泥浆介质方向阀特性仿真及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油气田开发系统中液压阀的应用日益广泛,然而目前国内关于以钻井液泥浆作为介质的阀尤其是适用于井下小空间作业阀的研究较为缺乏,本文针对泥浆介质方向阀进行了设计和理论分析,为更深入地对该类型元件的研究工作提供实验和理论借鉴。
     课题综合采用理论分析、实验研究、数值计算等方法对泥浆介质方向阀的特性和机理进行研究。首先对泥浆介质阀口流量系数及流量特性进行理论和实验分析,在此基础上设计出适合钻井工程要求的方向阀,并给出设计方法,最后利用系统仿真及流体仿真对阀的结构特性参数进行数值计算和优化分析。
     具体内容包括:
     (1)基于CFD方法和气蚀理论,采用幂律流体本构方程、RNG k ?ε湍流模式和气液两相流模型,针对钻井液系统中常用的锥阀阀口附近流场进行数值计算。通过对流场内流线形状、压力的大小以及气体体积百分比的分布情况进行分析,着重研究了阀芯半锥角、阀芯前部过渡圆弧、阀座倒角等阀口的几何参数对钻井液锥阀气穴流场的影响。
     (2)针对泥浆介质的特殊理化性能确定阀口流量系数实验方案,设计并研制了相关实验装置,组建了实验系统,并利用该系统,以幂律流变模型的钻井液作为介质,对锥阀、球阀、板阀三种不同阀芯形式的阀口流量系数进行实验研究。通过对四种不同结构尺寸的阀座在不同开度下的流量、压力进行测量和计算,得出了各种组合下钻井液座阀阀口流量系数及其变化规律。
     (3)从设计难点、结构选择和参数计算等方面介绍了所设计的几种泥浆介质方向阀,建立了一套比较完善的泥浆介质方向阀设计方法,给出了主要设计参数的计算公式,并对泥浆介质阀在制造过程中的材料选择和加工工艺进行了归纳总结,得出了一些有利于工程实用价值的结论。
     (4)采用对严重非线性系统分析具有突出优势的功率键合图理论,并结合MATLAB/SIMULINK等计算工具,根据所设计的泥浆介质方向阀的实际结构参数,对其相应的阀控系统进行仿真,并对仿真结果进行分析对比,优选关键结构参数,从而达到改善泥浆介质方向阀性能的目的。
     (5)利用SOLIDWORKS建立泥浆介质方向阀的流道模型,采用FLUENT软件对阀腔流场进行流体动力学数值计算,通过对流道内压力分布、速度分布及三维流线进行研究,深入分析了阀体结构对于流场中所存在的负压区、漩涡区以及引起流线畸变的影响,并针对上述结构提出了优化和改进措施。
The hydraulic valve has been widely used in today's oil and gas field development system. But the current domestic research on valves with drilling mud as medium is inadequate, especially on valves applicable to small space in underground operations in particular. This thesis designs and analyzes directional valve taking drilling fluid as the working media on a theoretical basis, providing some experimental and theoretical reference for more in-depth study of the types of components.
     The project makes a study on the characteristics and mechanism of slurry directional valve by employing comprehensively experimental research, theoretical analysis, modeling and simulation. Thesis first makes an experimental and theoretical analysis about flow coefficient and flow characteristics in valve port of slurry valve. The directional valve suitable for drilling engineering requirements is designed and the designing methods are given on this basis. Finally the numerical calculation and optimizational analysis of the valves’structure parameters are made by means of system simulation and fluid simulation.
     Contents include:
     (1) Numerical simulation calculation In the region near the valve port of the cone valve commonly used in drilling fluid systems is made, based on CFD methods and gas corrosion theory, using power-law fluid constitutive equation, RNG turbulence model and two-phase flow model. The effect of angle of poppet, arc in front of poppet and chamfer of valve seat in the flow field within cone valve is investigated emphatically by analyzing the form of stream line, pressure and distribution of gas volume percentage.
     (2)The test program of flow coefficient is determined for the special physical and chemical properties of drilling mud media. Some related test equipments are designed and developmented and the test system is set up. Experimental investigations are made on the flow coefficient of cone valve、ball valve and plate valve taking drilling fluid used in Power-law rheological model as the working media. The data and law of flow coefficient of poppet valve for drilling fluid are obtained in various situations by measuring flow and pressure at different opening of four constructions of valve seats.
