水轮机筒阀多缸协同关闭过程水力特性与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对水轮机筒阀关闭过程中的水力特性和多液压缸接力器协同驱动系统的特点,在天津市科技支撑项目、天津大学青年教师培养基金项目和天津市天发重型水电设备制造有限公司的共同资助下,重点对筒阀的关闭过程进行了CFD(Computational Fluid Dynamics)数值模拟,并针对筒阀多液压缸协同控制系统的特点进行了数学建模分析和控制策略研究。论文主要研究内容和成果如下:
     (1)在目前普遍运用模型试验方法研究筒阀性能的基础上,运用CFD方法中的RNG k-ε湍流模型、混合物多相流模型、动网格和滑移网格技术,以云南红河南沙水电站水轮机筒阀为研究模型,对筒阀动水、静水关闭过程进行了三维数值模拟,较真实地模拟了水轮机发生飞逸时筒阀关闭的水力特性。
     (2)利用数值模拟的结果得出了筒阀表面压力的分布状况、轴向和周向液动力变化趋势、流量和流态特征以及水力效率和水头损失,给出了不同行程处筒阀附近引流部件的流场特征,根据轴向力载荷和对水轮机转轮工作状态的影响提出了优化的筒阀的关闭方式。
     (3)通过计算得出了混流式水轮机尾水管涡带的流场特征和筒阀附近压力脉动的幅频特征,结合尾水管涡带的流场特征解释了筒阀附近压力脉动的形成机理,同时给出了空化系数和转轮出口流场等因素对筒阀稳定性的影响。
     (4)综合CFD方法得到的筒阀倾覆力矩、轴向力计算结果得出了筒阀六缸协同控制系统数学模型。根据水轮机筒阀多缸协同控制系统对同步与速度控制性能的要求,采用定量反馈控制理论(QFT)设计了系统的控制器,满足了系统的跟踪性能、鲁棒稳定性和输入扰动抑制性能指标,有效地解决了实际液压系统不确定性、非线性和时变性等因素影响。
     (5)系统仿真结果说明,QFT控制策略可以有效地解决多液压缸接力器驱动情况下的同步与速度问题,避免系统的非线性和参数不确定性产生的不利影响。
     (6)经云南红河南沙水电站的实际应用,验证了筒阀系统同步性能的可靠性和数值模拟得出的液压缸接力器力载荷结果。
With the purpose of studying hydraulic characteristics of ring gate in shut-down water process and multi-cylinder synchronous system, this dissertation mainly deals with numerical simulation of shut-down process with use of computational fluid dynamics, mathematic modeling on synchronous system along with stability control strategy. The main contents and contributions of this dissertation are listed as follows.
     (a) Dynamic mesh, RNG k-εmodel, multi-phase model and sliding mesh are used in order to perform three dimensional unsteady numerical simulation of ring gate in Nansha Hydropower Station on Honghe River during shut-down water process, which is different from the widely used model experiments and simulates hydraulic characteristics to avoid runaway phenomenon.
     (b) Hydraulic characteristics such as pressure distribution, the axial hydrodynamic force, the flow rate, the efficiency and hydraulic loss are analyzed. And the characteristics of flow field near ring gate are also presented. In addition, optimized closing motion style is provided according to axial hydrodynamic force and working state of Francis turbine.
     (c) The characteristics of flow field in draft tube vortex tape are presented along with relationship between amplitude and frequency about the pressure fluctuation near ring gate. And the reason for pressure fluctuation is given according to the characteristics of flow field in draft tube. In addition the influence of cavitation coefficient and outlet flow field on stability of ring gate is provided.
     (d) Mathematic model of six-cylinder synchorous control system is obtained with overturning momentum and axial force model by means of CFD. The controller with use of QFT satisfies the need for trace ablity, robust stability and input disturbance restraint ability, which gets over the uncertain, non-linear and time-variable factors.
     (e) It shows that QFT control strategy can solve the problem of synchronization and velocity, which keeps from unfavorable influence of non-linear and uncertain factors.
     (f) The reliability of synchorous system and axial force of cylinders by numerical simulation are verified by engineering applications of Nansha Hydropower Station on Honghe River.
