汽车制动防抱死系统故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车制动防抱死系统(Anti-lock Braking System,ABS)是重要的汽车主动安全控制技术,它通过控制电磁阀的瞬时开闭调节制动时轮胎的滑移率,使车轮与地面的附着系数最佳。ABS对缩短制动距离,提高制动稳定性具有重要的意义。本文针对ABS系统开发中面临的故障诊断技术进行研究,以期对ABS系统的故障诊断提供技术和方法。
     本文的研究分为两个方面。一是结合硬件在回路的测试技术,建立了ABS故障模拟系统。通过模拟可能出现的传感器故障和执行机构故障,为ABS故障诊断方法和故障处理方法提供评测环境。二是通过故障重构技术,为ABS传感器故障诊断提供一种新的诊断方法。
     本文首先分析了ABS系统结构和工作原理,在此基础上,确定了ABS故障模拟系统的功能需求,并基于硬件在回路技术进行了故障模拟系统的整体结构设计。为了评价故障诊断的实时性和不同状态下故障处理的正确性,本文给出了一种故障事件控制模块和故障生成模块方法,使不同控制状态模式下设置故障成为可能。本文给出的故障模拟系统不仅能满足ABS故障诊断性能的测试需求,也为后续的故障诊断技术研究提供了一个可靠的测试环境。
     为了准确模拟ABS系统的各类故障,本文基于对电磁式轮速传感器和霍尔式轮速传感器工作原理的分析,提取了轮速传感器缺齿故障及传感头与齿圈间隙过大时的信号特征。并在此基础上,提出了一种轮速传感器缺齿、间隙过大、断路、短路故障的模拟以及轮缸压力传感器和回液泵、电磁阀的线路故障模拟软硬件设计方法,分析了轮速传感器输出正弦信号相位差对故障模拟信号的影响,给出了电路仿真和实验结果。针对ABS存在增压、减压、保压3种控制模式,以及不同控制模式下其发生故障会对制动性能产生不同影响的问题,本文给出了一种基于模型的控制模式预估方法,使得在ABS极限控制工况下产生设定的故障成为可能,为故障处理方法的评价提供了有效的检验环境。
     本文对ABS中传感器可以描述为加性故障的一类故障,采用基于滑模观测器进行故障重构方法研究。通过建立轮缸非线性数学模型,针对轮缸压力传感器的断路故障进行了方法的应用。仿真结果表明,所研究方法能够实现轮缸压力传感器断路故障的故障重构。
ABS (Anti-lock Braking System, ABS) is an important active safety control technology, which controls the instantaneous breaking valve to regulate the slip of the tire, so that makes that the adhesion coefficient of the wheels with the ground is the best. It is very significant that shortening the braking distance and improving the braking stability by ABS. This paper will study the fault diagnosis technology of ABS to provide a kind of technical and method for fault diagnosis.
     This study is divided into two aspects. First, combination of hardware in the loop test technology, a fault simulation system of ABS has been established through simulating the sensor failures and actuator failures to provide evaluation environment for evaluating the capability of fault diagnosis and fault handling. Second, a new diagnostic method through the fault reconstruction has been provided for the sensor of ABS.
     The functional requirements of the system has been provided based on the analysis on the structure and working principle of ABS, and then the structure of the fault simulation system. In order to evaluate the real-time of fault diagnosis and the correctness of fault handling in different states, a fault event control module and fault generation module methods has been provided to set fault in different controlling. This paper presents a fault simulation system which can meet the the test requirements of fault diagnosis performance of ABS, but also provides a reliable test environment for the study of subsequent fault diagnosis technology.
     Based on the principle of both the electromagnetic and Hall-type wheel speed sensors, signal characteristics are extracted for teeth-missing fault of wheel speed sensor as well as a big gap between the sensor and the gear ring, so that various faults of ABS system can be simulated accurately. Accordingly, a hardware and software design is proposed to simulate the faults of wheel speed sensor, namely, teeth-missing, big gap, open circuit, short circuit. Additionally, fault simulation for the wheel cylinder pressure sensor, pumps, and also solenoid valve circuit can also be disposed. The influence on the fault simulation signal is analyzed, which is made by the phase difference signal in output sinusoidal signal. And then the circuit simulation and experimental results are given. There are there control modes in ABS, namely, Increase, Decrease, and Hold modes, and it may result in different affects on the braking performance when fault occurs in various modes. Consequently, a model-based control mode predictive approach is presented to produce given fault in arbitrary mode, and it provides an effective test environment for the evaluation of failure treatments.
