车辆液压制动系统建模及路面参数估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制动系统建模是车辆动力学研究的重要内容。它的研究对分析车辆动态特性,进行底盘控制系统的开发和控制器设计具有重要的意义。
     车辆制动系统的构成根据配置的不同而不同。由于防抱死制动系统(Anti-lock Braking System, ABS)已成为车辆的基本配置之一,且是其它制动系统结构的基础,因此,本文的研究是在轿车ABS结构基础上开展的。通过建立高精度的液压制动系统模型,为提高制动压力和轮胎作用力的估计精度,进行基于模型的防抱死制动控制、牵引力控制和车辆稳定性控制方法研究提供模型和分析基础。
     为使本文的结构清晰,便于分析和讨论,本文第二章阐述了当代轿车液压制动系统的结构特征,确定了本文将要讨论的系统结构,并对其工作原理进行了简要介绍,为后续的液压制动系统的建模进行了必要的知识准备。本文第三章讨论了制动系统中制动踏板、真空助力器、制动主缸、液压调节器、制动液压管路和制动轮缸等元件的机理模型,给出了各元件的动力学数学描述。由于液压调节器对制动系统模型精度影响较大,因此,本文的这部分工作是在实验平台上针对具体的液压调节器进行的,主要分为两部分内容。一是将常开/常闭电磁阀模型简化为节流阀模型,根据伯努力方程,推导出了常开/常闭阀的流量与阀流量系数、制动主缸压力、制动轮缸压力和低压储能器压力的关系;二是根据液压传动原理和回液泵以及制动轮缸的特性曲线,得到了回液泵和制动轮缸的静态模型。
     液压制动系统模型参数包括几何尺寸类参数、制动液特性参数(制动液密度、弹性模量)、结构特征参数(质量、容积、弹簧刚度、阀口面积)以及反映系统和元件性能的参数(摩擦、阻尼系数、阀口流量系数,摩擦阻力)。如何针对具体的制动系统确定模型参数是制动系统建模研究中亟待解决的问题。本文首先用实际车辆的制动回路以及车辆动力学仿真软件、实时仿真系统建立了车辆液压制动系统测试、分析和实验平台,在此基础上,讨论了以实际输出与模型输出之间的误差平方和最小为判别准则的参数辨识方法,给出了参数辨识结果。仿真和实验结果表明,本文给出的制动系统模型在制动系统增压、保压和减压过程中均有较高的精度。
     路面附着系数估计在制动控制中对确定控制参数极其重要,是车辆状态估计的重要内容。本文在以上工作基础上,通过对液压模型的简化,讨论了基于制动轮缸压力估算路面附着系数的方法,并在实验平台上对估计方法进行了验证。结果表明,基于制动轮缸压力的路面附着系数估计方法是可行的,并具有较高的实时性。
Brake system modeling is an important content in the research of vehicle dynamics. It is of great significance in the analysis of vehicle dynamic characteristics, development of chassis control system and design of controller.
     The vehicle brake system constitution is different from each other according to the configuration. As the Anti-lock Braking System (ABS) has become one of the basic configurations in vehicle and is the basis of other brake system structures, the research is carried out based on ABS structure. A high-precision hydraulic brake system model is built, to improve the accuracy of tire pressure and brake force estimation. It also provides model and analysis foundation for anti-lock brake control, traction control and vehicle stability control.
     To make the structure of dissertation clear and ease the analysis and discussion, the structural features of hydraulic brake system that will be discussed is represented in the second chapter. The system structure and working principle is introduced briefly, which provides necessary knowledge preparation and structure description for the modeling of hydraulic brake system.
     In the third chapter of dissertation, the mechanism model of the brake pedal, vacuum booster, master cylinder, hydraulic regulator, hydraulic brake pipes and wheel cylinders are discussed and the mathematical description of the dynamic components is given. As the hydraulic pressure regulator model has great impact on model accuracy, therefore, this part of work is carried out on the experimental platform for specific hydraulic pressure regulator. It is mainly divided into two parts. First, the model of open / close solenoid valve is simplified to throttle model, and the relationship between the valve flow ratio and flow coefficient, master cylinder pressure, wheel cylinder pressure, and accumulator is deduced based on the Bernoulli equation. Second, according to the hydraulic principle, hydraulic pump and wheel cylinder characteristic curve, the static models of the pump and the wheel cylinder are obtained.