引文
[1]俸培德,胡卫,郑正勤,大型水电站应用圆筒阀的发展前景,水电站机电技术,2006,8:8-11
    [2]梁章堂,中国水电设备技术及水电设备制造业发展的思考,甘肃水利水电技术,2002,3:15-17
    [3] http://www3.toshiba.co.jp/power/english/hydro/index.htm,日本东芝公司水利水电控制技术
    [4] http://news.sohu.com/20070303/n248476359.shtml,哈电机自主研发出国内首台电站水轮机筒阀
    [5]何学民,筒阀的种类及运行情况,东方电气评论,1994,8(2):113-116
    [6]葛洪康,唐伯蓉,论筒形阀的操作控制方式,四川水利发电,2004,12:63-65
    [7]权君宗,谢俊,水轮机筒形阀控制方案的比较,东方电机,2005,4:77-82
    [8]贺永成,漫湾电站筒形阀动水关闭实验研究,东方电气评论,1997,12:244-249
    [9] Wolfgang J. Wührer, Herbert L. Grein, Ring gate as turbine emergency shut-down device, Hydraulic Engineering, 1990, 6: 1085-1090
    [10] Oettle Karl, Mazzoleni Jose Claudio, Ring Gate Control System for Francis Turbine, U.S. Patent NO. 4434964, Feb. 25, 1999
    [11] I.S. Veremeenko, S.D. Kostornoy, Computation of hydrodynamic forces at the ring gate of a hydraulic turbine, Tyazheloe Mashinostroenie, 1992, (10): 5-7
    [12] S.D. Kostornoy, A.I. Butakova, B.K.Vapnik, Computation of flow past stay vanes of turbine, Gidravlicheskie Mashiny, 1989, 23: 26-30
    [13] O.V. Potetenko, B.K.Vapnik, N.G. Shevchenko, Mathematical model of liquid motion in the ring gate zone of a high-head turbine, Gidravlicheskie Mashiny, 1986, 20: 59-64
    [14] S.D. Kostornoy, Computation of non-steady state streamlines non-continuous flow of ideal liquid past bodies, Gidravlicheskie Mashiny, 1987, 21: 48-51
    [15]李晓敏,赵越,水轮机圆筒阀的模型试验研究,电站系统工程,1998,14(2):26-31
    [16]赵越,童文波,水轮机圆筒阀模型试验装置的计算机控制系统,大电机技术,1997,1:31-37
    [17]赵越,阮华福,袁柏新,水轮机圆筒阀试验研究,水力发电学报,1998,61(2) :69–78
    [18]宋伟科,水轮机筒阀电液比例同步系统控制策略及其应用研究:[硕士学位论文],天津,天津大学,2008
    [19]宋伟科,肖聚亮,王国栋,水轮机筒阀同步控制系统研究,第五届全国流体传动与控制学术会议,北京,中国,2008
    [20]方宏泽,国内水电站采用筒形阀技术综合述评,云南水利发电,2001,17:1-4
    [21]肖聚亮,王国栋,宋伟科,水轮机筒阀电液同步控制系统,中国发明专利,200810052510.8,2008-03
    [22]刘博,水轮机筒阀液压控制系统研究与设计:[硕士学位论文],天津,天津大学,2008
    [23]宋伟科,肖聚亮,王国栋,水轮机筒阀电液同步控制系统研究,液压气动与密封,2008,28(4) :75–79
    [24]韩占忠,王敬,兰小平,Fluent流体工程仿真计算实例与应用,北京:北京理工大学出版社,2004
    [25]王瑞金,张凯,王刚,Fluent技术基础与应用实例,北京:清华大学出版社,2007
    [26]王福军,计算流体动力学分析,北京:清华大学出版社,2004
    [27] Shyy W, Braaten E, Three-dimensional analysis of the flow in curved hydraulic turbine draft tube, Numerical Mechanics in Fluid, 1986, (6): 865-878
    [28]朱斌,三维不可压缩粘性流动的一种数值计算方法及其在水轮机尾水管中的应用北京:[博士学位论文],北京,清华大学,1992
    [29]赵永智,韦彩新,葛洲坝电站ZZ500转轮的CFD分析及翼型优化,四川水力发电,2003,(12):34-37
    [30]赵永智,万安电站5#水轮机转轮的CFD设计:[硕士学位论文],武汉,华中科技大学,2003
    [31]张梁,吴玉林,刘树红,混流式水轮机二维非定常湍流计算,中国工程热物理学会,2000
    [32]任静,吴玉林,水力机械转轮内的CFD分析及优化设计,工程热物理学报,2000,(5) :316-320
    [33]吴玉林,韩海,曹树良,水轮机转轮内全三维紊流计算及效率预估,工程热物理学报,1996,17(3) :313-316
    [34]吴玉林,曹树良,何燕雨,水轮机转轮内部的三维固液两相紊流计算,工程热物理学报,1997,18 (5): 580-583
    [35]刘宇,吴玉林,刘树红,混流式水轮机全流道二维定场湍流计算,中国工程热物理学会,2000
    [36]曹树良,吴玉林,杨辅政,混流式水轮机转轮内部三维紊流的数值分析,水力发电学报,1997,16(4) :52-60
    [37]曹树良,杨辅政,吴玉林,用代数应力紊流模型预估水轮机转轮内部三维流场,清华大学学报(自然科学版),1998,38 (4) : 113-116
