液压机控制系统研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压机是制品成形生产中应用最广泛的装备之一,根据市场的需求,液压机逐步向智能化、网络化方向发展。目前关于液压机智能化、网络化控制系统的研究都在积极的展开,并获得了成功的应用,同时也暴露出一些问题:一是系统的智能化程度较低,不具备故障诊断、维护功能;二是系统不具备网络联机功能,大部分仍属于单机控制系统。本文以16000KN拉伸液压机为研究对象,设计并开发了集智能化和网络化为一体的液压机控制系统。主要的研究内容如下:
     (1)根据液压机控制系统的需求,提出液压机控制系统总体设计方案,探讨控制系统的结构组成、网络体系,分析了智能控制系统与远程网络化控制系统两个子系统的工作原理及功能。
     (2)通过对液压机控制系统关键技术研究,结合液压机智能控制系统的功能需求,选择欧姆龙CJ1H系列可编程控制器(PLC)作为底层控制单元,选择研华公司TPC-1260T型工控机作为上位机单元,构建基于PLC和上位机两级控制的总体结构,完成控制系统的硬件结构设计。结合液压机智能化监控系统需求,从压边力、冲制速度、滑块位置等工艺参数的数字化控制以及液压机状态监控、故障诊断、系统维护方面进行研究,完成液压机控制系统的软件开发。
     (3)通过对液压机的运行中可能出现的各种故障进行分析,利用故障树模型(FTA)的知识组织方法存储知识,采用基于规则的诊断推理实现故障诊断推理,完成了液压机智能故障诊断专家系统的开发。
     (4)通过对液压机网络化控制系统研究,结合Internet/Intranet技术、信息技术、人工智能技术、自动化技术,开发了一套具有远程监测、智能故障诊断、在线交互式诊断、设备维护与管理等功能的远程服务系统,实现了液压机的网络化控制。经过多次测试,测试结果达到了预期设计目标。
Hydraulic press is one of the most universal equipments in the production of molding. To satisfy the market demands, hydraulic press gradually moves towards intellectualization and networking. At present, studies on the intelligent and networked control system of hydraulic press have been actively done and already have some successful applications. However, with reference to previous work, some problems are exposed. One is the intellectualization of control system is at low level lacking functions of fault diagnosis or maintenance, the other is system have no networking capabilities, most of them are still at stand-alone state. In this paper, 16000KN hydraulic deep drawing press was considered as a research subject, a control system integrated with intellectualization and networking was designed and exploited. The main contents are as follows:
     (1) According to the functional requirements, the general design of the control system was proposed and its composition structure and networked architecture were discussed. The two subsystems, the intelligent control system and the remote networked control system, were analyzed in detail with their working principle and functions.
     (2) Through researches on the key technologies of the control system, the hardware structure of two-stage control system was designed to meet its functional requirements by using the Omron CJ1H series PLC and TPC-1260T industrial computer as the substrate control unit and host computer unit, respectively. Combining with the requirement of intelligent monitoring, the hydraulic press control system software was developed, including condition monitoring, fault diagnosis, maintenance and digital control of process parameters such as blank holder force, punching speed, slider position.
     (3) By analyzing possible faults in the running of hydraulic press, an intelligent fault diagnosis expert system was designed, based on fault tree (FTA) and rule reasoning.
     (4) By researches on the networked control system of hydraulic press, the remote fault diagnosis and maintenance system of hydraulic press was developed, with functions of remote monitoring, intelligent fault diagnosis, interactive online diagnosis, equipment maintenance, etc. A networked control system of hydraulic press was realized using Internet/Intranet technology, information technology, artificial intelligence, and automation technology. The whole system had been tested for many times and the result showed that the expected system design goals were achieved.
引文
[1]谭晶,赵振铎,孙胜.液压成形技术的最新进展[J].锻压技术.2001(2):11-14
    [2]朱钒,张志,张道富,李庆亮,司徒忠.国内外液压机技术现状及发展[J].机床与液压.2000(1):6-7
    [3]张慧.基于极限拉深原理的高速智能液压拉深机控制系统的研究[D].湖北武汉:武汉科技大学.2002
    [4]Sohl,Garett A,Bobrow,Jzmes E.Experiments and simulations on the nonlinear control of a hydraulic servo system[J].IEEE Transactions on Control Systems Technology.1999(7):238-247
