360°双螺旋副旋转油缸内流动特性及效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
360°双螺旋副旋转油缸较叶片式结构摆动油缸及齿轮齿条式摆动缸相比,具有体积小、回转精度高、重量轻、效率高等优点。在工程机械、建筑机械、矿山机械中具有广阔的应用前景。但是,仅美国Helac公司、德国HKS公司等少数几家公司能生产。在这样的条件下,对360°双螺旋副旋转油缸进行研究,从而实现其国产化是必然的。
     其主要的工作内容是:从机理上对旋转油缸的螺旋曲面复杂层流流动进行分析。利用计算流体力学的基本理论,建立液压油流动的Soildworks-Gambit-fluent数值仿真模型,给出符合实际的初始及边界条件,获得液压油在缸内螺旋副间的摩擦力随构参数及压强、活塞速度等的变化规律,并以此求得传动效率;根据能量方程、连续性方程、N-S方程,建立环形间隙液压油内泄漏的数学模型。在此基础上利用fluent软件进行数值仿真,探讨其在实际工况下,油缸内部间隙螺旋流的流动特性、内泄漏规律。为优化油缸结构参数、选择合理的制造精度、减少内泄漏、提高容积效率提供理论依据。
     搭建实验台,对360度双螺旋副旋转油缸进行实验,对比实验效率曲线与理论效率曲线,发现误差少,说明效率公式可信。
Compared the blade structure type swinging cylinder and the gear rack and pinion type swinging cylinder,360°Double Helix Pair Hydraulic Rotary Actuator has the small volume,the high rotation precision, the light weight, the high efficiency and so on. In the engineering machinery, the construction machinery, the mining machinery had the broad application prospect. But, only American Helac Corporation, German HKS Corporation and so on minority several countries can produce. Under such condition,360°Double Helix Pair Hydraulic Rotary Actuator was researched, thus realizing its domestic manufacture is inevitably.
     Its main work content as follows.Firstly, Complex laminar flow in helical curve of Hydraulic Rotary Actuator was analysed from mechanism. Using computational fluid dynamics fundamental theory, the hydraulic oil flow's Soildworks-Gambit-Fluent numerical simulation model was established. Conforming to reality initial and boundary conditions was given, Variation regularity of friction force was obtained with the structure parameters, the pressure and the piston speed etc change,and thus transmission efficiency was obtained. According to the energy equation, continuity equation, N-S equation, the internal leakage model of hydraulic oil was established within annular gap and Fluent software was used for numerical simulation.In the actual working conditions, about helix flow within gap of 360°Double Helix Pair Hydraulic Rotary Actuator, flow characteristics and internal leakage variation regularity with each factor was explored. To optimize the structure parameters, select a reasonable manufacturing precision, reduce internal leakage, provide a theoretical basis to improve volumetric efficiency.
     Experiment table was built and thus experiments carried out on 360°Double Helix Pair Hydraulic Rotary Actuator. Comparing the experimental efficiency curve with the theoretical efficiency curve, fewer errors was founded, indicating the efficiency formula is credible.
引文
[1]周海强,陈道良.摆动油缸内部结构改进设计[J].液压气动与密封,2007(6):32-34.
    [2]孟繁民.单叶片式摆动油缸[J].液压与气动,1990(1):51-52.
    [3]金忠,张将.摆动油缸组合密封的建模与计算[J].液压与气动,2007(10):18-22.
    [4]黄桂英,杨锦斌.单叶片摆动油缸的参数设计及应用[J].功能部件,2009(5):123-127.
    [5]李利君.摆动油缸机构的优化设计[J].工程机械,1993(9):22-24.
    [6]张源焕.摆动油缸叶片的固定密封及泄漏分析[J].石家庄铁道学院学报,1998(2):94-98.
    [7]石延平,扬力.大摆角360。旋转油缸的设计[J].液压与气动,1999(6):5-7.
    [8]金志民.动力与精确的天合之作—HKS摆动油缸[J].液压气动封,2004(8):40-41.
    [9]李祖昌.摆动液压马达及其选用[J].液压与气动,1999(2):37-38.