     (3) Several directional valves with slurry as medium are introduced from the perspective of designing difficulties, structure selection and parameter calculation. A relatively perfect set of designing methods of slurry valve is established and the main calculation formulas of parameters are given. Material selection and processing technology of slurry valve in the manufacturing process are summarized and some useful conclusions for engineering are obtained.
     (4) using the power bond graph theory which is outstandingly advantageous to serious nonlinear systems analysis, combined with MATLAB / SIMULINK simulation and optimization tools, according to the actual structure parameters of the designed directional valves, the corresponding valve control system is simulated and results are compared and analyzed so as to optimize the key structural parameters and to improve the slurry media directional valve performance.
     (5) The flow path model of slurry media directional valve is established using SOLIDWORKS. Numerical calculation of fluid dynamics of flow field in valve pocket is made using FLUENT. By analysis of pressure distribution in convection channel, velocity distribution and three-dimensional flow lines, the influencing factors resulting in the existence of negative pressure area, whirlpool areas and stream line distortion in the flow field caused by the valve structure are analyzed deeply, and the optimization and improvement measures are proposed.
引文
[1]韩来聚,孙铭新,狄勤丰.调制式旋转导向钻井系统工作原理研究[J].石油机械, 2002, 30(3): 7-9
    [2]杨剑锋,张绍槐.旋转导向闭环钻井系统[J].石油钻采工艺, 2003, 25(1): 2-5
    [3]苏义脑,李松林,葛云华等.自动垂直钻井工具的设计及自动控制方法[J].石油学报, 2001, 22(4): 87-91
    [4]李松林,苏义脑.自动垂直钻井系统VDS的形成与发展[J].国外石油机械, 1999, 10(5)
    [5] Oppelt J, Chur C. New concept for vertical drilling of boreholes[C]. SPE21905, 1991: l-12
    [6] Ligrone A, Oppelt J. The fattest way to the bottom: straighthole drilling device-drilling concept, design considerations, and field experience[C]. SPE 36826, 1996: 1-12
    [7]刘庆龙.简易无线随钻测井仪(LWD)的研制[D].西安:西安交通大学, 2001
    [8]房军,苏义脑.液压信号发生器基本类型与信号产生的原理[J].石油钻探技术, 2004, 32(2): 39-41
    [9]苏义脑.定向钻井[M].北京:石油工业出版社, 1995
    [10]房军,苏义脑.随钻测量阀控式液压信号发生器动态数学模型[J].石油机械, 2004, 32(6): 26-28
    [11]杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势[J].中国机械工程, 2000(12): 1430-1433
    [12]杨华勇,弓永军,周华.纯水液压控制阀研究进展[J].中国机械工程, 2004(15): 1400-1404
    [13]朱碧海,李壮云,贺小峰,等.水压阀关键技术的研究[J].润滑与密封, 2004(3): 132-133
    [14]弓永军,周华,杨华勇.纯水液压控制阀的研制[J].机床与液压, 2004, 10: 14-17
    [15] Wolfgang Backe. Water or oil-hydraulics in the future. The 6th Scandinavian International Conference on Fluid Power[Z]. Tampere, Finland, 1999: 51-64
    [16]刘银水,黄燕,贺小峰,李壮云.水压阀的研究与进展[J].液压与气动, 2001(5): 10-14
    [17]谢伟,周华,弓永军.纯水液压阀气蚀试验系统研制[J].液压与气动, 2004(5): 14-16
    [18]杨曙东,李壮云.水压传动的发展及其关键基础技术[J].机床与液压, 2000(5): 6-9
    [19]陈家琅,刘永建,岳湘安.钻井液流动原理[M].北京:石油工业出版社, 1997