    [5]George K.Adam.Design and Control of a Mechatronic Hydraulic Press System [J].IEEE International Conference on Mechatronics.2004(6):3-5
    [6]Tokuz,L.C..Hybrid Machine Modeling and Control[D].Ph.D.dissertation,Liverpool Polytechnic University.1992
    [7]J.Manuf.Sci.Eng.A New Type of Controllable Mechanical Press:Motion Control and Experiment Validation[J].Journal of Manufacturing Science and Engineering.2005(127):731-742
    [8]俞新陆.液压机的设计与应用[M].第1版.北京:机械工业出版社,2007
    [9]http://www.xzpm.com/proshow.asp?id=8
    [10]http://www.hfpress.com/product.asp
    [11]蒙真真,宋雨芳.多工位快锻液压机研制[J].机械工程师.2005(6):27-28
    [12]方锦荣.YZ28G-200A型智能高速液压机[J].设备管理与维修.2003(6):8-10
    [13]http://www.mysteel.com/equ/xqsd/2005/11/09/000000,0,0,1189162.html
    [14]姚保森.我国板冲压液压机的现状及发展[J].锻压装备与制造技术.2007(2):22-24
    [15]向玲,胡爱军,唐贵基.机械设备远程故障诊断系统的发展与实现[J].机床与液压.2000(06):9-13
    [16]苏士铭.我国第一条压力机自动化生产线[J].WMEM.1996(3):78-79
    [17]http://www.yeyaji.org/new_view_2025.html
    [18]陈宝萍,钟庆,陈柏金,黄树槐.锻压设备数控系统体系结构的研究和发展过程[J].机床电器.1997(3):9-12
    [19]陈柏金等.基于现场控制网络的锻造液压机组控制系统[J].锻压技术.2001(2):47-50
    [20]熊小红,陈柏金,黄书槐.基于现场总线的锻造液压机组计算机控制[J].锻压技术.2002(1):48-51
    [21]赵然晓,陈柏金.锻造液压机在线监测系统[J].锻压技术.2005(04):40-42
    [22]陈柏金,黄树槐,靳龙,高俊峰.16MN快锻液压机控制系统研究[J].机械工程.2008(19):990-991
    [23]张春华等.基于WindowsCE.NET的嵌入式液压机控制系统研制[J].制造技术与机床.2006(11):14-15
    [24]Adreas Hahn.压力机与PC控制系统[J].汽车制造业.2002(10):26-30
    [25]李林.基于伺服电机直接驱动的压力机控制系统研究[D].江苏南京:南京理工大学.2006
    [26]邱卫东.冲压机床的远程智能诊断、维护系统研究[D].南京理工大学:南京理工大学.2007
    [27]http://www.mirl.itri.org.tw/mirl-inter/knowledge/mim/277/277-14.pdf
    [28]赵军,李硕本,吕炎.板材冲压成形的智能化控制技术[J].塑性工程学报.1999(6):10-21
    [29]张俊,魏红根.数控技术发展趋势.智能化数控系统[J].制造技术与机床.2000(4):7-9
    [30]YJ28E-1000/1600Q框架双动薄板拉伸液压机使用说明书[M].江苏扬州:扬州捷迈锻压机械有限公司.2009
    [31]何祥,吴庆宪.基于C/S与B/S模式的远程控制实验系统[J].电光与控制.2005(12):86-89
    [32]Issue Based on C-S and B-S[J].International Geosciences and Remote Sensing Symposium.2005(2):780-783
    [33]董国平,谢晗昕,陈艳华.Visual Basic信息系统开发实例精粹[M].第1版.北京:电子工业出版社,2006
    [34](美)David Sceppa.ADO编程技术[M].第1版.北京:清华大学出版社,2001
    [35]杜雷.基于DirectShow和Socket技术实现远程监视[J_].微电子学与计算机.2006(23):107-109
    [36]DOUGLASE,GOMER,DAVID LSTEVENS.Internet Working with TCP/IP VOLL:Client/server Programming and Application(Winsock Version)[M].第1版.北京:清华大学出版社.1998
    [37]王罡,林立志.基于windows的TCP/IP编程[M].第1版.北京:清华大学出版社.2002
    [38]崔彦锋,许小荣.VB网络与远程控制编程实例教程[M].第1版.北京:北京希望电子出版社,2002
    [39]李凌.Winsock2网络编程使用教程[M].第1版.北京:清华大学出版社,2003
    [40]祈文钊,霍罡.CS/CJ系列PLC应用基础及案例[M].第1版.北京:机械工业出版社,2006
    [41]TPC-1260 User's Manual[M].台湾研华科技,2004
    [42]孙同景.PLC原理及工程应用[M].第1版.北京:机械工业出版社,2008
    [43]陶继伟,郑德华.RS-485通讯协议在集散控制系统中的应用[J].中国仪器仪表.2005(9):93-95
    [44]MCGS工业组态软件培训教程[M].北京:北京昆仑通信自动化软件科技有限公司
    [45]石红,王科俊,李国斌.液压设备故障诊断技术的研究[J].液压与气动.2002(2):17-20
    [46]黄志坚,袁周.液压设备故障诊断与监测实用技术[M].第1版.北京:械工业出版社,2005
    [47]Antonio C F,Nelson F F.Fuzzy FTA:A Fuzzy Fault Tree System for Uncertainty Analysis[J].Annals of Nuclear Energy.1999(26):523- 532
    [48]Athanassios B,Fragiskos B.Fuzzy Fault Tree Analysis as a Mechanism for Technical Support to Small/Medium Electroplaters on a Quasi Online/Real-time Basis[J].IEEE,2003:36-41
    [49]吴定海,张培林等.基于故障树分析的液压故障诊断专家系统研究[J]。液压与气动.2007(7):79-80
    [50]Jackson P.Introduction to expert systems[M].2sd edition.UK:Addison-esley,1990
    [51]石红,王科俊等.液压系统故障诊断的知识获取和推理研究[J].机床与液压.2000(3):89-91
    [52]Clancy W J.The epistemology of a rule-based expert system:a framework foe explanation[J].Artificial Intelligence.1983(20):215-251
    [53]尹朝庆,尹皓.人工智能与专家系统[M].第1版.北京:中国水利水电出版社,2002
    [54]魏正曦,雷文,梁兴建等.基于VFW的流媒体播放实现方法[J].四川理工学院学报:自然科学版.2006(19):44-47
    [55]吴敏强,周俊,朱晴波.一种基于RTP/Multicast的流媒体传输系统设计[J].计算机工程.2003(30):162-165
    [56]高春艳,刘彬彬.Visual Basic控件参考大全[M].第1版.北京:人民邮电出版社,2006
    [57]孙友松,张宏超.金属板材加工设备发展新动向[J].锻压技术.2004(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700