    [10]Bob Flitney. Alternatives to chrome for hydraulic actuators[J]. Sealing Technology,2007:8-12.
    [11]Mikko Siuko, M Pitkaho. Water hydraulic actuators for ITER maintenance devices[J]. Fusion Engineering and Design,2003,69:141-145.
    [12]N Brown, R M Parkin. Simulation of a modified rotary timber machining process to improve surface form[J]. Mechatronics,2002,12:489-502.
    [13]George k Nikas. Theoretical study of solid back-up rings for elastomeric seals in hydraulic actuators[J]. Tribology International,2004,37:689-699.
    [14]P Sekhavat, N Sepehri, Q Wu. Impact stabilizing controller for hydraulic actuators with friction:Theory and experiments[J]. Control Engineering Practice,2008,206(14):1423-1433.
    [15]Mark Karpenko, Nariman Sepehri. On quantitative feedback design for robust positon control of hydraulic actuators[J]. Control Engineering Practice,2010,18:289-299.
    [16]John D Anderson.计算流体力学基础及其应用[M].机械工业出版社,2007:1-23.
    [17]Amon C H, Tamnehill J C, Fletcher R H. Computational Flows in complex Geometrics[J], AIAA Journal,1993,31(1):42-48.
    [18]盛敬超.工程流体力学[M].机械工业出版社,1988.205-209.
    [19]Joe F Thompson, Z U Warsi. Numerical grid generation foundations and applications[M]. North Holland,1985:1-30.
    [20]王积伟,章宏甲,黄谊.液压传动(第2版)[M].机械工业出版社,2006.34-35.
    [21]Brown D L, Cortez R, Minion M L, Accurate Projection Methods for the incompressible Navier-Stokes Equations[J]. J.Comp.Phys,2005,168(22):653-669.
    [22]Boris J P. New directions in computational fluid dynamics[J]. Fluid Mech, 1989,21:341-385
    [23]Data A W, Solution of N-S Equtions on Non-staggered grids at all speeds[J]. Nu-merical Heat Transfer B,1998,33:451-460.
    [24]Chen C J. The Finite Analytic Method in flows and heat transfer[J]. Dept of Mech Engng, The University of Iowa,1987:20-46.
    [25]C Taylor, B S Patil and O C Zienkiewicz. Harbour oscillation:a numerical treatment for undamped natural modes[J]. Proc. Inst. Civ. Eng,1969,43: 141-56.
    [26]I BabuSka, F Ihlenburg, T Stroubolis and S K Gangaraj. A posteriorierror estimation for finite element solutions of Helmholtz' equations. Part Ⅰ:the quality of local indicators and estimators[J]. Int. J. Num. Meth. Eng,1997,40(18):3443-62.
    [27]. I BabuSka, F Ihlenburg,T Stroubolis and S K Gangaraj. A posteriorierror estimation for finite element solutions of Helmholtz' equations. Part Ⅱ: estimation of the pollution error[J]. Int. J. Num. Meth. Eng.,1997,40(21): 3883-900.
    [28]K Morgan,O Hassan and J Peraire. A time domain unstructured grid approach to the simulation of electromagnetic scattering in piecewise homogeneous media[J]. Conzp. Methods Appl. Mech. Eng,1996,152:157-174.
    [29]E Chadwick, P Bettess and 0 Laghrouche. Diffraction of short waves modelled using new mapped wave envelope finite and infinite elements[J]. Int. J. Nurn. Meth. Eng,1999,45:335-54.
    [30]J M Melenk and I BabuSka. The partition of unity finite element method. Basic theory and applications[J]. Comp. Meths. Appl. Mech. Eng,1996,139:289-314.
    [31]A Bettess and P Bettess. A new mapped infinite wave element for general wave diffraction problems and its validation on the ellipse diffraction problem[J]. Conzp. Meth. Appl. Mech. Eng,1998,,164:17-48.
    [32]ANIL W DATE.Introduction to computational fluid dynamics[M].Cambridge University Press,2005,1-13.