    [20]石油与天然气勘探开发工会等.钻井泥浆与水泥浆流变学手册[S].北京:石油工业出版社, 1984
    [21]李克文,沈平平.原油与浆体流变学[M].北京:石油工业出版社, 1994
    [22]董法昌.钻井液水力学理论与应用[M].东营:石油大学出版社, 2003
    [23]张宏.高压高水基液压阀的理论及设计方法研究[D] .太原:太原理工大学, 2008
    [24] M. von Dirke, A.Krautter, J. Ostertag, et al. Simulation of cavitating flows in diesel injectors[J]. Oil & Gas Science and Technology-Rev. IFP, Vol.54(1999), No. 2, pp. 223-226
    [25]齐鄂荣,曾玉红.工程流体力学[M].武汉:武汉大学出版社, 2005: 85-85
    [26]弓永军.纯水液压控制阀关键技术研究[D].浙江:浙江大学, 2005. 5
    [27]高殿荣,王益群.液压控制锥阀内流场的数值模拟与试验可视化研究[J].机械工程学报, 2002, 38(4): 66-70
    [28] Regiane Fortes Patella. A New Approach to Evaluate the Cavitation Erosion Power[J]. Journal of Fluids Engineering. Vol. 120, June 1998: 335-344
    [29] Tsukiji T, Sumikawa H, Sumita et al. Cavitation in a Hydraulic Holding Valve[J]. American Socoety of Mechanical Engineers, Fluids Engineering Division(Publication) FED, 1996, 236(1): 373-378
    [30] Borghi M., Bussi C., Milani M., et al. Reliability of Fluid Cavitation Analysis by Means of Equivalent Fluid Characteristics Modelling[C]. Proceedings of 7th Scandinavian International Conference on Fluid Power, Linsheping, Sweden, May, 1999: 143-160
    [31] Hong GAO, Xin FU, Huayong YANG, et al. Numerical and Experimental Investigation of Cavitation Flow in Oil Hydraulic Ball Valve[C]. Proceedings of 5th JFPS International Symposium on Fluid Power, Nara, Japan. November, 2002: 923-928
    [32] Ji Hong, Fu Xin, Yang Huayong, et al. Investigation into Cavitation Induced Noise within Hydraulic Relief valve[C]. Proceedings of 5th JFPS International Symposium on Fluid Power, Nara, Japan. November, 2002: 409-412
    [33]高红,杨华勇,等.锥阀阀口气穴流场的数值模拟与试验研究[J].机械工程学报,2002, 38(8): 27-302
    [34]冀宏,傅新,杨华勇.内流道形状对溢流阀气穴噪声影响的研究[J].机械工程学报, 2002, 38(8): 19-22
    [35] Paoluzzi R., et al. Stationary and Dynamic Analysis of a Water Relief Valve[C]. Proceedings of the 4th JHPS International Symposium on Fluid Power, Tokyo, November 1999: 561-566
    [36] Berger J.. Kavitationserosion und Manahmen zu ihrer Vermeidung in Hydraulikanlagen HFA-Flussigkeiten[J]. Dissertation RWTH Aachen, 1983
    [37]张铁华,杨友胜,李壮云.二级节流式阀口的设计及实验研究[J].液压与气动, 2001(11): 12-15
    [38]刘银水,黄燕,邱鸿利,等.二级节流的性能分析及其在水压阀中的应用[J].机床与液压, 2001(5):16-17
    [39]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社, 2004: 1-17
    [40] B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of Turbulence[M]. London: Academic Press, 1972
    [41]赵殿甲.两相流体力学研究综述[J].煤炭技术, 2006, 25(7): 113-114
    [42]盛敬超.液压流体力学[M].北京:机械工业出版社, 1980: 81-85
    [43]林建忠.湍动力学[M].杭州:浙江大学出版社, 2001
    [44] A. K. Singhal. H. Y. Li. M. M. Athavale, et al. ematical Basis and Validation of the Full Cavitation Model[C]. ASME FEDSM’01, New Orleans, Louisiana, 2001
    [45]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社, 2007
    [46] Joseph C. Leung. A theory on the discharge coefficient for safety relief valve[J]. Journal of Loss Prevention in the Process Industries, 2004(17): 301-313
