ESC液压执行单元的动态特性分析与综合仿真平台的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车电子稳定性控制系统ESC的研究已是汽车动力学控制领域的研究热点和核心技术。ESC系统的主要功能分为三个部分:制动防抱系统ABS、牵引力控制系统TCS和主动横摆力矩控制AYC。ESC在汽车运动过程中,通过监测汽车行驶状态,根据车辆实际运动状态和驾驶员期望运动状态之间的差别,进行发动机扭矩调节或者通过主动制动的压力调节,保证汽车按照驾驶员的期望运动。
     ESC液压执行单元的关键性能就是主动增压,即主动制动功能的实现。本文针对主动增压的液压回路进行了研究,分析了动力源——柱塞泵的工作原理,提出了ESC液压执行单元无背压条件下实现主动增压功能的设计方法。在此基础之上,对主动增压相关回路的零部件进行了参数设计,减小了吸入阀小孔节流效应形成的压力降,在柱塞泵入口实现了0.4bar的真空度,从而实现了ESC液压执行单元的主动增压功能。
     为了研究ESC液压执行单元的动态特性,和ESC产业化以后的硬件参数匹配,本文建立了ESC液压执行单元的综合仿真平台,平台中考虑了增减压阀孔径的选择、柱塞泵排量的优化、蓄能器的容积设计,分析了这些参数对ESC系统主动增压速率和减压速率的影响,为ESC硬件匹配工作建立了理论分析基础。
     在ESC系统中,多采用电子控制单元控制的二位二通高速开关阀来实现制动压力的增压、保压、减压3种控制。传统高速开关阀的控制常采用脉冲宽度调制PWM(Pulse Width Modulation)控制,调制频率集中在10~100Hz这一低频范围内。本文提出了高速开关阀在高频PWM控制下实现比例开度功能的方法。建立了高速开关阀的数学模型,并搭建了高速开关阀PWM仿真模型,分析了2~4kHz频率下的动态响应特性,通过优化线圈匝数、弹簧刚度、阀座角度等参数,实现大范围的比例开度控制区间,利于ESC系统控制增压速度和实现限压功能。
     完成ESC液压执行单元的试制后,在ESC硬件在环仿真试验台和实车上进行了相关试验。结果表明,ESC液压执行单元能够实现主动增压的功能,通过改变增减压阀孔径、柱塞泵排量、电机转速等参数能够控制增减压的速率,并通过应用在限压阀上的高速开关阀的高频PWM控制,验证了比例开度功能以及各个参数对PWM占空比控制区间的影响因素。
The research of vehicle electronic stability control system (ESC) is focus andcentral issue of vehicle dynamic control. The function of ESC includes anti-lockedbraking system (ABS), traction control system (TCS) and active yaw control (AYC). Inorder to make vehicle moves as driver’s wish, when the vehicle drives, ESC Monitorsvehicle driving status to adjust engine torque or brake pressure due to the differencebetween the actual state of motion of the vehicle and driver’s expect state of motion.
     The critical function of ESC hydraulic control unit (HCU) is that how to apply thebrake actively. This thesis studies the hydraulic circuit of the active brake system,analyzes the working principle of the power source-piston pump, and designs theparameters of relevant components in the hydraulic circuit of the active brake system.On the basis, the pressure drop as a result of the suction orifice effect has been reducedand a vacuum of0.5bar has been achieved in the inlet of the piston pump. After that,the function of active brake can be achieved.
     In order to study the dynamic of ESC-HCU and match hardware parameter afterESC manufacturing, This thesis establishes a simulation platform of ESC-HCU inwhich the choice of orifice diameter of inlet and outlet valve, the optimization of thepiston pump flow, the design of volume of accumulator are considered. Nevertheless,this thesis analyzes the influence of these parameters to the rate of pressure increasingand pressure decreasing which is the basis for ESC hardware match.
     In ESC, the two-status-two-way high-speed on/off valve is used to build up, holdor reduce the brake pressure. Traditional research of high-speed on/off valve in controlof pulse width modulation (PWM) concentrated in low frequency of10-100Hz. Thisthesis studies the proportion function of high-speed on/off valve in control of highfrequency of2~4kHz. This thesis establishes a high-speed on/off valve simulationmodel which is in control of PWM of2~4kHz modulation frequency inMATLAB-Simulink, and analyzes the proportion function of high-speed on/off valve indifferent duty cycle of the control of PWM. Nevertheless, a further study on influenceof different parameters to enlarge the control rage is discussed. By change the coilnumber, spring stiffness and seat angle, the ESC can control the rate of buildingpressure and limit the system pressure.