     For a certain class of fault in ABS sensors which can be described as a kind of additive one, a sliding mode-based reconstruct method is investigated. Then, it is applied to the open circuit fault of the wheel cylinder pressure sensor, by establishing a nonlinear math model of the wheel cylinder. The simulation results show that the fault can be reconstructed.
引文
1 Kevin O’Dea, Anti-Lock Braking Performance and Hydraulic Brake Pressure Estimation. SAE World Congress, 2005:1-4
    2余志生,夏群生.汽车理论.第四版.机械工业出版社, 2006:89-92
    3常明顺.汽车ABS性能检测系统的研究.吉林大学硕士学位论文, 2007:1-3
    4张云龙,袁大宏,王国戟,石奕,康晓敦.电控汽车故障诊断技术的现状与发展趋势.汽车技术, 2000:30-31
    5杨其校,刘昭度,齐志权,马岳峰.汽车ABS电机故障诊断.仪器仪表学报, 2005, 26(8):771-772
    6郑太雄.硬件在回路仿真平台的ABS测试方法.重庆大学学报(自然科学版), 2007, 30(11):59-63
    7张鸿雁.非常规ABS系统故障诊断分析.大众科学·科学研究与实践, 2008, (01):1-4
    8王志强,王新晴,闫佳听.基于神经网络的控制仿真与故障诊断.解放军理工大学学报, 2004, 5(4):81-84
    9 Jin-Oh Hahn, Seung-Han You, Young Man Cho, Soojoon Kang, Kyo I1 Lee. Fault Diagnostics in the Differential Brake Control System Using the Analytical Redundancy Technique. Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, 2003:1-2
    10 Harald Straky, Marco Munchhof, Rolf Isermann. A Model based Supervision System for the hydraulics of passenger car braking systems.15th Triennial World Congress, Barcelona, Spain, 2002, 3:1789-1795
    11 Peter Struss. Fundamentals of Model-Based Diagnosis of Dynamic Systems. Proceedings of the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997:1-6
    12 Yingping Huang, David Antory, R Peter Jones, Craig Grooml, Ross McMurran, Peter Earp. Bayesian Belief Network Based Fault Diagnosis in Automotive Electronic Systems Advanced Vehicle Control(AVEC), 2006:203-207
    13 Marcus Borner, Harald Straky, Thomas Weispfenning, Rolf Isermann. Model based fault detection of vehicle suspension and hydraulic brake systems. Mechatronics 12 , 2002:999-1010
    14陈朝阳,张代胜,任佩红.汽车故障诊断专家系统的现状与发展趋势.机械工程学报, 2003, 39(11):1-6
    15李洪东.基于BP神经网络的汽车ABS系统故障诊断.吉林大学硕士学位论文, 2008:8-10
    16柳卫东.汽车制动系统FTA法的故障诊断研究.西北工业大学硕士学位论文, 2007:1-23
    17陈宗好,张代胜.信息融合技术在汽车ABS系统故障诊断中的应用.汽车科技, 2006, (4):13-15
    18那文波,孙坚,李璘.汽车ABS的轮速传感器系统故障类型识别方法.机床与液压, 2008, 36(7):191-193
    19于金泳,刘志远,陈虹.基于滑模观测器的车辆电子稳定性控制系统故障重构.控制理论文与应用, 2009, 26(10):1057-1063
    20刘石鸣,徐达.汽车ABS性能的台架试验评价方法研究.专用汽车, 2006, (8):1-5
    21 Jae-Cheon Lee, Myung-Won Suh. Hardware-in-the Loop Simulator for ABS/TCS. Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala Coast-Island of Hawai’I, USA, 1999:22-27
    22 Liang Chu, Yanli Hou, Minghui Liu, Jun Li. Development of Air-ABS-HIL-Simulation Test Bench. Vehicle Power and Propusion Confenrence, 2007:691-695
    23 Yu Guizhen, Zhang Chengyang, Ding Nenggen. Design of a Fault Diagnostic System for an ABS Based on Dual-CPU Structure. Vehicular Electronics and Safety, 2006:174-177
    24蔡国锐,张雷.汽车故障自诊断及故障诊断技术.机械研究与应用. 2005, 18(4):12-13
    25 C. Nouillant, F. Assadian, X. Moreau, A. Oustaloup. Hybrid Control Architecture for Automobile ABS. Proceedings. 10th IEEE International Workshop, 2001:493-498
    26 Jian Zhang, Neng-gen Ding, Gui-zhen Yu. Research on ABS Wheel Speed Processing Approaches Based on 80C196 Singlechip. Vehicular Electronics and Safety, IEEE International Conference, 2006:372-375
    27 E. L. Ding, H. Fennel, S. X.Ding. Model-based diagnosis of sensor faults for ESP systems. Control Engineering Practice, 2004, (12):847-856.