    [47] S.D.Morris. Liquid flow through safety valves: Diameter ratio effects on discharge coefficients, sizing and stability[J]. J.Loss Process Ind, 1996, 9(3): 217-224
    [48] Stone J A. Discharge Coefficients and Steady-State Flow Force for Hydraulic Popper Valves[J]. Trans. ASME. Jour, Engng, 82 Ser. D-l (Marchl960): 144-158
    [49] Johnston D N, Edge K A, Vaughan N D. Experimental investigation of flow and force characteristics of hydraulic poppet and disc valves[J]. Proc. Inst. Mech. Engrs,199l( 205): l6l-l7l
    [50] Shigeru oshima, Timo leino, Matti Lijama, etc. Effect of cavitation in water hydraulic poppet valves[J]. International journal of fluid power, 2001, 2(3): 5-13
    [51] Kazumi ITO, Koji TAKAHASHI, Kiyoshi INOUE. Flow in a poppet valve(Computation of pressure distribution using a streamline coordinate system) [J]. JSME International Journal, Series B. Vol. 36, No 1, 1993: 157-163
    [52]草秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究[J].西安交通大学学报, 1995, 29(7): 66-70
    [53]刘银水,杨友胜,李壮云.二级圆锥式节流阀口的设计及实验研究[J].液压与气动, 2001(11): 12-14
    [54]杨旭武.实验误差原理与数据处理[M].北京:科学出版社,2009
    [55]孟尔熹,曹尔第.实验误差与数据处理[M].上海:上海科学技术出版社, 1988.01
    [56]刘畅生.传感器简明手册及应用电路.压力传感器分册[M].西安:西安电子科技大学出版社, 2007
    [57]张海平.螺纹插装阀技术[J].流体传动与控制, 2004(1): 16-22
    [58]朱小明.螺纹插装阀及其阀块的设计与加工[J].液压气动与密封, 2005(6) : 31-34
    [59] Consolidated Product Manual[Z], IntegratedHydraulics, 2008
    [60] Screw-in cartridge valve reference guide[Z], The Oilgear Company.2006
    [61]朱小明.第五代液压阀种_螺纹插装阀的发展与应用[J].现代制造, 2002(16): 52-54
    [62]朱小明.螺纹插装阀在工程机械中的应用[J].工程机械, 2006(5):36-41
    [63]韩伟.大流量液控单向阀防冲击技术研究[J].煤矿开采, 2009, 14 (2): 64-66
    [64]韩伟.液压支架控制系统大流量阀与移架速度定量化研究[D].北京:煤炭科学研究总院, 2006
    [65]韩纪志,张善波. FAD-400/45JA型大流量液控单向阀、安全阀研制与应用[J].山东煤炭科技, 2004(2): 31-32
    [66]宋鸿尧,丁忠尧等.液压阀设计与计算. [M]北京:机械工业出版社, 1979
    [67]雷天觉.液压工程手册[M].北京:机械工业出版社, 1990
    [68]杨曙东,彭建,李壮云.中低压水压元件的研制[J].液压与气动, 2002(4): 49-51
    [69]刘银水,黄燕,贺小峰,李壮云.几种油压阀的结构形式对水的适应性[J].液压气动与密封, 2002(6): 16-17
    [70]张铁华,等.浅谈水压元件的结构设计[J].液压与气动, 2000(4): 38-39
    [71]姜继海.液压传动[M].哈尔滨:哈尔滨工业大学出版社, 2004
    [72]机械设计手册编委会.机械设计手册[M].北京:机械工业出版社, 2004
    [73]崔占全,邱平善.工程材料[M].哈尔滨:哈尔滨工程大学出版社, 2001
    [74]方昆凡.工程材料手册[M].北京:北京出版社, 2002. 02
    [75]杨曙东,李壮云,朱玉泉.水压传动的主要课题与研究进展[J].中国机械工程, 2000, 11(9): 1070-1073
    [76]李喜桥.加工工艺学[M].北京:北京航空航天大学出版社, 2003
    [77]党惊知.材料加工工艺CAD及其应用[M].北京:机械工业出版社, 1999.05
    [78]张辽远.现代加工技术[M].北京:机械工业出版社, 2008
    [79]王先逵,孙凤池.机械加工工艺手册[M].北京:机械工业出版社, 2007
    [80]沈艳.控制工程基础[M].北京:清华大学出版社, 2009
    [81]董景新.控制工程基础[M].北京:清华大学出版社, 2003
    [82]雷军波,童昕.基于键合图和SIMULINK的定压阀的建模仿真[J].机床与液压, 2006(1): 153-154
    [83]李广伦,赵喜荣,王程远,等.基于键合图的复杂动力系统约束方程的自动建模与解析[J].机电工程, 2005, 22(2): 40-43
    [84] B. Yu, A. H. C. van Paassen. Simulink and bond graph modeling of an air-conditioned room[J]. Simulation Modelling Practice and Theory, 2004, 12(1): 61-76
    [85]徐立友.拖拉机液压机械无级变速器特性研究[D] .西安:西安理工大学, 2007