     The parameters of hydraulic brake system model include parameters like geometry, brake fluid parameters (brake fluid density, elastic modulus), structural parameters (quality, volume, spring stiffness, valve orifice area), and parameters to reflect the components performance (friction, damping, valve discharge coefficient, etc). How to identify the parameters of a specific brake system model is a key problem in the brake system research. This dissertation first uses actual vehicle brake circuit, vehicle dynamics simulation software and real-time simulation system to build an experimental platform for hydraulic brake system test and analysis. Based on this, the parameter identification method using the actual output and model output error sum of squares minimum criterion is discussed and the identification of the parameter results are given. Simulation and experimental results show that the brake system represent in the dissertation has high precision in the process of“Apply”,“Hold”and“Release”.
     Road adhesion coefficient estimation is extremely important to determine control parameters in brake control. It is an important part of vehicle state estimation. By means of a simplified hydraulic brake system model, the road adhesion coefficient estimation method is discussed based on the wheel cylinder pressure. The estimating method is certificated on the experiment platform and the simulation results show that the method is feasible and is real-time.
引文
1仲丽敏.汽车制动系统元件的动态特性辨识.北京科技大学硕士学位论文. 2005:20~30
    2 Kevin O’Dea, Anti-Lock Braking Performance and Hydraulic Brake Pressure Estimation. SAE World Congress. 2005-01-1061. 2005:1~4
    3王铁,张国忠,周淑文.基于竞争神经网络的ABS路面辨识.东北大学学报(自然科学版). 2003, 24(6):560~563
    4司利增.汽车防滑控制系统.人民交通出版社, 1996:10~30
    5刘地.逻辑门限值控制在汽车防抱制动系统中的应用.试验与研究. 2002, (4): 44~46
    6何渝生等.汽车电子技术及控制系统.北京:国防工业出版社, 1997:10 ~25
    7严爱芳,孙培锋.汽车防抱制动系统控制方法的分析.浙江水利水电专科学校学报. 2001, (3):54~55
    8孙骏.基于模糊控制的汽车防抱制动系统仿真.计算机仿真. 2004, 21(10): 160~161
    9侯光钰,张为公.防抱死制动系统的滑模变结构控制.测控技术. 2004, 23(10):32~33
    10宋健,李永.汽车防抱死制动系统控制方法的研究进展.公路交通科技, 2002, (12):142~143
    11李永堂等.液压系统建模与仿真.冶金工业出版社, 2003:198~264 246 ~264
    12余卓平,左建令,张立军.路面附着系数估算技术发展现状综述.汽车工程. 2006, 28(6):546~549
    13 Eichhorn U, Roth J. Prediction and Monitoring of Tyre /Road Friction. SAE Paper 925226. 1992:1~4
    14 BreuerB, Eichhorn U. Measurement of Tyre /Road Friction Ahead of the Car and Inside the Tyre. Proceedings of AVEC. 1992:347~353
    15边明远.汽车防滑控制系统(ABS/ASR)道路识别技术及车身速度算法研究.北京理工大学博士学位论文. 2003:1~30
    16 Bachmann Th. The Importance of the Integration of Road, Tyre, and VehicleTechnologies. 20th World Road Congress, Montreal, Canada, 1995:1~4
    17 Wang J, Agrawal P, AlexanderL. An Experimental Study with Alternate Measurement Systems for Estimation of Tire-road Friction Coefficient. Proceeding of the American Control Conference, Denver, Colorado, 2003: 4957 ~ 4962
    18 F Gustafsson. Estimation and Change Detection of Tire-road Friction Using the Wheel Slip. IEEE Control Systems Magazine. 1996:99~104