    28司利增.汽车防滑控制系统.人民交通出版社, 1997:20-24
    29 Taehun Hwang, Jihoon Roh, Kihong Park, Jeongho Hwang, Kyu Hoon Lee,Kangwon Lee, Soo-Jin Lee, Young-Jun Kim. Development of HILS Systems for Active Brake Control Systems. SICE ICASE International JointConference, 2006:4404-4408
    30 ve-DYNA Standard 3.9 Assembly Reference Manual, 2004:2-5
    31 DS1005 PPC Board Features, 2006:9-12
    32 DS2210 HIL I/O Board Features, 2006:11-18
    33 ControlDesk Automation Guide, 2006:13-17
    34 dSPACE GmbH. Real-Time Interface(RTI and RTI-MP)Implementation Guide For Release 4.2.Dspace GmbH, 2005:27-113, 241-266
    35孔薇.汽车液压制动系统工作状态模型及故障模式研究.重庆交通大学硕士学位论文, 2009:84-93
    36 Kapser. K, Sterling, J. Integrated GMR based Wheel Speed Sensor for Automotive Applications. Sensors, IEEE, 2007:848-851
    37 Guofu Liu, Qi Zhang, Yueke Wang, Tingting Zhou. An in vestigation of digital filter technology on ABS wheel speed signal. Information Acquisition, 2004:151-154
    38 Olaf Gietelink, Jeroen Ploeg, Bart De Schutter, Michel Verhaegen. Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations. Vehicle System Dynamics, 2006, 44(7):569-590
    39单成祥,牛彦文,张春.传感器原理与应用.第一版,国防工业出版社, 2006:153-156
    40 C.P.O. Treutler. Magnetic sensors for automotive applications. Sensors and Actuators, 2001:2-6
    41杨坤.轻型汽车电子机械制动机稳定控制系统研究.吉林大学博士学位论文, 2009:49-55
    42 Hongqing Lv, Yingmin Jia, Junping Du, Qingnan Du. ABS Composite Control Based on Optimal Slip Ratio. Proceedings of the 2007 American Control Conference, 2007:11-13
    43张彪,刘昭度,马岳峰,齐志权,崔海峰. ABS压力调节器回油泵的工作特性测试与分析.农机化研究. 2007, (01):208-210
    44张海琳,杨平.传感器的故障诊断技术研究.机电一体化, 2001, (05):73-78
    45 R. V. Beard. Failure Accommodation in Linear System Through Self Reorganization. Masschusetts Instituede of Technology, Mass, USA, 1971:61-237
    46 M. Jayabharata Reddy, D. K. Mohanta. A Wavelet-fuzzy Combined Approach for Classification and Location of Transmission Line Faults. International Journal of Electrical Power and Energy Systems, 2007, 29(9):669-678
    47 B. Bhalja, R. Maheshwari. Wavelet-based Fault Classification Scheme for aTransmission LineUsing a Support Vector Machine. Electric Power Components and Systems, 2008, 36(10):1017-1030
    48张爱玲,张文英,张瑞金.控制系统故障检测与诊断技术的最新进展.系统工程与电子技术. 2007, 29(4):660-664
    49于金泳.基于滑模观测器的故障重构方法研究.哈尔滨工业大学博士论文, 2009:1-5
    50 Chreictopher Edwards, Sarah K. Spurgeon, Ron J. Patton. Sliding mode observers for fault detection and isolation. Automatica, 2000(36):541-553
    51陈茂银,周东华.一类非线性系统的故障诊断.自动化学报. 2004, 30(06):1011-1016
    52关文达.汽车构造.第2版,机械工业出版社, 2004:457-482
    53郭孔辉,刘潥,丁海涛,李玉璇.汽车防抱制动系统的液压特性.吉林工业大学自然科学学报, 1999, 29(4):1-3 3-5
    54吴铭钦.汽车防锁死刹车系统控制之研究.国立成功大学机械工程学系博士论文, 2002:55-43
    55李会艳,王江,胡龙根.基于滑模观测器的故障诊断及在主动悬架系统中的应用.上海海运学院学报, 2001, 22(3):30-34
    56 Xing-Gang Yan, Christopher Edwards. Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer. Int. J. Adapt. Control Signal Process.2007, 21:657-673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700