Drilling Conference, 1986.2:9-12;
    S.L.Huang Z.W.Wang, The mechanics of diamond core drilling of rocks, Int.J.Rock Mech.& Min. Sci. 1999(34):3-4;
    Stuart Schaaf, Demos Pafitis, Eric Guichemerre. Application of a Point the Bit Rotary Steerable System in Directional Drilling Prototype Well-bore Profiles. SPE/AAPG Western Regional Meeting, 2000.6:19-22;
    Unit State Patent,Patent No:US5020612B1 ,June.04,1991;
    Unit State Patent,Patent No:US6234259B1 ,May.22,2001;
    Unit State Patent,Patent No:US6516900B1 ,Feb.11,2003;
    Unit State Patent,Patent No:US6769499 ,Aug.03,2004;
    V.Zagorodnov L.G.Thompson et al,Antifreeze thermal ice core drilling: an effective approach to the acquisition of ice cores, Cold Regions Science and Technology, 1998.28:189-202;
    Walker, B.H., Some technical and Economic Aspects of Stabilizer Placement, Jour. Of Pressure Vessel Technology, 1973.6:633;
    Walker, B.H., Friedman, M.B., Three-Dimentional Force and Deflection Analysis of a Variable Cross Section Drill String, Jour. Of Pressure Vessel Technology, 1977.5:367-373;
    Wiley, G., The Use of Near-bit Stabilizer Sub Assemblies for Control of Hole Deviation, Drilling And Production Practice, 1965:66;
    Woods, H.B., Lubinski, A., Practical Charts for Solving Problems on Hole Deviation. Drilling And Production Practice, 1954:56;
    Woods, H.B., Lubinski, A., Use of Stabilizers in Controlling Hole Deviation. Drilling And Production Practice, 1955:165;
    白稼祉,应用纵横弯曲连续梁理论求解钻具组合的受力和变形,国际石油工程会议论文集(北京),1982.3;
    白稼祉,林小敏,纵横弯曲法对钻具组合的二维分析,石油学报,1985.3:78-87;
    白家祉,苏义脑,井斜控制理论与实践,石油工业出版社,1990;
    包贵全,绳索取心工具与工艺技术研究,地质装备,2008.1:20-27;
    陈清香邓蓉等,绳索取心与人工定向钻探技术应用,西部探矿工程,2007.19(2):72-73;
    陈世春,TZ5X-1大斜度定向井小井眼取心技术,石油钻采工艺,2002.24(4):26-28;
    陈香凯孟庆昆沈泽俊等,YZQ-198型遥控可变角造斜器的研究与应用,石油矿产机械,1997.26(1):11-15;
    陈晓琳,国内水平井定向取心技术及工具,探矿工程,2007.9:75-77;
    科德扎耶夫著高森译,水平勘探孔钻进,1986;
    冯玉国编译,金刚石岩心定向钻进系统,地质装备,2006.10:16-18;
    付建红施太和,弯外壳动力钻具力学性能分析,石油钻采工艺,1995.17(2):8-11;
    高德利,井眼轨迹控制问题的力学分析方法,石油学报,1996.1:115-121;
    黄洪春王玺等,煤层气绳索取心技术研究与应用,钻采工艺,2001.24(3):80-83;
    胡国清刘龙,KJW-310型钻井可控变径稳定器,石油机械,1999.27(12):34-36;
    季玉国,54型弯外壳造斜回次长度的控制及效果,地质与勘探,1990.26(4)59-60;
    季细星诸德超,弯螺杆钻具力学特性分析与设计,石油机械,1997.25(11):1-4;
    姜东霞周静等,内置式可控偏心器侍服平台稳定控制模型,西安石油学院学报(自然科学版),2000.15(1):45-49;
    江天寿,金刚石定向钻探技术,探矿工程,1985.6:2-5;
    江天寿周铁芳等.受控定向钻探技术.地质出版社,1994;
    姜伟,旋转导向偏心稳定器力学特性研究,中国海上油气,2009.21(3):176-179;
    姜伟,旋转导向钻井工具系统的研究及应用,石油钻采工艺,2008.30(5):21-24;
    蓝海峰鲜保安等,盐岩层大直径岩心取心技术,钻采工艺,2005.28(4):9-11;
    李海石符国强等,钻井取心技术,石油工业出版社,1993;