     After the sample of the designed ESC being manufactured, hardware in loop testand a test in actual vehicle are carried out. The result verifies the function of activebrake can be achieved and the rate of building pressure can be controlled by changingthe orifice diameter of inlet and outlet valve, piston pump flow and volume ofaccumulator. Nevertheless, the application of high-speed on/off valve in pressure-limitvalve in control of high frequency PWM verifies the proportion function of high-speedon/off valve and the influence of different parameters to the control rage.
引文
[1] Resolutions adopted by the General Assembly at its58th session. Improving global roadsafety [R]. A/58/PV.84.14Apr.2004. GA/10236.
    [2] World Health Organization. World report on road traffic injury prevention [R]. Geneva,2004.
    [3]孙习武.车辆防抱制动系统的仿真研究[硕士学位论文].合肥:合肥工业大学,2006.
    [4] Madison RH. Evolution of Sure-Track Brack System[J]. SAE Paper, No.690213.
    [5] Douglas JW, Schafer TC. Chrysler ''Sure-Brake''-The First Production Four-Wheel Anti-Skid System[J]. SAE Paper,710248.
    [6] Jonner, Wolf-Dieter, Czinczel, et al. Upgrade Levels of The Bosch ABS[J]. SAE Paper,860508.
    [7] Bleckmann, Hans-W, Fennel, et al. Traction Control System With Teves ABS MARK II[J].SAE Paper, No.860506.
    [8]唐国元.车辆防抱制动系统及制动稳定性控制策略的仿真研究[博士学位论文].武汉:华中科技大学,2005
    [9]袁辛. FKX-AC型ABS在国产大客车上的应用[J].客车技术与研究,1996(04):242-245,239
    [10]李志远,崔海峰,刘昭度,等.基于MK20型ABS压力调节器电磁阀的开关响应特性测试与分析[J].液压与气动,2006(11):73-75.
    [11]宋健,陈在峰.制动器耗散功率最大为目标的ABS控制方法[J].清华大学学报(自然科学版),1997,37(12):95-98.
    [12]宋健,李永.汽车防抱死制动系统控制方法的研究进展[J].公路交通科技,2002,19(6):140-145.
    [13]孔磊.面向产业化的ABS控制关键技术研究与开发[博士学位论文].北京:清华大学,2006.
    [14]边明远.汽车ASR技术研究的进展[J].北京汽车,2002,04:9-14.
    [15]司利增,王忠会.驱动防滑转控制途径及原则分析[J].西安公路交通大学学报,1998,18(1):54-58.
    [16]王德平.汽车驱动防滑控制与动力学稳定性控制的控制逻辑与算法研究[博士学位论文].吉林:吉林工业大学,1998.
    [17]李东江,宋良玉.现代汽车电子控制技术[M].科学技术文献出版社,1997.
    [18]王德平,郭孔辉,高振海.汽车驱动防滑控制系统[J].汽车技术,1997(4):22-27.
    [19] Ken Asami, et al. Improvements in Traction and Control (TRC) System for1987YOYOTACrown[J]. SAE Paper, No.890833.
    [20] Van Zanten Anton Th, Erhardt Rainer, Lutz Albert et al. Simulation for the development ofthe bosch-VDC[J]. SAE paper, No.00995908.
    [21] Anon. Control of vehicle dynamics[J]. SAE paper, No.00982571.
    [22] A. T. van Zanten. Bosch ESP Systems:5years of Experience[C]. SAE2000AutomotiveDynamics&Stability Conference,2000
    [23] Van Zanten A T. Evolution of Electronic Control Systems for Improving the VehicleDynamic Behavior[C]. In Proceedings of the International Symposium on Advanced VehicleControl(AVEC), Tokyo,2002.
    [24] E. K. Liebemann, K. Meder, J. Schuh, et al. Safety and Performance Enhancement: the BoschElectronic Stability Control (ESP)[C]. SAE Convergence2004, Detroit, Michigan, USA,October2004, Technical Paper2004-21-0060
    [25] Anton T van Zanten, Rainer Erhardt, Klaus Landesfeind, et al. VDC systems developmentand perspective[J]. SAE paper, No.980235,1998.