    [86] Perry Y. Li, Roger F. Ngwompo.Passification of Electrohydraulic Valves Using Bond Graphs[A]. 15th Triennial World Congress[C]. Barcelona, Spain, 2002
    [87] P. Dransfield, M. K. Teo. Using bond graphs in simulating an electro-hydraulic system[J]. Journal of the Franklin Institute, 1979, 308(3):173-184
    [88] Dransfield, P. and Winton, R.D. Applying Power Bond Graphs to Hydraulic Control Systems[J], Proc. III Congresso Brasiliero de Engenharia Mecanica, Rio de Janeiro, 1975
    [89] MT 419-1995,液压支架用阀[S].北京:中华人民共和国煤炭工业部,1996
    [90]卞岳望,高云峰.液控单向阀动态特性浅析[J].山西矿业学院学报, 1997, 15(4): 359-365
    [91]蔡廷文.液压系统现代建模方法[M].中国标准出版社, 2002
    [92] Suzuki Katsuya, Nakamura Ikuo, Thoma J U. Introduction to bond graphs and their approach[J]. Simulation Practice and Theory, 1999, 7(5-6/12): 603-611
    [93] P P J Van den Bosch, AC Van der Klauw. Modeling Identification and Simulation of Dynamical[M]. CRC Press, 1994: 1-75
    [94]大连工学院液压教研室.液压系统动态数字仿真[G].大连: 1985: 3-43
    [95]肖天元,张燕云,陈加栋编著.系统仿真导论[M].清华大学出版社, 2002
    [96]章宏甲,黄宜.液压传动[M].机械工业出版社, 2003
    [97]付文智,李明哲,崔相吉,等.微型液压换向阀换向过程的动态模拟[J].哈尔滨工业大学学报, 2002, 34(4): 489-492
    [98]冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究[J].机械工程学报, 2003, 39(6): 19-22
    [99] D.麦克洛伊,H.R.马尔汀.流体动力控制分析和设计[M].北京:机械工业出版社, 1986.
    [100]周连山,庄显义.液压系统的计算机仿真[M].北京国防工业出版社, 1986: 1-146.
    [101]姜玉宪.控制系统仿真[M].北京:北京航空航天大学出版社, 1998
    [102]黄永安,马路,刘慧敏. MATLAB 7.0/Simulink 6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社, 2005
    [103]宋兆基,徐流美. MATLAB 6.5在科学计算中的应用[M].北京:清华大学出版社, 2005
    [104]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社, 2000
    [105]卢贵主,胡国清.利用功率键合图和SIMULINK实现液压系统动态仿真[J].机床与液压, 2001(4): 79~81
    [106]蔡改贫,黄志青.利用功率键合图和SIMULINK实现工业回转窑窑衬清窑机器人系统的动态仿真[J].机床与液压, 2005(2): 116-118
    [107]冀宏.液压阀芯节流槽气穴噪声特性的研究[D] .浙江:浙江大学, 2004
    [108]钟英杰,都晋燕,张雪梅. CFD技术及在现代工业中的应用[J].浙江工业大学学报, 2003(3): 284-289
    [109]赵兴艳,张楚华,苗永淼,等. CFD方法在流体机械设计中的应用[J].流体机械,2000(3) : 22-25
    [110] Zhou Hua, Yang Huayong. Diagnosis of Cavitation Inception in Water Hydraulic Piston Pump[C]. Proceedings of the 6th Scandinavian International Conference on Fluid Power, Tampere, Finland, September, 1999: 127-137
    [111] GAO Hong, Fu Xin, YANG hua-yong et al. Numberical Investigation of Cavitating Flow behind the Cone of a Poppet Valve in Water Hydraulic System[J]. Journal of Zhejiang University SCIENCE, 2002, 3(4): 395-400
    [112] V. Yakhot, S. A. Orzag. Renormalization group analysis of turbulence[J]: basic theory. J Scient Comput, 1: 3-11, 1986
    [113] FLUENT 6 User Guide[Z], Flunet Inc., 2001
    [114]韩占忠,王敬,兰小平. FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004
    [115]于勇. FLUENT入门与进阶教程[M].北京:北京理工大学出版社, 2008
    [116]杨国安,黄聪,于丽.基于FLUENT的钻井泵阀隙流场仿真计算[J].石油矿场机械, 2008(3): 41-44
    [117]柳洪芬,高石,王国丽.基于Fluent的复杂通道比例流量阀的数值模拟[J].天津理工大学学报, 2007, 23(1): 86-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700