    19 Gustafsson F. Monitoring Tire-Road Friction Using the Wheel Slip. IEEE Control System, 1998:42 ~ 49
    20 Lee Chankyu, Hedrick Karl, Yi Kyongsu. Real-Time Slip-based Estimation of Maximum Tire-road Friction Coefficient. IEEE /ASME Transactions on Mechatronics, 2004, 9 (2):1~4
    21 Nakao Yukio, Kawasaki Hiroaki and MajorDouglas J. Estimation of Friction Levels Between Tire and Road. SAE Paper 2002-01-1198. 2002:1~4
    22 Gustafsson F. Slip-based Tire-road Friction Estimation. Automatic 1997, 33 (6):1087 ~1099
    23 Daibeta. A. Model Based Calculation of Friction Curves between Tyre and Road Surface. Proc. of 4th IEEE Conference on Control Application, 1995:291~ 295
    24程军.汽车防抱死制动系统的理论与实践.北京理工大学出版社, 1999: 30~47
    25李君,喻凡,张建武.基于道路自动识别ABS模糊控制系统的研究.农业机械学报. 2001, 32 (5):45~47
    26关文达.汽车构造.第2版.机械工业出版社, 2004:457 458~482
    27顾柏良等. BOSCH汽车工程手册.第2版.北京理工大学出版社, 2004: 696~709
    28 Yeo, J.H. A Study on the Braking Characteristics of an ABS Vehicle. Master Thesis. 1996:5~20
    29 Rudolf Limpert. Brake Design and Safety. Society of Automotive Engineers. Inc, 1992:30~50
    30 Peter M. Riede, Jr. Ronald L. Leffert, William A. Cobb. Typical Vehicle Parameters for Dynamics Studies Revised for the 1980’s. Warrendale PA: SAE paper 840561:1~4
    31 Anton T. van Zanten, Rainer Erhardt and George Pfaff. VDC. The Vehicle Dynamics Control System of Bosch. Warrendale PA, SAE paper 891978:1~4
    32 Maciuca D B. Nonlinear Robust Control with Application to Brake Control for Automated Highway Systems. Doctor thesis. 1997:10~11
    33詹军.基于ACC的制动系统模型研究.中国机械工程. 2005, 16(5):450~ 452
    34 Gerdes, Christian J. Decoupled Design of Robust Controllers for Nonlinear Systems: as Motivated by and Applied to Coordinated Throttle and Brake Control for Automated Highways. Doctor thesis. 1996: 9~19
    35齐志权,刘昭度,马岳峰,崔海峰. Jetta GTX轿车MK20-I型ABS液压系统数学模型.液压与气动. 2005, (1):42~43 43~44
    36盛敬超.液压流体力学.北京:机械工业出版社, 1980:50~70
    37郭孔辉,刘溧,丁海涛,李玉璇.汽车防抱制动系统的液压特性.吉林工业大学自然科学学报. 1999, 29(4):1~3 3~5
    38 Realtime BrakeHydraulics 3.0 User Manual. 2004:23~37
    39 Qingyuan Li, Keith W. Beyer, Quan Zheng, A Model-Based Brake Pressure Estimation Strategy for Traction Control System. SAE Paper 2001-01-0595. 2001: 1~4
    40李言俊.系统辨识理论及应用.北京:国防工业出版社, 2003:10~50
    41刘毅珍.基于ve-DYNA的车辆动力学仿真研究.哈尔滨工业大学硕士毕业论文. 2005:41~50
    42 MATLAB培训教材系列. dSPACE系统应用综述.北京九州恒润科技有限公司. 2003:1~20
    43杨宏明.汽车防抱死制动系统控制算法的分析与设计.哈尔滨工业大学硕士毕业论文. 2005:38~40
    44李君,张建武等.基于混合仿真技术车辆ABS控制系统快速开发研究.机械工程学报. 2002, (7):40~45
    45杨涤,李立涛等.系统实时仿真开发环境与应用.清华大学出版社, 2002: 249~260
    46 Jae-Cheon Lee. Hardware-in-the-Loop Simulator for ABS/TCS. Proceeding of the 1999 IEEE International Conf on Control Applications, USA, 1999:1~4
    47 M.W.Suh. Hardware-in-the-Loop Simulation for ABS. SAE Paper No.980241. 1998, 215(15):16~18
    48 P. James and P.Cook. Using Rapid Prototyping Tools for the Integration of Control System for Complex Technology Concept Vehicles. Prodrive Ltd, England, 2001:4~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700