    [26] Leffler, Heinz. Stage of development of BMW's ABS-integrated wheel slip control systemsASC and DSC[J]. ATZ Automobiltechnische Zeitschrift,1994,96(2):84-94.
    [27] Anstrom, Joel R. Model development for integrated hybrid electric vehicle dynamic stabilitysystems[J]. American Society of Mechanical Engineers, Design Engineering Division(Publication) DE,2003,116(1):167-175
    [28] National Highway Traffic Safety Administration. Proposed FMVSS No.126ElectronicStability Control System. USA: NHTSA,2006.
    [29] National Highway Traffic Safety Administration. Federal Motor Vehicle Safety Standards:Electronic stability control system, controls and displays. USA: NHTSA,2007.
    [30] Werner Struth.《汽车商业评论》[EB/OL].(2010-05-12).http://auto.sina.com.cn/service/2010-05-12/1531600959.shtml.
    [31] EU: Electronic Stability Control to be Standard on all Vehicles from2014[S].2008.
    [32]中国汽车工业协会.2006-2007年汽车制动防抱死系统(ABS)行业分析报告[R].2007.
    [33] Lie A, Tingvall C, Krafft M, et al. The effectiveness of ESC (Electronic Stability Control) inreducing real life crashes and injuries. Traffic injury prevention,2006,7(1):38-43.
    [34]余志生.汽车理论[M].4版.北京:机械工业出版社,2007.
    [35]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [36]司利增.汽车防滑控制系统——ABS与ASR[M].北京:人民交通出版社,1996.
    [37]陈佳佳,梅涛,梁华为.基于自适应模糊PID控制的汽车ESP系统控制研究[J].组合机床与自动化加工技术,2008(09):59-62.
    [38]赵增强.基于CAN总线的汽车ESP控制系统研究[硕士学位论文].西安:长安大学,2009.
    [39]康小鹏.汽车ESP控制系统仿真与研究[硕士学位论文].重庆:重庆理工大学,2009.
    [40]喻海军,刘翔宇,方敏.基于ANFIS的汽车ESP控制方法研究[J].合肥工业大学学报(自然科学版),2010(07):1015-1019.
    [41]刘翔宇,陈无畏.基于DYC和ABS分层协调控制策略的ESP仿真[J].农业机械学报,2009(04):1-6.
    [42]李亮,宋健,于良耀.汽车动力学稳定性控制系统仿真平台研究[J].系统仿真学报,2007(07):1597-1600.
    [43]宋健,杨财,李红志,等. AYC系统基于多传感器数据融合的路面附着系数估计算法[J].清华大学学报(自然科学版),2009(05):101-104.
    [44]单东升,宋健,李亮.车身稳定控制阶梯增压与线性增压的液压机理对比分析[J].液压与气动,2011(1):1-3.
    [45]李红志,李亮,杨财,等.车辆转向过程稳定性分析与控制[J].清华大学学报(自然科学版),2010,50(8):1282-1285.
    [46]祁雪乐,宋健,王会义,等.基于AMESim的汽车ESP液压控制系统建模与分析[J].机床与液压,2005(08):115-116,122.
    [47]李慧,朱德文.基于PWM控制的高速开关电磁阀在汽车防抱死制动系统中的应用[J].机械研究与应用,2007,20(3):83-84.
    [48] Tu Haink C, Rannow Michael B, Wang Meng, et al. Modeling and validation of a high speedrotary PWM on/off valve[R]. Proceedings of the ASME Dynamic Systems and ControlConference2009, DSCC2009, p629-636.
    [49]张彪,刘昭度,崔海峰,等.基于PWM控制的轮缸压力精细调节试验[J].农业机械学报,2007,38(7):58-61,74.
    [50]卢敢.基于PWM高速开关阀的液压位置系统最优预见控制研究[J].地质装备,2004(4):16-18.
    [51]倪文波,王雪梅,李芾,等.基于PWM高速开关阀电控比例阀的研究[J].机车电传动,2005(3):12-14.
    [52]董景新.控制工程基础[M].清华大学出版社,1998.
    [53]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].冶金工业出版社,2003.