    李子丰周大千李敬元,诸因素对钻头侧向力的影响,石油钻采工艺,1993.15(6):27-34;
    李子丰刘希圣,导向钻具三维小挠度力学分析,石油钻探技术,1993.21(2):1-6;
    李子丰孙玉学刘希圣,井眼轨道预测理论,大庆石油学院学报,1995.19(2):6-9;
    李子丰.液力井斜控制-减振-推进器,石油机械,1997.25(3):31-33;
    刘鸿文.材料力学.高等教育出版社,1991;
    刘修善,何树山等,导向钻具几何造斜率的研究,石油学报,2004.25(6):83-87;
    刘修善,王成萍,程安林.弯壳体导向钻具的设计方法.石油钻采工艺,2005.27(4):21-23;
    黎亮,深部定向技术在TK1202井的应用,重庆科技学院学报(自然科学版),2008.10(2):18-20;
    马秀春,黑龙江黑河争光岩金矿区60°斜孔岩心钻探技术,探矿工程,2007.34(12):19-22;
    沈荣元张扬,泰美克-260型全液压钻机,国外地质勘探技术,1990.1:1-7;
    孙建平,金刚石绳索取心钻进在煤层气井中的应用,河北能源职业技术学院学报,2003.1:15-16;
    孙欣,煤层定向钻进技术的应用研究,中国煤层气,2008.1:9-12;
    帅健于永南吕英民,关于钻头轨迹形成的理论探讨,石油钻探技术,1995.12:1-5;
    宋玉玲董丽娟等,国外大位移井钻井技术发展现状,钻采工艺,1998.21(5):4-8;
    宋执武高德利等,地面遥控可调弯接头的设计,石油机械,2005.33(7):26-27;
    苏义脑周煜辉,定向井井眼轨道预测方法研究及其应用,石油学报,1991,12(3):139-150;
    苏义脑,极限曲率法及其应用,石油学报,1997.18(3):110-114;
    苏义脑,水平井井眼轨道控制,石油工业出版社,2000;
    王宝新,许岱文,程存志,弯壳动力钻具造斜率的几何分析与计算,石油钻采工艺,1994.1:32-37;
    王东金胜利,塔深1井超深井段弯螺杆钻具MWD定向纠斜技术,石油钻采工艺,2007.29(3):111-113;
    王海坤张振国等,ZSQ型绳索式取心工具的研制与应用,石油钻探技术,1999.26(6):34-35;
    王年友谢文卫冯起赠等,绳索取心、液动潜孔锤、螺杆马达“三合一”钻具,探矿工程,2005.9:58-60;
    王年友谢文卫冯起赠等,绳索取心钻探技术的新发展-三合一组合钻具,探矿工程,2007.9:70-74;
    王建军张绍槐等,偏心垫块对螺杆钻具造斜能力影响的预测方法,石油机械,1994.22(12):25-27;
    王永平,SK5(3/4)″×94mm绳索取心钻具结构分析[J],探矿工程(岩土钻掘工程), 2005, (S1):42-44;
    魏臣,提高绳索取心钻进效率的有效途径,中国煤田地质,2006.6:58-60;
    吴光琳胥建华石永泉等,SDQ-91型随钻测量定向取心钻具的试验研究,探矿工程,2001.6:33-36;
    吴玉滨杨立文等,SZ-65型随钻取心技术研究与应用,石油钻采工艺,2006.28(2):72-74;
    吴小建,螺杆钻定向钻探技术在煤层气钻井中的应用,探矿工程,2006.33(11):48-49;
    熊义国吴军等,绳索取心与初级定向钻探技术应用实例,探矿工程,2006.32(10):60-61;
    许俊良毕永进等,定向井取心工具的研制及现场应用,石油机械,2001.29(2):35-37;
    许俊良宋淑玲等,国外钻进取心新技术(一),石油机械,2000.28(9):53-56;
    许俊良宋淑玲等,国外钻进取心新技术(二),石油机械,2000.28(10):53-57;
    许俊良杨玉坤等,SP-8100型水平井取心工具,石油机械,1994.22(9):50-53;
    徐颂贤,绳索钻具的施工技术及工艺,地质装备,2007.8(6):32-35;
    徐玉山,如何提高岩心收获率,石油钻探技术,1996.24(3):11-13;
    胥建华肖阳春等,SDQ型随钻定向取心器的研制,地质灾害与环境保护,2000.11(1):85-87;
    杨明奇,造斜强度的合理确定,煤田地质与勘探,1994.22(3):66-69;
    杨鹏王智锋等,CB-A29m大斜度井取心实践与认识,西部探矿工程,2005.17(6):80-81;
    尹虎,李黔,宋振清,陈新兰,单弯螺杆控制井斜力学特性分析及应用,天然气工业,2004.6:80-82;
    张洪泉任中启,大斜度大位移井岩屑床的解决方法,石油钻探技术,1999.27(3):6-8;
    张建刘海燕王延文,地面可调螺杆钻具的研制,石油钻探技术,2004.32(3):60-61;
    张绍先张洪君等,裂缝性泥岩探井水平井取心工具的研制和应用,石油钻采工艺,2004.26(5):38-39;
    张同昱,YT型系列绳索取心钻具,西部探矿工程,2003.15(2):119;
    赵广平译,随钻测井取心——新技术推进科学钻井,测井技术信息,2004.19(3):11-14;
    周安辉赵晨,埃及OSOCO油田大井眼定向钻井技术的运用与探讨,吐哈油气,2007.12(3):289-293;
    周策陈文俊,时空多点连续定向取心技术应用研究,探矿工程,2004.31(8):36-38;
    周铁芳阳东升,螺杆钻定向钻探技术研究与应用,探矿工程,1996.4:53-55;
    周兴友,大位移井关键技术研究进展,石油工业技术监督,2003.19(8):4-7;
    朱文志王少峰等,一种新型井壁取心岩心筒的研制与应用,测井技术,2004.28(6):555-556;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700