    [38]周凌九,水轮机转轮流场计算及性能预测:[博士学位论文],北京,中国农业大学,1999
    [39]周凌九,王正伟,水轮机转轮叶片几何参数及与能量性能的关系,浙江水利水电专科学校学报,2000,(6) :36-39
    [40] Song C, Simulation of flow through Francis turbine by LES method, Proceedings of 18th IAHR Symposium on Hydraulic Machinery and Cavitation, Valencia, Spain, 1996
    [41]杨建明,水轮机尾水管和转轮中湍流计算研究:[博士学位论文],北京,清华大学,1999
    [42]肖聚亮,建筑物迁移动力系统智能监控研究与应用:[博士学位论文],天津,天津大学,2006
    [43] Hong Sun, George T.-C Chiu, Motion synchronization for multi-cylinder electro-hydraulic system, IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, Como, Italy, 2001, 7: 636-641
    [44] Hong Sun, George T.-C Chiu, Motion synchronization for multi-cylinder electro-hydraulic system, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, New York, USA, 2001, 11: 1-11
    [45] Hong Sun, George T.-C Chiu, Equalization of multi-cylinder electro-hydraulic system, Proceedings of the American Control Conference , Chicago, USA, 2000, 6: 4134-4138
    [46] Hong Sun, Motion Synchronization of Multi-Cylinder Electro-Hydraulic Lift System, PhD Dissertation, Purdue University, 2001
    [47] Jiao Zongxia, Gao Junxia, Hua Qing, The velocity synchronizing control on the electro-hydraulic load simulator, Chinese Journal of Aeronautics, 2004, 17(1): 39-46
    [48] Ke Li, M.A. Mannan, Mingqian Xu, et al, Electro-hydraulic proportionalcontrol of twin-cylinder hydraulic elevators, Control Engineering Practice, 2001, 9, 367-373
    [49]乌建中,徐鸣谦,液压同步提升技术回顾与展望,同济大学学报,1997,25(2):203-233
    [50]杨进,计算机无线遥控液压同步提升技术及其控制方法研究:[硕士学位论文],上海,同济大学,2003
    [51]桂仲成,液压同步提升远程控制研究:[硕士学位论文],上海,同济大学,2003
    [52]潘子申,液压连续提升系统设计与研究:[硕士学位论文],上海,同济大学,2005
    [53] Li K, Chen J, Xiao Z, et al, An electro-hydraulic system for synchronized roof erection, Automation in Construction, 2003, 12:29-42
    [54]吴百海,吴小洪,吴冉泉等,新型多缸负载不平衡同步系统的开发研究,机床与液压,1996,3,26-28
    [55]吴百海,邹大鹏,司振军等,多油缸同步运行智能控制的探讨,机床与液压,2003,4,29-32,78
    [56]卢腾镞,大型结构物自动称重系统的研究与开发:[硕士学位论文],天津,天津大学,2001
    [57]李俊明,卢延辉,周淑辉等,重载举升多缸同步液压系统的非连续控制,吉林大学学报,2003,33(1):60-63
    [58]吴定安,上海音乐厅顶升和平移工程的液压同步系统,液压气动与密封,2004,1:24-26
    [59]沈卓,萧子源,液压同步顶升系统的液压冲击分析,流体传动与控制,2004,5:15-16
    [60] Laval L, Sirdi N, Cadiou J C, H∞force control of a hydraulic servo-actuator with environmental uncertainties, Proceeding of IEEE Conference on Robotics and Automation, Minneapolis, 1996
    [61]韩俊伟,赵慧,具有时变柔性负载的电液力控制系统中H∞鲁棒控制器的研究,机械工程学报,2001,36(4):58-61
    [62]韩崇伟,基于H∞控制火炮电液伺服系统研究,液压气动与密封,2002,2:18-21
    [63] Ingram A, Franchek A, Balakrishnan V, Robust SISO H∞controller design for nonlinear systems, Control Engineering Practice, 2005, 13:1413-1423
    [64]倪敬,钢管包装电液伺服系统控制方式及其应用研究:[博士学位论文],杭州,浙江大学,2005
    [65]杨俭,电液比例位置系统复合控制及相关研究:[博士学位论文],杭州,浙江大学,2005
    [66]王秋敏,伺服阀控非对称液压缸同步控制系统仿真研究:[硕士学位论文],济南,山东大学,2005