    [54] Hupp, R.C. Threadless subplates prevent hydraulic valve leakage[J]. Tool Engineer,31(6):46-50.
    [55] Nightingale, J.M. Some design considerations for hydraulic servo[J]. Aircraft Engineering,28(300):254-258.
    [56] C.K.Simth. HYDSIM Use’s Manual[C]. School of Engineering, Oklahoma State University,1973.
    [57] W. Backe, W. Hoffmann. DSH-Program System for Digital Simulation of HydraulicSystems[C]. The6thInternational Fluid Power Symposium,1981:95-114.
    [58] W. Backe, W. Hoffmann, A. Langen. Component Design by DSH Program[J]. ComputerAided Design in High Pressure Hydraulic Systems,1983:31-37.
    [59] W.霍夫曼著,陈鹰译,吴根茂,路甬祥校.液压元件及系统的动态仿真[M].浙江大学出版社,1988.
    [60] D. E. Bowns, S. P. Tomlinson, S. K. Dugdale. Progress Towards a General Purpose HydraulicSystem Simulation Language[C]. The6thInternational Fluid Power Symposium,1981:115-129.
    [61] S. R. Hull, D. E. Bowns. The Development of an Automatic Procedure for the DigitalSimulation of Hydraulic Systems[J]. Computer Aided Design in High Pressure HydraulicSystem,1983:67-72
    [62] H. M. Payter. Analysis and Design of Engineering Systems. M.I.T. Press, Cambridge, MA,1961.
    [63] R. C. Rosenberg. State-Space Formulation for Bond Graph Models of Multiport Systems[J].Journal of Dynamic Systems. Measurement and Control,1971:35-40
    [64]钟延修.流压CAD技术[J].液压与气动,1987(3):56-60.
    [65] R. Kett. DSH plus-an Easy Operationable Simulation Programme for Electro-HydraulicSystems[C]. The4thScandinavian International Conference on Fluid Power,1995:325-336.
    [66]付永领,祈晓野. AMESim系统建模与仿真[M].北京航空航天大学出版社,2006.
    [67]李亮.汽车动力学稳定性控制系统状态观测和控制方法的研究[博士学位论文].北京:清华大学,2008.
    [68]于良耀.汽车动力学稳定性控制系统控制器开发平台研究[博士学位论文].北京:清华大学,2007.
    [69]杨财.汽车驱动防滑控制方法及动力学稳定性综合控制策略研究[博士学位论文].北京:清华大学,2009.
    [70]薛春雨.仿真技术在ESP研发中的应用研究[硕士学位论文].北京:清华大学,2005.
    [71]王学辉.中华轿车ESP的初步研究[硕士学位论文].北京:清华大学,2006.
    [72]郑军.基于CAN总线的牵引力控制系统的开发[硕士学位论文].北京:清华大学,2005.
    [73]周艳霞.汽车驱动防滑系统控制算法研究与开发[硕士学位论文].北京:清华大学,2007.
    [74]郑智忠。基于卡尔曼滤波的汽车质心侧向速度估计方法研究[硕士学位论文].北京:清华大学,2007.
    [75]宋健,崔华锐,王会义.汽车液压ABS电磁阀电磁场动态特性的研究[J].公路交通科技,2003,20(2):124-127.
    [76]祈雪乐. ABS液压制动系统动态特性研究和综合仿真匹配平台的建立[硕士学位论文].北京:清华大学,2006.
    [77]许永刚. ABS电磁阀设计与仿真计算研究[硕士学位论文].北京:清华大学,2000.
    [78] Mercedes-Benz. ESP-Electronic Stability Program[PDF].2006.
    [79]顾柏良. BOSCH汽车工程手册[M].北京:北京理工大学出版社,2004.
    [80] Gkikas, N, Richardson, J.H, Hill, J.R. Towards a driver-centred brake assist system[J].Institution of Mechanical Engineers-Braking,2009:85-92
    [81]王伟玮,宋健,李亮,等. ESP液压执行单元柱塞泵动态特性仿真和试验[J].农业机械学报,2011.
    [82]胡志刚,冯启高,王艳荣.用Pro/Engineer实现柱塞泵核心组件的装配和运动仿真[J].河南科技学院学报(自然科学版),2008,36(3):83-84,93.
