基于双转子电机的混合动力四驱汽车双模制动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车制动系统一般由液压摩擦制动子系统和再生制动子系统两部分组成。液压摩擦子系统与传统汽车的液压制动系统相同,通过人力踩制动踏板启动制动,产生液压制动力的响应有延迟。随着电控技术的发展,制动系统的控制装置也出现了电子化的趋势,其中电控液压制动可以更加准确高效的实现制动。作为包括混合动力在内的电动汽车的再生制动子系统通过发电机,将制动过程中的部分动能以电能的形式存储到电池中,同时产生制动力对汽车进行制动。如何在保证制动安全性的前提下,使再生制动与摩擦制动协调工作,最大限度回收能量就成为混合动力汽车研究的关键技术之一。
     本文以一款与企业联合开发的四驱混合动力汽车为基础,设计一套电控液压制动子系统,与电机再生制动子系统共同构成双模制动系统,并制定相应的制动力分配策略,分析双模制动系统的制动性能和能量回收效率。主要内容包括:
     1、设计一种改进简便、易于实现的电控液压制动子系统,并分析该电控液压制动系统的结构与工作机理,以及与再生制动系统共同构成的双模制动系统的控制原理。
     2、提出一种制动力分配控制策略,既能满足制动性能的要求,还能实现较好的能量回收效果。并分析再生制动系统中电机再生制动力的几种限制因素,制定制动力分配控制算法。
     3、建立双模制动系统各部分数学模型,包括:制动踏板的驾驶员意图模型、高速开关阀模型、电控液压制动系统模型、整车能量消耗模型、双转子电机模型、电池模型、制动力分配模型等。
     4、根据各部分的数学模型,在Matlab/Simulink软件中建立双模制动系统仿真模型,选择几种典型工况进行仿真分析,并与Advisor软件中的制动力分配策略进行对比仿真,验证电控液压制动系统和制动力分配策略的合理有效性,以及制动力分配策略是否具有较好的能量回收效率。
     论文最后还对研究成果进行了归纳总结,并对今后进一步的研究提出了建议。
The braking system of HEV is generally composed of hydraulic braking subsystem and regenerative braking subsystem. The hydraulic braking subsystem is the same to the hydraulic braking system of traditional vehicle, which starts braking by human power and produce hydraulic braking force with some delay. With the development of electronic control technology, the control unit of braking system also promotes the trend of electronic, such as electrical hydraulic braking system, it can achieve more accurate and efficient braking. During the process of braking, the regenerative braking subsystem can store part of kinetic energy in the form of electrical energy in the battery, and generate braking force to brake the vehicle. How to make the hydraulic braking system assorts with the regenerative braking system, to get more regenerative energy under assurance of braking safety is a key technique for HEV research.
     Based on a four-wheel drive HEV of joint development, an electrical hydraulic barking subsystem is put forward, which is defined as the dual mode braking system. The appropriate braking force distribution strategy, braking performance and energy recovery efficiency of the dual mode braking system are studied in detail. The research contents are as follow:
     Firstly, an electrical hydraulic braking subsystem is promoted, its structure and working principle are studiede carefully, and the control method of the dual mode braking system is also carried out.
     Secondly, a braking force distribution strategy is presented, which not only meets the requirements of braking performance, but also achieves better energy recovery efficiency. The limitations of regenerative braking force of the motor are analysed, and the control algorithm of the braking force distribution is also formulated.
     Thirdly, the mathematical model of the various parts of the dual mode braking system are established, including the driver intention model of brake pedal, the high-speed switch valve model, the model of electrical hydraulic braking subsystem, the model of vehicle energy consumption, the dual rotor motor model, the battery model and the braking force distribution model, etc.
     Fourthly, according to the mathematical model of each part, the simulation model of the dual mode braking system is built up in the Matlab/Simulink. The simulation under several typical duty cycles are carried out and the results are compared with those from the Advisor commercial software. In order to vetify the rationality and availability of the electrical hydraulic braking subsystem and the braking force distribution strategy, and the efficiency of energy recovery, the simulating results are analysed in detail.
     Finally, corresponding conclusions have been summarized and the further researching directions are proposed.