    [33]Chai J, Zhang M, Moder J and Patankar S V. Conduction heat transfer calculations using structured and unstructured grids[J].Proc.2nd ICHMT Conference on Advances in Computational Heat Transfer, Palm Cove, Australia, 2001:519-526.
    [34]Date A W. Solution of Navier-Stokes Equations on Non-staggered grids at all speeds[J], Numerical Heat Transfer B,1998,33:951-963.
    [35]Date A W. Fluid Dynamic View of pressure checker boarding problem and smoothing pressure Correction on meshes with colocated variables[J], Int. J. Heat Mass Transfer,2003,46:4885-4898.
    [36]Date A W. Complete pressure correction algorithm for solution of incompressib-le N-S Equation on a staggered grid[J]. Numerical Heat Transfer B,1996(29):441-452.
    [37]Versyeeg H K, Malalasekera W. An introduce to computational fluid dynamics[J]. Longman Group Ltd,1995:1-22.
    [38]Keller H B. Accurate numerical methods for boundary-layer flows: Two-demensional turbulent flows[J]. AIAA.J,1972,10(9):1193-1208.
    [39]Krehn T H. An experimental study of natural convenction heat transfer in concentric and eocentric horizontal cylindrical annuliar[J].ASME J. Heat Transfer,1987,100:635-640.
    [40]Fluent Inc.GAMBIT User's Guide. Fluent Inc.,2003.
    [41]江帆,黄鹏.Fluent高级应用与实例分析.清华大学出版社[M],2008.73-91.
    [42]Fluent Inc FLUENT Tutorial Guide. Fluent Inc.,2003.
    [43]Fluent Inc GAMBIT Tutorial Guide. Fluent Inc.,2003.
    [44]Fluent Inc FLUENT User's Guide. Fluent Inc.,2003.
    [45]机床设计编写组.机床设计手册[M].北京:机械工业出版社,1979.
    [46]成大先.机械设计手册[M].北京:化学工业出版社,2005.
    [47]徐灏.机械设计手册[M].北京:机械工业出版社,2003.
    [48]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2000.151-169.
    [49]孙恒,陈作模,葛文杰.机械原理[M].北京:高等教育出版社,2005.82-96.
    [50]江帆,陈维平,屈盛官.润滑用齿轮泵内部流场的数值模拟[J].现代制造工程,2007(6):116-118
    [51]江帆,庚在海,王一军.转笼生物反应器流场的滑移网格与动网格计算比较[J].广州大学学报,2007,6(3):37-41.
    [52]温诗铸,杨沛然.弹性液压油动力润滑[M].清华大学出版社,1995:1-13.
    [53]Hua-Shu Dou,Boo Cheong Khoo. Energy loss distribution in the plane Couette flow and the Taylor-Couette flow between concentric rotating cylinders[J]. International Journal of Thermal Sciences,2007,46:262-275.
    [54]Min Ho Lee. The stability of spiral flow between coaxial cylinders[J]. Computers and Mathematics with Application.2001,41:289-300.
    [55]K P Gertxos,P G Nikolakopoulos. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant[J]. Tribology International,2008, 41:1190-1204.
    [56]Manosh C Paul, Arkaitz Larman. Investigation of spiral blood flow in a model of arterial stenosis[J]. Medical Engineering & Physics,2009,31,1195-1203.
    [57]云忠,谭建平.人体血流环空间螺旋流动研究[J].生物医学工程研究,“2005:23-27.
    [58]李启玉,陶峰.基于Fluent的螺旋槽干气密封数值模拟与分析[J].机械研究与应用.2008,21(1):70-73.
    [59]施卫东,汪永志等.旋流泵内部流动的研究[J].农业机械学报,2006,37(1):67-70.
    [60]王彬,郝术明.新型动静压混合润滑机械密封流场数值研究[J].液压与气动,2009,34(7):62-65.
    [61]兰雅梅,孙西欢,霍德敏.圆管螺旋流的三维数值模拟[J].太原理工大学学报,2001,32(2):255-259.
    [62]郭永辉,刘朝.圆管螺旋流的流动与传热数值模拟[J].热能工程,2007,36(3):15-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700