    [83]宋健,王伟玮,童幸源,等.汽车制动防抱死系统回油泵[P].中国发明专利.申请号: CN200910301368.0.
    [84]李玉柱,贺五洲,等.工程流体力学[M].北京:清华大学出版社,2006.
    [85]郑兆昌.机械振动[M].北京:机械工业出版社,1980.
    [86]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [87]王士刚.液压系统可视化动态建模技术及其软件实现方法研究[硕士学位论文].辽宁:大连理工大学,2001.
    [88]刘志军,黄志坚,夏海,等.基于AMESim的蓄能器油压试验台开发与应用[J].机床与液压,2010(20):46-48,74.
    [89]王纪森,王海涛,李仕辉.蓄能器在液压试验台中的参数分析与仿真[J].机床与液压,2010(15):89-91,34.
    [90]赵罘,张力,项辉宇.轴向柱塞泵的模态仿真[J].机械,2008,32(11):33-35.
    [91]卢宁,付永领,孙新学.基于AMEsim的双压力柱塞泵的数字建模与热分析[J].北京航空航天大学学报,2006,32(9):1005-1058,1086.
    [92]张大斌,苏明,鄢吉多,等.基于AMESim的液压柱塞泵的数字建模与流量脉动分析[J].煤矿机械,2010,31(1):100-102.
    [93]邓红星.汽车制动管路压力波动效应研究[博士学位论文].黑龙江:东北林业大学,2009.
    [94]杨武双.基于AMESim的车辆防抱死制动系统的仿真研究[硕士学位论文].湖南:湖南大学,2008.
    [95]李平飞,刘文苹.基于AMESim的汽车制动主缸气密性检测系统仿真研究[J].液压与气动,2010(02):4-86.
    [96]林躜,黄方平. AMESim/Matlab的仿真及其在单向阀优化设计中的应用[J].液压气动与密封,2006(02):15-16.
    [97] IMAGINE公司. AMESim User Manual[CP].2002.
    [98]祁雪乐,宋健,王会义,等.基于AMESim的汽车ESP液压控制系统建模与分析[J].机床与液压,2005(08):115-116,122.
    [99]李以农,谢敏松,米林.基于AMESim的汽车ESP液压系统建模[J].计算机辅助工程,2010(02):36-40.
    [100]张亚东.汽车防抱制动系统逻辑门限控制方法仿真计算研究[硕士学位论文].北京:清华大学汽车工程系,1998.
    [101]历朴.汽车防抱制动系统控制软件开发及其参数匹配[硕士学位论文].北京:清华大学,2001.
    [102] Wang Weiwei, Song Jian, Yu Liangyao. Research of pressure limiting valve in the ESP undercontrol of high-frequency PWM[C]. The2011International Conference on ElectricInformation and Control Engineering (ICEICE),2011.
    [103]王伟玮,宋健,李亮,等.高速开关阀在高频PWM控制下的比例功能研究[J].清华大学学报(自然科学版),2011.
    [104]屠庆铭.大学物理[M].高等教育出版社,2006.
    [105]汪志刚.电控柴油机用电磁阀电磁场三维有限元分析[J].现代车用动力,2006(1):7-9,16.
    [106]张德春,柳建,王世庆,等. ANSYS软件在高频电磁场上的应用[J].真空,2010(03):52-54.
    [107]朱张校.工程材料(第三版)[M].清华大学出版社,2001.
    [108] Qi Xuele, Song Jian, Wang Huiyi. Influence of Hydraulic ABS Parameters on Solenoid ValveDynamic Response and Braking Effect[J]. SAE paper2005-01-1590.
    [109]杨国来,司国雷,姬孝斌,等.用ANSYS对水压锥阀流场的可视化研究[J].机床与液压,2005(10):106-107,39.
    [110] ANSYS公司. ANSYS User Manual[CP].2001.
    [111]陈新龙.电工电子技术基础教程[M].清华大学出版社,2010.
    [112]李红志.基于PXI和cRIO的电子稳定程序硬件在环仿真平台开发[J].电子设计应用,2009(10):74-76.
    [113] Aldo Sorniotti, Mauro Velardocchia, Politecnico di Torino. Hardware-In-the-Loop (HIL)Testing of ESP (Electronic Stability Program) Commercial Hydraulic Units andImplementation of New Control Strategies [J]. SAE2004-01-2770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700