引文
[1]雷芳芳.我国新能源汽车的发展[J].汽车工程师,2009(5):12-13
    [2]曾鹏.我国新能源汽车发展现状及问题[J].上海汽车,2009(8):5-7
    [3]何志生,左曙光,潘良明.新能源汽车技术发展现状和趋势[J].汽车研究与开发,2005(6):27-29
    [4]运伟国,薛兆俭.我国未来汽车技术的发展趋势[J].上海汽车,2006(1):39-40
    [5]秦朝举,袁丽娟.混合动力汽车的研究现状与发展前景[J].山东交通科技,2008(4):97-100
    [6]张卫青.混合动力汽车的发展现状及其关键技术[J].重庆工学院学报,2006(5):19-22
    [7]何凤有,马秀丽.混合动力电动汽车核心技术分析与研究[J].电气技术与自动化,2009(38):133-136
    [8]张元才,余卓平,熊璐.制动系统发展现状及趋势[J].汽车研究与开发,2005(9):12-15
    [9]林逸,贺丽娟,何洪文等.电动汽车真空助力制动系统的计算研究[J].设计·计算·研究,2006(10):19-22
    [10]夏青松,杨华,徐达.电动真空助力系统设计[J].上海汽车,2007(11):4-8
    [11] Nobuyuki Hirota, Akihiko Miwa, Kaoru Tsubouchi, etal. Development of variable technology in performance of brake booster .SAE2004-01-0724
    [12]赵凯.汽车真空助力器的原理及参数计算[J].设计·计算·研究,2001(1):1-4
    [13]郑家杰,孟春玲,张力.汽车制动控制系统的技术进展[J].北京工商大学学报(自然科学版),2005(9):24-27
    [14]陆钢.汽车制动控制系统新技术及其未来[J].电子技术,2005(5):43-47
    [15]李宏才.现代汽车制动控制系统的发展与展望[J].上海汽车,2001(3):10-14
    [16]董建军.商用车制动系统发展趋势[J].现代零部件,2007(4):58-62
    [17] Leonardo Pascali, Claudio Ricci, Guglielmo Caviasso, etal. Customer orientation: A further target in brake system design .SAE2003-01-0599
    [18]杨万庆.电子液压制动系统(EHB)发展现状[J].技术与市场,2007(25):41-43
    [19]钟伟.线控制动系统的安全策略研究[D].武汉:武汉理工大学,2006
    [20]赵双.汽车电子感应制动控制系统SBC的研制[D].成都:西华大学,2006
    [21] R Peter, R Schwarz, H Kranlich, etal. Actuating Unit for an Electromechanically Operable Disc Brake. US, 640536, 2002-06-18
    [22]张庆永,常思勤.液驱混合动力车辆的制动能量回收研究[J].中国工程机械学报,2008(6):293-298
    [23]巩养宁,杨海波,杨竞.电动汽车制动能量回收与利用[J].客车技术与研究,2006(3):28-34
    [24] Gang Chul Kim, Young Jae Lee. The Influence of Driving Condition on Fuel Economy and Exhaust Emissions of the Toyota PRIUS HEV, (EVS20)
    [25] Motomu Hakiai, Toshio Taichi. Brake System of“Eco-Vehicle”, EVS14
    [26] G. celentano, R. lervolino. Car Brake System Modeling for Longitudinal Control Design, 2003, IEEE
    [27] Michael Panagiotidis. Development and Use of a Regenerative Braking Model for a Parallel HEV, SAE TECHNICAL PAPER SERIES, 2000-01-0995
    [28] S. R. Cikanek, Electric Vehicle Braking System, 14th International Electric Vehicle Symposium (EVS14)
    [29] Yimin Gao, Electronic Braking System of EV and HEV---Integration of Regenerative Braking, Automatic Braking Force Control And ABS, SAE TECHNICAL PAPER SERIES, 2001-01-2478
    [30] Hongwei Gao, Yimin Gao and Mehrdad Ehsani, A neural network based SRM drive control strategy for regenerative braking in EV and HEV, 2001 IEEE
    [31]刘博,杜继宏,齐国光.电动汽车制动能量回收控制策略的研究[J].电子技术应用,2004(1):34-36
    [32]过学迅,张婧.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报(信息与管理工程版),2005,27(1):116-120
    [33]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京理工大学出版社,2002
    [34] Li ShouTao, Guo LiShu,Xu Hui, etal. Research on the EHB system control method base on identification of drivers' braking intentions. Proceedings of 2009 7th Asian Control Conference, ASCC 2009, p 1439-1443, 2009
    [35] Kim Donghyun, Kim Hyunsoo. Vehicle stability control with regenerative braking and electronic brake force distribution for a four-wheel drive hybrid electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v 220, n 6, p 683-693, 2006
    [36]王国保,袁野,胡伟等.电动汽车制动系统[P],中国:200610140135.3
    [37]杨二镇.汽车的电子控制制动系统[P],中国:02106642.6
    [38]胡骅,宋惠.电动汽车[M].人民交通出版社,2003
    [39]万沛霖.电动汽车关键技术[M].北京:北京理工大学出版社,1998.