    [67]陈凤颖,QFT及其在飞行控制中的应用:[硕士学位论文],哈尔滨,哈尔滨工业大学,2002
    [68]王燕山,王益群,基于QFT的电液力伺服系统的鲁棒控制,中国机械工程,2003,14(9):731-733
    [69]朴相范,李善姬,吴今哲,利用定量反馈理论的PID控制器设计,延边大学学报(自然科学版),2005,31(1):62-66
    [70] Hearn G, Grimble M J, QFT for Rolling Mills, Proceeding of the 2002 International Conference on Control Application, 2002
    [71]富强,吴云洁,王宗学,QFT与神经网络并行控制研究,计算机仿真,2004, 8:111-114
    [72] I.Horowitz, Survey of quantitative feedback theory, International Journal of Control, 1991, 53(2): 255-291
    [73] M. A. Mellure, R N P aschalle, Applying variations of the quantitative feedback theory to unstable, non-minimum phase aircraft dynamics models, NAECON, 1992: 334-341
    [74] O. Yaniv, I M Horowitz, Quantitative feedback theory reply to criticisms, International Jounral of Control, 1987, 46(3): 945-962
    [75] Wei Wu, Suhada Jayasuriya, A new QFT design methodology for feedback systems under input saturation, Jounral of Dynamics Systems, Measurement and Control, 2001, 123(2): 225-232
    [76] Y. Chait, M. S. Park, M. Steinbuch, Design and implementation of a QFT controller for a compact disk player, Proceeding of the Amecican Control Conference, 1994: 3204-3208
    [77] M. Pachter, C. H. Houpis, D. W. Trosen, Design of an air to air automatic flight control system using quantitative feedback theory, International Journal of Robust and Nonlinear Control, 1997, 7(6): 561-580
    [78] Rossret E. David, Design of robust quantitative feedback theory controllers for pitch attitude hold systems, Journal of Guidance, Control, and Dynamics, 1994, 17(1): 217-218
    [79] Bailey, J. W. Helton, O. Merino, Alternative process in frequency domain design of single loop feedback systems with plant uncertain, Proceeding of the American Control Conference, 1994, 1: 345-349
    [80] Zhao, Tayasuige, Suhada, Robust stability of closed loop systems resulting from non-sequential MIMO-QFT design, Journal of Dynamic Systems, Measurement and Control, 1996, 118(12): 753-756
    [81] David, F. Thompson, Gain-Bandwidth optimal design for the new formulation quantitative feedback theory, Journal of Dynamics System, Measurement and Control, 1998, 120(3): 401-405
    [82] J. M. Roduigues, Y. Chait, C. V. Holllet, An efficient algorithm for computing QFT bounds, Journal of Dynamic Systems, Measurement and Control, 1997, 11 9(3):548-552
    [83] S. A. Snell, P. W. Stout, Flight control law using nonlinear dynamic inversion combined with quantitative feedback theory, Journal of Dynamic Systems, Measurement and Control, 1998,120(7): 208-215
    [84] S. A. Snell, P. W. Stout, Quantitative feedback theory with a scheduled gain for full envelope longitudinal control, Jounral of Guidance, Control and Dynamics, 1996,19(5):1095-1101