    [40]田光宇,彭涛,林成涛等.混合动力电动汽车关键技术[J].汽车技术,2002(1):8-11
    [41]方泳龙.汽车制动理论与设计[M].北京:国防工业出版社,2005.
    [42]孙刚.混合动力车辆制动能量回收系统的控制研究[D].哈尔滨:哈尔滨工业大学,2009
    [43] Robert Alan Anderson, Stephen Donald Crisp, Barry John Bridgens, etal. Pedal assemblies for vehicle braking systems [P]. United States:No. Us 2001/0043009 A1, 2002-03-26
    [44] JayakumarN, NingL, PradeepA, etal. Analysis and Comparison of 3 Code Generation Tools[C]. SAE Paper NO.2004-01-0702
    [45] WeiYL, HechtB, TomD, etal. Development of a Brake Dynamometer-Vehicle Model Hardware-in-the-Loop System[C]. SAE Paper NO.2004-01-3337
    [46] Victoire Dairou, Marc Danzart, Alain Priez, etal. An original method to predict brake feel:a combination of design of experiments and sensory science[C]. SAE Paper NO.2003-01-0598
    [47]康梅.东风标致307紧急制动辅助系统[J].汽车维修技师,2005(11);22-24
    [48]瓦房店,赵德旭.奔驰车系辅助制动(BAS)系统[J].汽车维修技师,2003(7):20-21
    [49]周玉存.汽车制动辅助制动系统BAS[J].汽车电器,2005(6):43-44
    [50] Davision James Leroy, Bean Henry George, Paris Johnny M, etal. Hydraulic brake and steering assist system [P]. United States:No.6814413, 2004-11-09
    [51] Mo Bo,Li Mu,Du Min. The Operating Theory and Testing System Design of a High-speed Switch Valve, Proceedings of the International Symposium on Test and Measurement, v 4, p 2896-2916, 2003
    [52] Liu Xing-Hua, Li Guang-Rong. Research and test of high speed switch electromagnetic valve, Neiranji Gongcheng/Chinese Internal Combustion Engine Engineering, v 25, n 1, p 38-42, February 2004 Language: Chinese
    [53]张廷羽,张国贤.高速开关电磁阀的性能分析及优化研究[J].机床与液压,2006(9):139-142
    [54]杨玉涛,张小栋.高速电磁阀模型建立及响应特性研究[J].测控技术,2008,27(6):86-89
    [55] Gebert, K. Filipovic, I. Dobovisek, etc, Computer modeling of high pressure accumulator type fuel injection system characteristics, Proceedings of the International Centre for Heat and Mass Transfer, p 349-358, 1990
    [56] Trieb, F. Karl, R. Moderer, etal, Measurements of high pressure and flow rate on pumps for waterjet cutting under laboratory and site conditions, 18th International Conference on Water Jetting, v 2006, p 97-104
    [57] Ji Hongding, Wang Dali, Zheng rong, etc. Flow analysis and optimization of port-plate centrifugal pump in electric motor pump, Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, v 45, n 6, p 199-205, June 2009
    [58]齐志权,刘昭度,马岳峰等. Jetta GTX轿车MK20-I型ABS液压系统数学模型[J].液压与气动,2005 (1):42-44
    [59]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].长春:吉林工业大学,2000
    [60]邓志君,罗玉涛,周斯加等.新型车用对转双转子电机的研究[J].电气传动,2007,37(7):10-13
    [61]周斯加,罗玉涛,黄向东.双转子电机混合动力汽车驱动特性研究[J].中国机械工程,2008,19(16):2011-2015
    [62]张智明.四驱混合动力汽车再生制动性能研究[D].广州:华南理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700