    [85] C. H. Yau, J. E. Gallagher, A model reference quantitative feedback design theory with application to turbo-machinery, International Journal of Robust and Nonlinear Control, 1994, 4(1): 181-210
    [86] M. W. Logan, M. Pachter, Model-based fuzzy logic control of a nonlinear plant, International Journal of Robust and Nonlinear Control, 1997,7(6): 643-660
    [87] O.Yaniv, Robustness to speed of 4WS vehicle for yaw and lateral dynamics, Vehicle Systems Dynamics, 1997, 27(4): 221-234
    [88] A. E. Bentley, Quantitative feedback theory with applications in welding, International Journal of Robust and Nonlinear Control, 1994, 4(1):119-160
    [89]张卫东,孙优贤,频域控制理论的发展及其取得的成就,控制与决策,1996,11(2):242-249
    [90]肖永利,张深,陈文华,定量反馈理论(QFT)及其设计应用,信息与控制,1999,28(6):437-445
    [91]张建生,刘定友,赵旭春,电液同步控制筒阀在小浪底水电厂的应用,水电自动化与大坝监测,2003,27(4):29-31
    [92]李正安,漫湾水电站圆筒阀的安装与调试,水力发电,1994,2:49-51
    [93]马新红,李涛,钟光华,小浪底电厂筒阀液压控制系统,大电机技术,2006, 2:67-70
    [94]张思青,徐一民,王煜,筒阀技术特点及其应用研究,阀门,2002,6:8-11
    [95]丁焱,李涛,李鹏,筒阀在小浪底水电站的应用,大电机技术,2001,5:38-41
    [96]马新红,李涛,钟光华,小浪底电厂筒阀液压控制系统,大电机技术,2006,2:67-70
    [97]马新红,蔡路,王全洲,小浪底水电站筒阀发卡信号出现原因分析,水力发电,2006,32(2):89-91
    [98]郭宗彦,国外水轮机圆筒阀的发展概况,水利水电技术,1987,4:60-64
    [99]林洪德,筒形阀及其在水电站的应用,东方电机,2001,3:85-93
    [100]刘国柱,加拿大使用水轮机圆筒阀的情况介绍,水力发电,1980,6:67-70
    [101]陶喜群,筒形阀技术的发展及其在小湾巨型水轮机应用的探讨,云南水力发电,2001,17:41-43
    [102]张宁权,筒阀在漫湾电站的应用,云南水力发电,2001,17:7-9
    [103]林洪德,张利民,水轮机筒阀的发展趋势,东方电机,2004,2:21-26
    [104]林洪德,张利民,杜江,漫湾二期水电站电液同步筒形阀结构设计,东方电机,2007,5:71-75
    [105]吴次光,筒阀及其应用,水力发电学报,1991,3:79-86
    [106]吴次光,对小湾电站设置筒阀的看法,云南水力发电,2001,17:37-40
    [107]W. R. Strub, R. E. Mawhinney, Ring Gates for La Grande-2 Turbines, Water Power, 1979, 31: 11-13
    [108]J. M. Levesque, R. S. Allan, Cylindrical Gates for Outardes-3 Turbines, Water Power, 1979, 10: 33-36
    [109]S. Casacci, J. Bosc, P. hudon, Cylindrical protection gates for hydraulic turbin machinery, La Houille Blanche, 1980, 8(7): 10-15
    [110]C. Dam, Self-closing cylindrical gate improves safety at low cost, Water Power, 1986, 10: 24-28
    [111]于泳强,水轮机尾水管涡带与压力脉动的关系:[硕士学位论文],西安,西安理工大学,2006
    [112]辛喆,混流式水轮机全部通流元件的三维湍流流场分析与性能预测:[博士学位论文],北京,中国农业大学,2005
    [113]蔡廷文,液压系统现代建模方法,北京:中国标准出版社,2002
    [114]路甬祥,胡大宏,电液比例控制技术,北京:机械工业出版社,1988
    [115]C. H. Houpis, K. Kang, Modeling and control of electro-hydrostatic actuator, International Journal of Robust and Nonlinear Control, 1997, 7(6): 591-608
    [116]王华,Matalb在电信工程中的应用,北京:中国水利水电出版社,2001
    [117]陈康宁,机械工程控制基础,西安:西安交通大学出版社,1997
    [118]G. K. Hamilton, M. A. Franchek, Robust controller design and experimental verification of I. C. engine speed control, International Journal of Robust and Nonlinear Control, 1997, 7(6): 609-628
    [119]薛定宇,反馈控制系统设计与分析-Matlab语言应用,北京:清华大学出版社,2000
    [120]程卫国等,Matlab5.3应用指南,北京:人民邮电出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700